Premotor cortex is sensitive to auditory-visual congruence for biological motion

Wuerger, SM1, Parkes, L2, Lewis, PA3, Crocker-Buque, A4, Rutschmann, R5 and Meyer GF1,

1Department of Experimental Psychology, University of Liverpool

2Imaging Sciences, Biomedical Imaging Institute, University of Manchester

3School of Psychology, University of Manchester

4Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh

5Department of Experimental Psychology, University of Regensburg;

Corresponding Author:

Sophie Wuerger

Department of Experimental Psychology

University of Liverpool

Eleanor Rathbone Building

Bedford Street South

Liverpool, L69 7ZA

+44 151 794 2173/2967 (office/lab)

http://www.liv.ac.uk/Psychology/staff/swuerger.html

Email: s.m.wuerger@liverpool.ac.uk
ABSTRACT

The auditory and the visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilising some of the statistical properties of the real world. A well known example is the perception of biological motion, e.g. the perception of a human walker. The aim of the current study was to identify the cortical network involved in the integration of auditory and visual biological motion signals. We first determined the cortical regions of auditory and visual co-activation (Experiment 1); a conjunction analysis based on unimodal brain activations identified four regions: the Middle Temporal area (MT), Inferior Parietal Lobule (IPL), Ventral Premotor Cortex (vPM) and the Cerebellum. The brain activations arising from bimodal motion stimuli (Experiment 2) were then analysed within these regions of co-activation. Auditory footsteps were presented concurrently with either an intact visual point-light-walker (biological motion) or a scrambled point-light-walker; auditory and visual motion-in-depth (walking direction) could either be congruent or incongruent. Our main finding is that motion incongruency (across modalities) increases the activity in the Premotor cortex (vPM) but only if the visual point-light-walker is intact. Our results extend our current knowledge by providing new evidence consistent with the idea that the Premotor area assimilates information across the auditory and visual modality by comparing the incoming sensory input to an internal representation.

Keywords: fMRI, multisensorial integration, biological motion, motion-in-depth, auditory, visual
Introduction

When an object moves in the real world, its movement is usually associated with a sensory signal in both the auditory and the visual modality (Baumann & Greenlee, 2007). These signals are merged to yield a unified percept of the object in motion. The auditory and the visual perception systems have developed special processing strategies for ecologically valid motion stimuli, utilising some of the statistical properties of the real world (for a recent review see Blake & Shiffrar, 2007). A prime example is the perception of biological movement, i.e. the perception of human body motion, such as walking or running.

The cortical mechanisms underlying the processing of visual biological motion signals (such as point-light-walkers) have received much attention and a network encompassing occipital, parietal and temporal areas has been implicated in the processing of visual biological motion, including the posterior superior temporal gyrus and superior temporal sulcus (Bonda, Petrides, Ostry, & Evans, 1996; Grossman & Blake, 2001; Grossman & Blake, 2002; Grossman et al., 2000; Howard et al., 1996; Pelphrey et al., 2003; Pelphrey, Morris, Michelich, Allison, & McCarthy, 2005; Servos, Osu, Santi, & Kawato, 2002; Thompson, Clarke, Stewart, & Puce, 2005), the lingual gyrus (Vaina, Solomon, Chowdhury, Sinha, & Belliveau, 2001), motion-sensitive areas MT and MT+ (Grezes, 2001; Vaina et al., 2001), parietal areas (Bonda et al., 1996; Grezes, 2001; Vaina et al., 2001), and other areas including the amygdala (Bonda et al., 1996).

The involvement of the pSTS/STG in biological motion processing is the most robust finding and consistent with macaque physiology (for a review see Puce & Perrett, 2003). Many areas that are selective for visual biological motion, are also responsive to auditory biological motion signals.
The pSTS is activated by *auditory* footsteps (Bidet-Caulet, Voisin, Bertrand, & Fonlupt, 2005), hence suggesting that pSTS may be a supramodal integration area for human biological motion. More recent experiments suggest that, in addition to the STS, Premotor areas play an important role in the processing of visual biological motion (Schubotz & von Cramon, 2004) and studies using a clinical (Saygin, 2007) or non-clinical population (Saygin, Wilson, Hagler, Bates, & Sereno, 2004) confirm that the Premotor cortex is necessary for intact biological motion perception. Neuroimaging studies on humans have demonstrated that Premotor cortex is activated during action observation (e.g. Bonini et al., 2010; Buch, Mars, Boorman, & Rushworth, 2010; Calvo-Merino, Glaser, Grezes, Passingham, & Haggard, 2005; Jastorff, Begliomini, Fabbri-Destro, Rizzolatti, & Orban, 2010; Pilgramm et al., 2010), and that auditory and visual motion signals converge in the Premotor cortex (Bremmer et al., 2001). Taken together, these studies suggest that the human Premotor cortex is a good candidate for the perceptual integration of auditory and visual actions, such as human body motions.

Behavioural evidence suggests that different integration mechanisms are at work for highly familiar auditory and visual signals (Arrighi, Alais, & Burr, 2006; Arrighi, Marini, & Burr, 2009; Saygin, Driver, & de Sa, 2008). Reaction time studies with biological motion stimuli (point-light walkers) showed that the integration of biological motion stimuli is constrained by the direction of the auditory and visual motion signals and shorter reaction times are reported for congruent biological motion (Brooks et al., 2007); the integration of random motion sequences is not affected by the inconsistency of the auditory-visual motion direction (Brooks et al., 2007; Meyer & Wuerger, 2001; Meyer, Wuerger, Roehrbein, & Zetzsche, 2005; Wuerger, Hofbauer, & Meyer, 2003). In the present imaging study we looked for neural correlates of these differential auditory-visual integration mechanisms for biological and non-biological motion signals that have been
demonstrated behaviourally. As visual biological motion stimuli we used point-light walkers (Johansson, 1973) since they give a compelling percept of a person walking and are yet highly controllable; a ‘scrambled’ walker was obtained by randomising the starting position of each limb hence keeping the local motion signals intact but destroying the percept; the auditory stimulus consisted of synchronised footsteps. We focussed on the question whether the incongruent auditory and visual motion direction has a differential effect on the brain activity arising from the integration of biological (point-light walker and synchronised footsteps) and non-biological motion signals (‘scrambled’ walker and synchronised footsteps). Our hypothesis was that inconsistent motion across the auditory and visual modality (auditory: looming motion; visual: receding motion) should have a greater effect when both modalities signal biological motion.

Materials and Methods

Experimental design

First we identified candidate regions (ROIs) of auditory-visual co-activation (Experiment 1: Localiser); we then tested within these ROIs whether such differential neural activities were found for biological compared to scrambled motion sequences (Experiment 2). In experiment 1 (Localiser), subjects were presented with visual (point-light walkers), auditory (footsteps) or bimodal motion sequences and their task was to detect motion-in-depth (looming or receding motion). fMRI scans were performed to reveal cortical activations common to the auditory and the visual modality (Bremmer et al., 2001; Harrison, Wuerger, & Meyer, 2010). The main purpose of the localiser experiment was to identify areas of auditory-visual co-activation by performing a conjunction analysis (Friston, Penny, & Glaser, 2005) of the unimodal (auditory only, visual only) brain activations. In experiment 2 we tested our main hypothesis by asking whether auditory-visual motion congruency (same versus different directions of motion in the two
modalities) yields a differential effect on neural responses to biological motion in comparison to meaningless motion sequences. fMRI was performed while subjects were presented with incongruent and congruent bimodal motion sequences. The statistical analysis of the effect of motion congruency on biological versus non-biological motion is then performed within the regions of interest defined by experiment 1 (Meyer, Greenlee, & Wuerger, ; Szycik, Tausche, & Münte, 2008). Behavioural performances for both experiments were obtained at least one day prior to the scanning sessions under closely matched experimental conditions.

Subjects

Eighteen (15 naïve and three authors) healthy volunteers (eight females) with normal or corrected-to-normal vision participated in the experiments (mean age: 24 ± 5 years). All subjects gave written consent and were screened for MRI contra-indications. The study was approved by the Sefton Liverpool Research Ethics Committee.

Apparatus

Auditory stimuli were played back using a real-time signal processor (Tucker-Davis-Technologies, RM1; USA) and presented via MRI-compatible MR Confon Optime 1 headphones (MR Confon, Magdeburg, Germany). Visual stimuli were generated using a visual stimulus generator (ViSaGe; Cambridge Research Systems LTD, Kent, UK) which was controlled by a standard PC (DELL Precision 390). Stimuli were back projected with a LCD projector (PANASONIC PT-L785U) onto a translucent circular screen, placed inside the scanner bore at 70 cm from the observer. The projector ran at a refresh rate of 60Hz and a resolution of 800 x 600 pixels. The TDT system and the ViSaGe system were interfaced via triggers to ensure that the auditory and visual stimuli were
synchronised. For stimulus presentation (auditory and visual) MatLab 7 (Mathworks) was used. Responses were acquired using an MRI-compatible response box.

Behavioural data were obtained at least one day prior to the scanning session using a similar experimental setup (ViSaGe interfaced with a TDT system). Subjects were seated in a sound-proof booth (IAC 404-A), at a distance of 100cm from a CRT monitor (Mitsubishi DiamondPro 2070SB), running at a refresh rate of 60 Hz. Auditory stimuli were presented via conventional headphones (Sennheiser HD25SP). Reaction times were acquired using an infrared response box (Cambridge Research Systems Ltd, UK).

Stimuli

The auditory stimuli were natural recordings of footsteps (male walker) on gravel and lasted 1.8 secs (4 footsteps) (diotic presentation, Fs=44100Hz, 64 dB(A)). The visual stimuli were either ‘point light walkers’ (PLW; biological motion) or ‘scrambled point-light walkers’ (SCR), subtending a visual angle of 3.8 deg (width) x 10 deg (height). The mean luminance of the display was fixed at 50 cd/m²; the contrast of the PLWs was 100% (black on grey). The PLW was defined by 13 points (indicating the main joints and the head) representing the motion of the particular position of the body over four steps. PLWs were always presented in their front/back view. The view we presented was consistent with a front and a back view due to the inherent orthographic ambiguity of PLWs (Vanrie & Verfaillie, 2006); it is also known that a concurrent auditory looming/receding sound can bias the observer’s interpretation (Schouten, Troje, Vroomen, & Verfaillie, 2011). Each point had a size of 3x3 pixels (0.09 x 0.09 deg) and one stimulus trial lasted 1.8 secs. The ‘scrambled’ walkers were generated by using the same local limb movements as present in the PLW, but the starting positions of the limb movements were randomised within a kernel defined by the extent of the original figures, e.g. the knee movement could start near the
elbow and vice versa. New scrambled motion was generated on each trial to avoid that observers learned the constellation of the scrambled walkers. The advantage of this control stimulus is that it contains the same local motion signals (and hence the same spatio-temporal profile) as the point-light walker but is not recognised as a walker (Grossman & Blake, 2002). Auditory and visual motion stimuli could either be looming, receding, or neither looming nor receding. In the latter case the point-light-walker is walking ‘on a treadmill’ (‘No Motion’). Receding visual motion was generated by contracting the visual stimuli by a factor of 0.25; receding auditory motion was generated by linearly decreasing the amplitude of the footsteps by the same factor. Looming motion was generated by linearly increasing the amplitude/size. We added dynamic visual noise to the visual stimuli in an attempt to roughly equate the saliency in both modalities, since the scanner noise was always present in the auditory modality. New dynamic visual noise was generated on each trial. To match the behavioural study (this was a separate experiment conducted prior to the brain scans) as closely as possible with the scanning conditions, we recorded the scanner noise using an optical microphone (MR Confon; Manufacturer: Sennheiser, Germany) and then replayed the scanner noise in the sound-proof booth using loud speakers throughout the experiment. The auditory stimulus (footsteps) was presented via headphones. The onset of the (audio) footstep coincided with the (visual) foot touching the ground; this synchronization was performed manually.

Task and Procedure

We performed two experiments: in experiment 1 we presented unimodal motion stimuli (auditory footsteps (A), visual biological motion (VBI0), visual scrambled motion (VSCR) and congruent bimodal stimuli (CONG_BIO=A+VBI0, CONG_SCR=A+VSCR). All five experimental stimuli conveyed the same motion direction (receding) and each experimental condition was presented 12
times. We included a control condition of no interest, which consisted of ‘no motion’ (walking on a treadmill) stimuli, presented either bimodally or unimodally. Each of the five control stimuli was presented four times and the task of the participant was to press a button when no motion was present. In addition, we included 20 null events (fixation target only) at random times. The stimuli (experimental, control, null) were presented in a randomized order; each stimulus was presented for 1.8 sec and the average times between stimuli was 3 sec with a randomized jitter between -0.5 and +0.5 sec. Altogether, experiment 1 consisted of 100 trials and lasted just under 7 min (200 scans).

In experiment 2 (main experiment), we tested whether auditory-visual congruency produces differential brain responses to biological visual motion (VBIO) compared to scrambled visual motion (VSCR). In the four experimental conditions, auditory and visual motion could either move in the same direction (both receding: CONG_BIO, CONG_SRC) or in different directions (auditory looming and visual receding: INCONG_BIO, INCONG_SCR). Within a single scan, each of the experimental stimuli was presented 16 times. As in the localizer, we included two control conditions of no interest, consisting of bimodal ‘no motion’ stimuli (A+VBIO or A+VSCR) and each of the two control stimuli was presented 12 times. 22 null events were included and all stimuli were presented in a randomized order. Altogether, experiment 2 consisted of 110 trials and lasted slightly longer than 7 min (219 scans).

Each subject was in the scanner for less than one hour. First, the participant performed a short practice experiment (less than 5 min); then two scan sessions of experiment 1 were run (each about 7 minutes) followed by a structural scan (12 min) and by two sessions of experiment 2 (each about 7 minutes). For half of the participants the order of experiments 1 and 2 was reversed. In the scanner, the observers’ task was to press a button (with the right index finger) only when there was
‘no motion’ present (control condition). This ensures that the brain activity in response to the motion conditions is not confounded with the button presses.

For reaction time measurements, apparatus, stimuli and procedure were the same as in the scanning session; the only difference was that observers were asked to press one button when the stimulus contained any motion and another button when no motion was present in order to match the motor activity between the conditions. Participants were instructed to respond as fast and as accurately as possible. Collecting behavioural reaction time data prior to the scanning ensured that subjects were familiar with the stimuli and the task and no additional learning occurred during scanning. To ascertain that the auditory and visual motion stimuli elicited reliable and comparable motion percepts, performance for discriminating between looming (receding) motion and ‘no motion’ was measured prior to the main experiments with the same set of observers. Performance for discriminating between auditory motion and ‘no motion’: 93% correct (for looming motion), 86% (for receding motion) and 71% (for ‘no motion’ stimuli); visual biological motion vs. ‘no motion’: 96% (looming), 91% (receding) and 96% (no motion); visual scrambled motion vs ‘no motion’: 72% (looming), 89% (receding) and 88% (no motion). In the main neuro-imaging experiment (experiment 2) we used auditory receding and visual receding motion to yield the congruent bimodal motion condition and auditory looming and visual receding motion to yield the incongruent bimodal motion condition. We are therefore confident that the stimuli used in the scanner elicited reliable and comparable auditory and visual motion percepts. This was confirmed in the localizer analysis (Figure 1; Table S1) which showed activation patterns typical for the perception of auditory (Bidet-Caulet et al., 2005) or visual motion (e.g. Bremmer et al., 2001).

Data Acquisition
Imaging was performed using a 3-Tesla MR whole body scanner (Siemens Trio, Erlangen, Germany) located at MARIARC, University of Liverpool. In the functional scans, Blood oxygen level-dependent (BOLD) responses were measured using a T$_2^*$-weighted echo planar imaging (EPI) sequence (echo time (TE) = 30 ms; volume repetition time (TR) = 2.0 s; in plane resolution = 3 × 3 mm; number of slices = 33, interleaved and ascending; slice thickness = 3 mm; gap between slices = 0.3 mm; flip angle = 80°). 3D structural images of the whole brain were acquired using a T1-weighted MDEFT Sequence of 1 mm isotropic resolution.

Data Analysis

Preprocessing and statistical data analysis were performed using SPM5 (Wellcome Department of Imaging Neuroscience, London, UK, http://www.fil.ion.ucl.ac.uk/spm/) running under Matlab 7 (Mathworks, Natick, MA). Functional images of each participant were corrected for residual head motion and realigned to the first image. Subsequently, all functional images were co-registered and normalized to the MNI-152 template and re-sampled to 2 × 2 × 2 mm3 spatial resolution. Spatial smoothing was applied to the functional images using an isotropic Gaussian kernel with a full-width half-max (FWHM) of 8 mm. A general linear model (GLM) was constructed for each participant in order to analyze the hemodynamic responses captured by the functional images. In all functional scans, an event-related design was used; regressors were generated by convolving unit impulses with the canonical hemodynamic function and also with the temporal derivative of this function (e.g. Henson et al., 2001). A random effect analysis was used for the statistical fMRI data analysis.

Experiment 1 was used to localize modality-unspecific motion-sensitive areas. The design matrix consisted of 10 regressors, the five experimental stimulus conditions (A, VBIO, VSCR, A+ VBIO,
A+VSCR, all depicting receding motion) and the five control conditions (A, VBIO, VSCR, A+ VBIO, A+VSCR, all depicting a stationary ‘treadmill’ walker). A second-level global null analysis (as defined by Friston et al., 2005) was used to reveal areas that respond significantly (whole brain family-wise error <0.05) to motion in the auditory or in the visual modality. We confirmed that a conjunction null (as defined by Friston et al., 2005) revealed the same areas of co-activation (at a different family-wise error), hence in our particular case this was not a critical issue. These brain areas identified in experiment 1 by the global null analysis are then used as regions of interest in experiment 2. These regions of interest (ROIs) were extracted using the MarsBaR 0.38 toolbox for SPM (Brett, Anton, Valabregue, & Poline, 2002).

In experiment 2, we tested our main hypothesis, namely whether there is an interaction between auditory-visual congruency (CONG vs INCONG) and motion type (BIO vs SCR). The design matrix consisted of 6 regressors, the four experimental conditions (CONG_BIO, CONG_SCR, INCONG_BIO, INCONG_SCR) and the two control conditions. Individual contrast estimates, within the ROIs defined by experiment 1, were extracted for each observer and for each ROI individually. They were then analysed with a two-way ANOVA (factor 1: motion type: BIO or SCR; factor 2: motion congruency: congruent or incongruent). Stereotaxic Montreal Neurological Institute (MNI) coordinates are used throughout this report. For the parietal lobe activations, the centres of gravity of suprathreshold regions were localized using the Anatomy toolbox for SPM (Eickhoff et al., 2005). For cortical areas where no probability maps were available in the Anatomy toolbox, we used the WFU_PickAtlas toolbox for SPM (Maldjian, Laurienti, Kraft, & Burdette, 2003).

To compute the correlations between the behavioural data (reaction times) and the brain activations we use the mean reaction times for each individual observer for each of the four
experimental conditions (CONG_BIO, CONG_SCR, INCONG_BIO, INCONG_SCR) and the individual contrast values associated with the four experimental conditions in each of the four ROIs. These contrast values are proportional to signal change and were extracted with MarsBaR (Brett et al., 2002); for the correlation analysis the mean contrast value averaged across all voxels within the ROI was used. To test for interactions between motion type (BIO/SCR) and motion congruency (CONG/INCONG) both in the behavioural reaction times and the fMRI contrasts we performed a within-subject 2-way ANOVA (MatLab statistics toolbox).

The main hypothesis was tested as described in the previous paragraphs. For visualisation purposes (Figures are supplied as Supporting Material), a whole brain analysis was conducted. Using a flexible factorial design, several contrasts (CONG_BIO versus null; CONG_SRC versus null; INCONG_BIO versus null; INCONG_SCR versus null) were calculated. The resulting SPM T maps were superimposed with the selected threshold (family-wise error < 0.05) onto the population average landmark and surface-based (PALS-B12) standard brain (Van Essen, 2005) using Caret 5.6 (Van Essen et al., 2001).

Results

Localiser experiment: Areas of auditory-visual co-activation

In the localizer experiment, we observe very similar activation patterns for biological and scrambled visual motion. The main purpose of the localiser experiment is to define regions of interest in which the main hypothesis can be tested. The conjunction (Global Null) analyses (Friston et al., 2005) were performed on the unimodal brain activations ((A > Rest) ∩ (V > Rest), for both biological and scrambled visual motion, following Meyer et al (2011). The conjunction ‘A ∩ VBIO’ revealed four areas of significant co-activations common to the auditory and visual modality: the right Premotor area (vPM; BA 6, bordering on BA 44), the right inferior parietal...
lobule (BA 7) on the border to the superior parietal lobule (SPL), the right middle temporal area (BA 39, bordering on BA 22 and BA 37) and the left Cerebellum. Figure 1a shows the SPM T maps of this conjunction analysis (group results) superimposed on an inflated standard brain; Figure 1b shows the sagittal and coronal views. The co-activity in the Premotor Cortex, the Inferior Parietal Lobule and area MT is lateralised in the right hemisphere; common activity in the Cerebellum is only present in the left hemisphere. The corresponding figure for the conjunction ‘A ∩ VSCR’ is shown in the supporting material (Figure S1); the same regions of co-activations are revealed. Table 1 depicts the label of the ROI, the type of conjunction (A ∩ VBIO or A ∩ VSCR), the cortical location (MNI), and the number of significant voxels. Both T and Z values are given; all neural activations are significant at p<0.05 (family-wise error). Since both localisers reveal the very similar regions of interest, we will report the results of our main experiment for the BIO localiser only; the corresponding (and identical) results for the SCR localiser can be found in the supplementary material.

Figure 1: Conjunction analysis – about here
Table 1: Conjunction analysis – about here

Bimodal activations

* Differential effects of auditory-visual motion incongruency on biological and scrambled visual motion

The purpose of the main experiment (Experiment 2) was to test whether the type of visual motion (biological or scrambled) interacts with motion incongruency (auditory and visual motion signal the same direction = congruent motion; auditory and visual motion signal different motion directions = incongruent motion). We measured activations for the four bimodal conditions:
congruent biological motion (CON BIO), incongruent biological motion (INCON BIO), congruent scrambled motion (CON SCR) and incongruent scrambled motion (INCON SCR), and tested within each region of interest (determined in experiment 1 using our localiser) whether there is an interaction between motion type (BIO vs SCR) and auditory-visual motion incongruency (Congruent vs incongruent), i.e. whether the differential activation \((\text{INCON-CON})_{\text{SCR}} - (\text{INCON-CON})_{\text{BIO}}\) differs from zero. Our main finding is that significant interactions are found only in the right vPM.

Figure 2 shows the ROIs revealed by the localizer experiment (cf. Figure 1) superimposed onto an MNI normalized flat map template (van Essen et al. 2001). BOLD contrasts within each ROI were extracted for each individual observer and the mean contrast differences between incongruent and congruent bimodal motion signals (‘INCON– CON’) for biological (green) and scrambled (purple) motion are shown in the bar graphs for all four ROIs (for the numerical values of the contrast differences consult Table 2). In the right vPM, incongruent auditory-visual motion leads to a larger BOLD contrast increase when both modalities convey a biological motion signal in comparison to scrambled visual motion; the interaction is significant only in the vPM (within-subject two-way ANOVA: \(F(1,17)=5.74; p=0.028\)). No significant interactions were found in IPL (\(F(1,17)=0.54; p=0.47\)), in MT (\(F(1,17)=0.23; p=0.63\)) or in the Cerebellum (\(F(1,17)<0.0001; p=0.97\)). The significant interaction in vPM results from different BOLD contrasts for congruent and incongruent biological motion (BIO: upper left panel of Figure S3a, in the supplementary material); for the scrambled condition, congruent and incongruent motion yield the same BOLD contrasts (SCR: Figure S3a). No significant contrast differences between congruent and incongruent motion were found in MT and the Cerebellum; in IPL, there was a trend for
incongruent biological motion to yield a higher BOLD contrast than congruent biological motion (p=0.066; Figure S3a).

We obtain almost identical results when we use a localizer defined by A ∩ VSCR since the ROIs are almost completely overlapping (see Exp 1): only the interaction in vPM is significant (see Supplementary Material: Figure S1, S2, S3b; cf with Figures 1,2,S3a). This differential effect of motion incongruency on biological motion can also be seen in the whole brain group analysis: incongruent motion is associated with an increased vPM (BA 6) activity for biological motion only, and only in the right hemisphere (Supplementary material: compare Figure S4a: RH with S4b: LH).

Table 2: Differential (INCON–CON) contrasts – about here

Figure 2: Flat brain with differential contrasts – about here

In summary, our ROI analysis revealed a significant interaction in vPM (precentral; BA 6) in the right hemisphere only: incongruent motion in the auditory and visual modality leads to an increase in the activation in these areas only if the auditory and visual modality depict biological motion signals.

Reaction times and their neural correlates

Figure 3 shows the differences in reaction times (INCON – CON) for biological and scrambled visual motion. For biological motion, observers are slowed down (by 74 msec) when the auditory and the visual modality signal different directions of motion; when the visual point-light-walker was scrambled, there is no significant reaction time difference between incongruent and congruent
motion sequences (RT difference = -32 msec). There is a weak interaction between type of motion (BIO/SCR) and motion incongruency (F(1,17)=3.73; p=0.07). In summary, observers are slowed down by incongruent information from the auditory and visual modality if and only if both the auditory and the visual motion sequences depict biological motion, which is consistent with Brooks et al (Brooks et al., 2007) and replicates our previously reported behavioural results (Wuerger et al., 2011).

Figure 3: Differential reaction times – about here

Comparison of the differential brain activations (Figure 2) with the differential reaction times (Figure 3) reveals that the BOLD contrast in vPM (BA 6) shows the same pattern as the reaction time, i.e. an increase in reaction times due to incongruent motion information from the auditory and the visual modality is associated with an increased activation in the Premotor cortex. To quantify the strength of association between reaction times and BOLD contrasts, we calculate the correlation between the individual brain activations within the ROIs and the individual reaction times (n=18) for all four experimental conditions (CON BIO; CON SCR; INCON BIO; INCON SCR). We predict an association between reaction times and brain activity for all four conditions, but only in vPM. An analysis of covariance (ANOCOVA; MatLab Statistics Toolbox) revealed that, when separate lines are fitted for each of the four conditions, the slopes of these lines do not differ significantly from each other (vPM: F(1,3)=0.31; p=0.82; IPL: F(1,3)=0.69; p=0.56; MT: F(1,3)=0.05; p=0.98; Cerebellum: F(1,3)=0.65; p=0.58). When fitted in isolation for each condition separately (see Supplementary Material, Figures S5a,b), the correlation between fMRI contrast and reaction time does not reach statistical significance. We therefore fitted a single line
to all data, but separately for each region of interest. Only Premotor activity is significantly correlated with reaction times ($r \sim 0.3; p<0.05$; Table 3).

Table 3: correlation between reaction times and activations

Discussion

Our aim was to identify the cortical network that differentiates between biologically plausible and implausible auditory-visual inputs. We first determined the cortical regions of auditory-visual co-activation by performing a conjunction analysis based on unimodal brain activations (Experiment 1: Localiser). The regions identified by this conjunction analysis were: MT, IPL, and vPM. The brain activations arising from bimodal (auditory-visual) motion stimuli (Experiment 2) were then analysed within these regions of co-activation. Our main finding is that the incongruency in the auditory and visual motion direction of the walker only affects the activity in the right vPM and only if the visual walker is intact. We therefore conclude that the right vPM not only plays a role in recognising motion sequences in the visual and auditory modality in isolation, but is also selective to the familiarity of the combined auditory-visual input.

Areas of auditory and visual co-activation in the right hemisphere

Our conjunction analysis (Experiment 1) revealed four regions of auditory-visual co-activation: area MT (BA 39 bordering on BA 22 and BA 37), vPM (BA 6) and IPL (BA 7; at the border to SPL) in the right hemisphere and the Cerebellum in the left hemisphere (see Table 1, also Table S2 in supporting material). The strong right-lateralisation of brain activity in response to auditory footsteps is consistent with the findings that auditory motion-in-depth (looming/receding) is encoded in the right hemisphere (Baumgart, Gaschler-Markefski, Woldorff, Heinze, & Scheich,
1999; Seifritz et al., 2002), in particular in the right Premotor cortex (Schubotz & von Cramon, 2002). Brain activation for the (visual) point-light walker was also right-lateralised, in accordance with experiments by Pelphrey et al. (2005). Lateralisation of auditory-visual co-activation in the right ventral intraparietal cortex and Premotor cortex has also been found for random visual and auditory motion stimuli (Bremmer et al., 2001); the right IPL has been identified as a region of higher-level visual motion processing (Claeys, Lindsey, De Schutter, & Orban, 2003). In our experiments, the intact as well as scrambled point-light walkers were embedded in dynamic visual noise (to ensure comparable difficulty level to the auditory footsteps) which might also contribute to the lateralisation in the right hemisphere as previously reported (Decety et al., 1997).

Auditory-visual co-activation in the parieto-premotor network

All three cortical ROIs identified as areas of auditory and visual co-activation (Experiment 1; Table 1; Figure 1) are known to be part of the controversial ‘mirror neurone system’ (Dinstein, Gardner, Jazayeri, & Heeger, 2008; Dinstein, Thomas, Behrmann, & Heeger, 2008; Rizzolatti & Craighero, 2004). vPM (Rizzolatti et al., 1996; Decety et al., 1997; Iacobini et al., 1999) and IPL neurones (Buccino et al, 2001) are activated by the passive observation of actions. This parieto-premotor network (IPL, vPM) is thought to receive input from the MTG/pSTS; pSTS neurones are selective for biological motion, such as body, hand and lip movements (Barraclough, Xiao, Baker, Oram, & Perrett, 2005; Puce & Perrett, 2003) and are engaged in the perception of animacy (Schultz, Friston, O'Doherty, Wolpert, & Frith, 2005). The particular MT region identified by our conjunction analysis (B39/BA22/BA19) is close to areas engaged in the processing of body motions (Puce & Perrett, 2003) and is sometimes labelled as pSTS due to functional similarities with pSTS (Materna, Dicke, & Thier, 2008); in this study we refer to it as MT region. While all three areas, MT, IPL and vPM play a significant role in passive observation,
imitation, and motion imagery (Hamzei et al., 2002), their connectivity is still a matter of debate (Bien, Roebroeck, Goebel, & Sack, 2009). A simple common framework for action observation and imitation (Stanley & Miall, 2007) starts with a visual representation of action in the pSTS, an area which is active during observation but not execution (Barraclough et al., 2005). Visual information is then passed on to the IPL which codes for the predicted outcome of the action and, subsequently, the intended action is translated into a motor programme in vPM; an efferent copy of the planned action then returns to pSTS where it is compared to the original visual representation. In addition, direct bi-directional connections exist between the MT/pSTS and both the vPM and IPL (for a review see Pineda, 2008). Our localiser experiment suggests that MT, IPL and vPM are areas that receive both auditory and visual input. The fourth ROI defined by our localiser as an area of auditory-visual co-activation is the Cerebellum. The Cerebellum may play a role in converting the visual representation into a motor codes, the ‘inverse model’ (Miall, 2003; Stanley & Miall, 2007) by receiving information from the parietal lobe and forwarding it to the Premotor cortex. The observed auditory-visual co-activation suggests that the involvement of the Cerebellum in the inverse model may not be restricted to visual representations.

Increased activity for incongruent auditory-visual biological motion signals in vPM

In our main experiment (experiment 2) we compared the brain activation resulting from congruent (same motion direction in the auditory and visual modality) with the activation resulting from incongruent motion (different motion direction in the auditory and the visual modality) within the areas of auditory-visual co-activation (derived in experiment 1). Incongruent auditory-visual motion resulted in an increased brain activity only when both modalities signal biological motion; for scrambled visual motion, congruent and incongruent AV motion is associated with the same brain activations (Figure 2). A significant interaction is found only in one of the four ROIs,
namely in the vPM (BA 6). The vPM plays a role not only in visual action observation and action imagery (Schubotz & von Cramon, 2001) but also responds to auditory actions (Bidet-Caulet et al., 2005; Kaplan & Iacoboni, 2007; Schubotz & von Cramon, 2002). A common vPM region is activated by visual motion imagery (Grafton, Arbib, Fadiga, & Rizzolatti, 1996), the observation of biologically meaningful actions (Bien et al., 2009) and the observation of meaningless (non-biological) sequences (Schubotz & von Cramon, 2004), consistent with our findings that both biological and scrambled motion leads to vPM activation (Figure S1 and Table S2, first row). Schubotz et al (2002, 2004) concluded that the vPM is able to generate short-term action templates and that the vocabulary of motor acts stored in vPM is flexible and not innate.

In our experiment we find an increased Premotor activity for incongruent biological motion in comparison to congruent biological motion (Figure 2; Figure S2a,b); this increased Premotor activity is associated with longer reaction times (Figure 3; Table 3). Increased right PM activity and associated increased reaction times have also been reported for incongruent visuomotor conditions (Blakemore & Frith, 2005; Grezes, Armony, Rowe, & Passingham, 2003) and for directionally incompatible or antiphase limb movements (de Jong, Leenders, & Paans, 2002; Wenderoth, Debaere, Sunaert, Hecke, & Swinnen, 2004). Increased right PM activity (Jeannerod, 2001) is therefore likely to reflect conflicting or incompatible signals within or across sensory modalities as well as incompatible motor patterns. A very recent fMRI study using a entirely different set of biological motion stimuli (auditory and visual drumming actions) showed similar locations and patterns of activity changes as a function of expertise (Petrini et al., 2011): in the right IPL and the right Premotor cortex, incongruent auditory-visual drumming actions leads to an increase in neural activity, but only in expert drummers as opposed to novices.
One possible explanation for the increased Premotor activity for incongruent (i.e. a auditory-visual discrepancy in motion direction) biological motion, is, in accordance with Schubotz et al. (2004), the generation of novel motor templates based on the (inconsistent) sensory inputs across the auditory and visual modalities. Since in this experimental condition, the auditory system signals a looming walker and the visual system signals a receding walker, no stored amodal action template provides a match to the bimodal sensory inputs hence necessitating the need for the generation of novel motor patterns. Congruent biological motion, on the other hand, yields auditory and visual motion signals that are likely to be matched to a single existing amodal template in the observer’s motor repertoire, yielding less Premotor activity and shorter reaction times (cf Figures 2 and 3). This account is consistent with equal vPM activation for both congruent and incongruent scrambled motion (Suppl. Material S4a,b) since this hypothesis predicts that bimodal scrambled motion does not result in conflicting motion information in vPM. An alternative explanation is that the incongruent auditory-visual walker triggers two motor templates, one for a receding walker (based on the visual input) and one for a looming walker (based on the auditory input). Either explanation predicts increased activity (in the bimodal motion conditions) in vPM for incongruent biological motion only.

Activity in vPM is also increased in the unimodal (vision only) condition when the visual point-light-walker is not intact (scrambled point-light-walker (SCR) versus intact point-light walker (BIO); Table S1, upper row; (see also Thompson et al., 2005). While neurones in vPM are likely to respond to the components of the scrambled point-light-walker such as legs, arms etc, the overall configuration is unlikely to match an existing action template hence generating more activity in right vPM. Since new scrambled motion was generated on each trial, observers could not learn specific constellations (see METHODS). The involvement of the vPM in human body
processing has been shown using TMS: the body inversion effect is absent when TMS is applied in this area, hence suggesting that the vPM is involved in configural processing of human body shapes (Urgesi, Calvo-Merino, Haggard, & Aglioti, 2007). In line with our findings, increased right-lateralised vPM activity has been reported during the observation of meaningless hand sequences (Decety et al., 1997; Decety & Grezes, 2006; Grezes, Costes, & Decety, 1999); parietal areas (BA 7) may have a role in selecting and monitoring motion sequences with online reference to a working memory in the right Premotor cortex (Sadato et al., 1996). The increased activation of the right vPM in response to scrambled point-light walkers is consistent with the role of the right parieto-premotor network in the processing of novel and complex visual stimuli (Schubotz & von Cramon, 2002). Such an increase in stimulus complexity and novelty can be brought about by conflicting information within or across modalities. This is consistent with the idea that the right premotor network is not only involved in recognizing meaningful actions within a single modality, but assimilates the information across the auditory and visual modality by comparing it with a motor template, possible residing in the Premotor area (Sadato, Campbell, Ibanez, Deiber, & Hallett, 1996; Schwarzbach, Sandrini, & Cattaneo, 2009).

Specialised neural machinery for biological motion?

Numerous studies have shown an increased activity for visual biological motion in pSTS (for a review see Puce & Perrett, 2003) and also identified pSTS as an area for the integration of auditory and visual biological motion signals. Our conjunction analysis (Figure 1) did not identify pSTS as an area of auditory-visual co-activation, but area MT (BA 39, bordering on BA22 and BA 37), IPL (BA 7) and vPM (BA 6). Within these areas of auditory-visual co-activation, activity for the intact point-light-walker was less (vPM, IPL) or equal (MT) to the activity in response to the scrambled walker (Figure S3a,b and Table S1). Equal activation in MT in response to intact and
scrambled point-light-walkers has been reported previously (Jastorff & Orban, 2009) and is at odds with the proposed role of MT for biological motion (e.g. Grossman, Battelli, & Pascual-Leone, 2005; Grossman et al., 2000). Furthermore, Jastorff & Oban (2009) proposed that the lack of differential activation for biological vs scrambled motion in pSTS could be associated with task complexity. This is consistent with the findings by Meyer et al. (2011) who documented a role of the pSTS in the processing of biological motion stimuli closely matched to the ones used in this experiment, but crucially employing a one-back task.

Another significant methodological difference between our study and previous studies using PLW was that we used looming and receding PLWs (instead of a PLW walking on a ‘treadmill’) hence signalling motion-in-depth which is not a stimulus feature STS is very sensitive to (Perrett, Harries, Benson, Chitty, & Mistlin, 1990). The task of our observers was to judge whether there was any motion-in-depth present as opposed to categorising or identifying the biological motion (Meyer et al.); our task therefore also favours the involvement of the vPM (Kakei, Hoffman, & Strick, 2001; Ochiai, Mushiake, & Tanji, 2005; Schubotz & von Cramon, 2002). Finally, to equate the auditory and visual PLWs in difficulty, we added dynamic noise to the visual PLWs which might also bias the activation towards area MT and the right parieto-Premotor network (Bremmer et al., 2001; Pelphrey et al., 2005).

The increased activity in the right vPM for scrambled compared to intact point-light walkers is in line with more recent imaging studies showing increased right-lateralised activity for incoherent vs coherent action sequences in the right vPM (Bien et al., 2009). A right-lateralised decrease in neural activity when novel stimuli become more familiar via training or prolonged observation (Downar, Crawley, Mikulis, & Davis, 2002; Vogt et al., 2007) is consistent with the idea that
learned meaningless movements generate less cortical activity than unlearned meaningless sequences since the neural population that represents the familiar stimuli have become more selective during learning. Biological motion stimuli are special configurations of highly familiar local limb movements; while numerous neurones are likely to respond to individual limb movements (such as contained in a scrambled PLW), a small population of neurones is likely to respond to the particular configuration of limb movements depicted in an intact PLW. Our current findings are consistent with the idea that the right vPM is involved in the processing of body movements by comparing sensorimotor representations of familiar body movements with incoming sensory input. It extends our current knowledge by suggesting that vPM is also involved in the integration of sensory inputs across the auditory and visual modality and compares information across modalities with an amodal template, possibly residing in the Premotor area (Sadato et al., 1996; Schwarzbach et al., 2009).

Previous studies identified both ventral Premotor areas, BA6, a homolog to monkey F4, and BA 44 which is assumed to be a homolog to monkey F5, as areas activated by hand or arm movements (for a review see Rizzolatti, Fogassi, & Gallese, 2002). In particular, there is evidence that the vPM contains also motor-related presentations of space, in relation to one’s own body. Makin et al. (2007) showed that vPM plays a role in representing perihand space; this study is also consistent with the Premotor cortex as a site of sensory convergence, since strong PMv activation required concurrent visual and tactile stimulation. Our own data show that vPM (border of BA6 and BA44) is activated by a walker which is approaching or receding in relation to the participant; whether the motion is defined by auditory or visual stimulation is irrelevant (see Table S1 in the supporting material). Hence, an alternative interpretation of our data is that vPM is encoding information about the closeness of objects/individuals in relation to one’s body, instead
of containing general motor templates as outlined above. In either case, vPM is a site which contains both visual and auditory representations of moving stimuli and is involved in the consolidation of these representations.

Acknowledgements

SMW’s stay at the University of Regensburg (in Professor Greenlee’s laboratory) was supported by a Wellcome Trust Sabbatical Grant (GR/082831). The ViSaGe system was co-sponsored by Cambridge Research Systems Ltd, Kent and the Wellcome Trust (GR/080205). Scanning costs were covered by the Faculty of Medicine at the University of Liverpool. We thank Ingo Keck for helpful comments on the manuscript.

References

Tables

Table 1
Conjunction analysis revealing activations common to the auditory and the visual modality (Exp 1)

<table>
<thead>
<tr>
<th>Location</th>
<th>Localiser</th>
<th>Position (MNI)</th>
<th>Voxels</th>
<th>T</th>
<th>Z</th>
<th>P_{FWE}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal Lobe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA6 R</td>
<td>Premotor (vPM)</td>
<td>A ∩ VBIO</td>
<td>56 6 40</td>
<td>152</td>
<td>3.74</td>
<td>5.53</td>
</tr>
<tr>
<td>BA6 /44 R</td>
<td>Premotor (vPM)</td>
<td>A ∩ VSCR</td>
<td>48 4 32</td>
<td>521</td>
<td>4.89</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 0 42</td>
<td></td>
<td>4.20</td>
<td>6.12</td>
<td></td>
</tr>
<tr>
<td>Parietal Lobe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA7 R</td>
<td>Inferior Parietal Lobule (hIP3: 40%; SPL(7PC): 30%; SPL (7A): 20%)</td>
<td>A ∩ VBIO</td>
<td>32 -52 52</td>
<td>207</td>
<td>4.46</td>
<td>6.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36 -44 54</td>
<td></td>
<td>3.74</td>
<td>5.53</td>
<td></td>
</tr>
<tr>
<td>BA7 R</td>
<td>Inferior Parietal Lobule (hIP3: 30%; SPL (7PC): 30%; hIP1: 10%)</td>
<td>A ∩ VSCR</td>
<td>32 -50 50</td>
<td>282</td>
<td>4.66</td>
<td>6.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 -40 52</td>
<td></td>
<td>3.68</td>
<td>5.45</td>
<td></td>
</tr>
<tr>
<td>Temporal Lobe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA39 R</td>
<td>Middle Temporal</td>
<td>A ∩ VBIO</td>
<td>54 -54 6</td>
<td>10</td>
<td>3.33</td>
<td>5.00</td>
</tr>
<tr>
<td>BA39 R</td>
<td>Middle Temporal</td>
<td>A ∩ VSCR</td>
<td>54 -54 6</td>
<td>7</td>
<td>3.27</td>
<td>4.92</td>
</tr>
<tr>
<td>L</td>
<td>Cerebellum</td>
<td>A ∩ VBIO</td>
<td>-32 -70 -20</td>
<td>47</td>
<td>3.54</td>
<td>5.28</td>
</tr>
<tr>
<td>L</td>
<td>Cerebellum</td>
<td>A ∩ VSCR</td>
<td>-30 -74 -20</td>
<td>12</td>
<td>3.21</td>
<td>4.85</td>
</tr>
</tbody>
</table>

Table 1: The conjunction analysis revealed four areas of auditory-visual co-activation (family-wise error < 0.05). ‘A ∩ VBIO’ refers to the conjunction between the brain activations in response to auditory footsteps (A) and the brain activations in response to the visual point-light-walker (VBIO); ‘A ∩ VSCR’ refers to the conjunction analysis based on auditory footsteps and the scrambled point-light-walker (VSCR). The conjunction analysis was performed using SPM5. For anatomical labelling of Premotor cortex, the border between dorsal and ventral Premotor cortex was assumed at a Z level of 50 in Talairach coordinates (Rizzolatti & Craighero, 2004); we converted the Talairach coordinates into MNI coordinates for our analysis.
Table 2

Differential Activations for biological and scrambled motion in ROIs

<table>
<thead>
<tr>
<th>Location</th>
<th>Localisation</th>
<th>INCON BIO – CON BIO</th>
<th>INCON SCR – CON SCR</th>
<th>Contrast</th>
<th>T</th>
<th>p</th>
<th>Contrast</th>
<th>T</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA6 R / Premotor</td>
<td>A ∩ V BIO</td>
<td>1.25</td>
<td>1.75</td>
<td>0.041</td>
<td>-0.48</td>
<td>-0.84</td>
<td>0.799</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA6/44 R / Premotor</td>
<td>A ∩ V SCR</td>
<td>1.30</td>
<td>1.92</td>
<td>0.028</td>
<td>-0.16</td>
<td>-0.30</td>
<td>0.618</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parietal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA7 R / IPL</td>
<td>A ∩ V BIO</td>
<td>1.24</td>
<td>1.51</td>
<td>0.066</td>
<td>0.52</td>
<td>0.79</td>
<td>0.216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA7 R / IPL</td>
<td>A ∩ V SCR</td>
<td>1.14</td>
<td>1.45</td>
<td>0.075</td>
<td>0.47</td>
<td>0.74</td>
<td>0.229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA39 R / MT</td>
<td>A ∩ V BIO</td>
<td>0.20</td>
<td>0.30</td>
<td>0.380</td>
<td>0.47</td>
<td>0.92</td>
<td>0.178</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A ∩ V SCR</td>
<td>0.23</td>
<td>0.35</td>
<td>0.362</td>
<td>0.59</td>
<td>1.14</td>
<td>0.128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebellum L</td>
<td>A ∩ V BIO</td>
<td>-0.67</td>
<td>-0.78</td>
<td>0.781</td>
<td>-0.31</td>
<td>-0.46</td>
<td>0.677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebellum L</td>
<td>A ∩ V SCR</td>
<td>-1.06</td>
<td>-1.14</td>
<td>0.871</td>
<td>-0.04</td>
<td>-0.06</td>
<td>0.997</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. No significant activation differences were found for scrambled motion, that is, the difference ‘INCON SCR – CON SCR’ does not reach significance in any of the four ROIs. Only when the both modalities signal biological motion, significant differential activations are found in the Premotor cortex (BA 6) and to a lesser extent in IPL (BA 7).
Table 3. The correlation coefficients between contrast level (which is proportional to the BOLD signal) in the four ROIs and the mean reaction times are shown. Only the activation in the Premotor area (BA 6) is significantly correlated with reaction times (r ~0.3; p<0.05; two-tailed test). Importantly, note that reaction time data were acquired outside the scanner prior to the experiment.

<table>
<thead>
<tr>
<th>Location</th>
<th>Localiser</th>
<th>Pearson Correlation</th>
<th>Corr coeff</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA6 R / vPM</td>
<td>A ∩ VBIO</td>
<td>0.29</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>BA6/44 R / vPM</td>
<td>A ∩ VSCR</td>
<td>0.32</td>
<td>0.006</td>
<td></td>
</tr>
<tr>
<td>Parietal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA7 R / IPL</td>
<td>A ∩ VBIO</td>
<td>0.17</td>
<td>0.151</td>
<td></td>
</tr>
<tr>
<td>BA7 R / IPL</td>
<td>A ∩ VSCR</td>
<td>0.15</td>
<td>0.196</td>
<td></td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA39 R / MT</td>
<td>A ∩ VBIO</td>
<td>-0.14</td>
<td>0.236</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A ∩ VSCR</td>
<td>-0.16</td>
<td>0.186</td>
<td></td>
</tr>
<tr>
<td>Cerebellum L</td>
<td>A ∩ VBIO</td>
<td>0.16</td>
<td>0.170</td>
<td></td>
</tr>
<tr>
<td>Cerebellum L</td>
<td>A ∩ VSCR</td>
<td>0.11</td>
<td>0.360</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Experiment 1. The conjunction analysis for auditory footsteps and biological visual motion (A ∩ VBIO) revealed four regions of neural activity common to the auditory and visual modality ($p_{FWE} < 0.05$; cf Table 1). (a) SPM T maps are depicted on an inflated PALS-B12 standard brain (Caret 5.6; von Essen, 2001). (b) The SPM T maps are projected onto the average of the normalised brains of all 18 participants. The colour represents the T-values for each cortical location as indicated by the key on the left.
Figure 2. The location of the ROIs defined by the conjunction analysis (A ∩ VBI0) are superimposed onto MNI normalized flat map template (van Essen et al. 2001) and shown in red. The fourth region is located in the Cerebellum and is not shown here. The black lines represent the borders of the Brodmann Areas from the PALS-B12 atlas. The bar graphs show the contrast difference (INCONGRUENT – CONGRUENT) for biological (green) and scrambled (purple) motion. Only in the premotor cortex (vPM), incongruent auditory-visual motion leads to significant increase in the BOLD contrast when both modalities convey a biological motion signal as opposed to the visual scrambled condition. No significant interactions were found in IPL, MT or in the Cerebellum.
Figure 3. Behavioural data. Reaction time differences (incongruent AV – congruent AV motion) are plotted for biological and scrambled motion signals. Incongruency of auditory and visual motion signals has an effect only when the audio-visual sequences depict biological motion; for scrambled motion no significant difference is observed between the incongruent and congruent condition. Error bars indicate standard errors of the mean.
Table S1: Brain activations in response to unimodal stimuli

<table>
<thead>
<tr>
<th></th>
<th>AUDITORY MOTION (Footsteps)</th>
<th>BIOLOGICAL MOTION (Intact Point-Light-Walker)</th>
<th>NON-BIOLOGICAL MOTION (Scrambled Point-Light-Walker)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemisphere/Label</td>
<td>Position (MNI)</td>
<td>Voxels</td>
<td>Position (MNI)</td>
</tr>
<tr>
<td>Superior Temporal Gyrus</td>
<td>R 64 -26 16 1660</td>
<td></td>
<td>L 64 -10 4 1601</td>
</tr>
<tr>
<td>Insular Lobe</td>
<td>L -30 24 6 154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferior Frontal Gyrus</td>
<td>R BA45 (10%) 34 24 12 177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMA</td>
<td>R BA 6 (40%) 6 14 54 371</td>
<td></td>
<td>L BA 6 (90%) 4 2 66</td>
</tr>
<tr>
<td>Premotor</td>
<td>R BA 44 (30%) 48 10 34 440</td>
<td>R BA 6 (60%) 54 4 40 144</td>
<td>R BA 44 (20%) BA 6 (40%) 50 6 32 574</td>
</tr>
<tr>
<td>Inferior Parietal Lobule</td>
<td>R hIP1 (20%) 36 -50 48 46</td>
<td>L BA 2 (30%) -28 -50 54 213</td>
<td>L BA 2 (30%) BA 1 (20%) -28 -50 54 133</td>
</tr>
<tr>
<td>Superior Parietal Lobule</td>
<td>R BA 2 (10%) 30 -52 56 628</td>
<td>L BA 1 (10%) -22 -60 60</td>
<td></td>
</tr>
<tr>
<td>Middle Occipital Gyrus</td>
<td>L hOC5 (V5/MT+) (10%) -48 -74 4 3965</td>
<td>L hOC 5 V5/MT+ (10%) BA18(20%) -48 -74 4 3660</td>
<td>R hOC 5 V5/MT+ (10%) Inf. Occip. -30 -84 -8 4588</td>
</tr>
<tr>
<td></td>
<td>BA 18 (20%) -30 -90 12 12</td>
<td>BA 17 (10%) -28 -92 14</td>
<td>R Inf. Occip. BA 17 (10%) -30 -84 -8 4588</td>
</tr>
<tr>
<td></td>
<td>BA 17 (10%) -30 -84 -8 4588</td>
<td>Inf. Occip. BA 17 (10%) -28 -92 14</td>
<td>R Inf. Occip. -30 -84 -8 4588</td>
</tr>
<tr>
<td></td>
<td>BA 18 (10%) 32 -86 6 6</td>
<td>BA 18 (10%) 32 -86 6</td>
<td>BA 18 (10%) 32 -86 6 6</td>
</tr>
</tbody>
</table>
Table S2: Differential activations for biological and scrambled motion in ROIs

<table>
<thead>
<tr>
<th>Location</th>
<th>Localiser</th>
<th>CON SCR – CON BIO</th>
<th>INCON SCR – INCON BIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contrast</td>
<td>T</td>
<td>p</td>
</tr>
<tr>
<td>Frontal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA6 R / Premotor</td>
<td>A ∩ VBIO</td>
<td>1.95</td>
<td>2.50</td>
</tr>
<tr>
<td>BA6/44 R / Premotor</td>
<td>A ∩ VSCR</td>
<td>2.02</td>
<td>2.74</td>
</tr>
<tr>
<td>Parietal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA7 R / IPL</td>
<td>A ∩ VBIO</td>
<td>1.32</td>
<td>1.47</td>
</tr>
<tr>
<td>BA7 R / IPL</td>
<td>A ∩ VSCR</td>
<td>1.29</td>
<td>1.50</td>
</tr>
<tr>
<td>Temporal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA39 R / MT / pSTS</td>
<td>A ∩ VBIO</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>A ∩ VSCR</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td>Cerebellum L</td>
<td>A ∩ VBIO</td>
<td>0.62</td>
<td>0.67</td>
</tr>
<tr>
<td>Cerebellum L</td>
<td>A ∩ VSCR</td>
<td>0.55</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Table S2. Table S2 provides the complementary information to Table 2 by showing the differential activations (SCR-BIO) for both the consistent and inconsistent conditions. No significant activation differences were found for the inconsistent motion conditions. Hence the differential activation shown in Figure 2 and Table 2 arises from the differential responses to consistent motion in the premotor area (BA 6).
Figure S1. Experiment 1. Conjunction analysis for auditory footsteps and scrambled visual motion (A ∩ VSCR). Four regions of neural activity common to the auditory and visual modality were revealed for $p_{FWE} < 0.05$ (cf Table 1). (a) SPM T maps are depicted on an inflated PALS-B12 standard brain (Caret 5.6; von Essen, 2001). (b) The SPM T maps are projected onto the average of the normalised brains of all 18 participants. The colour represents the T-values for each cortical location as indicated by the key on the left.
Figure S2. The bar graphs show the fMRI contrast difference ([INCONGRUENT] - [CONGRUENT]) for biological (green) and scrambled (purple) motion in the ROIs defined by A/N VSCR (cf. table 2). The results are almost identical to those shown in figure 2 which is based on the ROIs defined by A/N VBIO. Only in premotor cortex, the interaction ([INCON-CON]_bi - [INCON-CON]_scr) is significant (F(1,17)=4.52, p=0.048). Interactions do not reach significance in IPL (F(1,17)=0.48, p=0.49), MT (F(1,17)=0.35, p=0.56) or Cerebellum (F(1,17)=0.64, p=0.43); compare further with table 2.
Figure S3a. Right hemisphere. Whole-brain group analysis of activations for bimodal motion sequences (Experiment 2). The SPM T maps ($p_{FWE} < 0.05$) for the four bimodal experimental conditions (CONG_BIO, CONG_SRC, INCONG_BIO, INCONG_SRC) are superimposed onto the normalized standard brain (van Essen, 2005) for the right hemisphere. The dashed lines represent the borders of the Brodmann Areas. For biological motion (BIO), the activations are larger for the incongruent compared to the congruent motion in BA6 (Premotor). No significant activation differences occurred for scrambled (SCR) motion (see Table 2 for further details).

Figure S3b. Whole-brain Group analysis for left hemisphere. Details as in fig S3a. Overall, left vPM (BA 6) is less activated in the left hemisphere in comparison to the right hemisphere.
Figure S4a: fMRI contrasts for the four experimental conditions in the regions of interests defined by A ∩ VBOI. Congruent (CON) conditions are in solid colour; incongruent (INCON) are shaded; biological motion (BIO) is indicated with green; scrambled (SCR) with purple. Differences between incongruent and congruent motion are only found for biological motion in ventral Premotor (p=0.041) and a trend in IPL (p=0.066). No other differences between incongruent and congruent motion were significant at p<0.1.

Figure S4b: fMRI contrasts for the four experimental conditions in the regions of interests defined by A ∩ VSCR. Congruent conditions are in solid colour; incongruent are shaded; biological motion is indicated with green, scrambled with purple. Differences between incongruent and congruent motion are only found for biological motion in Premotor cortex (p=0.028) and a trend in IPL (p=0.075). No other differences between incongruent and congruent motion were significant at p<0.1.
Figure S5a. Correlations between fMRI contrast and reaction times for ROIs defined by ‘A ∩ VBIO’. An analysis of covariance (ANOCOVA; MatLab Statistics Toolbox) revealed that, when separate lines are fitted for each of the four conditions, the slopes of these lines do not differ significantly from each other (vPM: F(1,3)=0.31; p=0.82; hIP: F(1,3)=0.69; p=0.56; MT: F(1,3)=0.05; p=0.96; Cerebellum: F(1,3)=0.65; p=0.58). We therefore fitted a single line (thick solid line in the figures above) to all data; only in vPM do we find a significant correlation between reaction times and fMRI contrasts.

Figure S5b. Correlations between fMRI contrast and reaction times for ROIs defined by ‘A ∩ VS’CR’. Only in vPM do we find a significant correlation between reaction times and fMRI contrasts. For details see Figure S5a.