Abstract. MOMIS (Mediator EnvirOnment for Multiple Information Sources) is an Open Source Data Integration system able to aggregate data coming from heterogeneous data sources (structured and semi-structured) in a semi-automatic way. DataRiver\(^3\) is a Spin-Off of the University of Modena and Reggio Emilia that has re-engineered the MOMIS system, and released its Open Source version both for commercial and academic use. The MOMIS system has been extended with a set of features to minimize the integration process costs, exploiting the semantics of the data sources and optimizing each integration phase. The Open Source MOMIS system have been successfully applied in several industrial sectors: Medical, Agro-food, Tourism, Textile, Mechanical, Logistics. This paper describes the features of the Open Source MOMIS system and how it is able to address real data integration challenges.

1 Introduction

Data integration involves combining data residing on different sources and providing users with a unified view of these data [9]. In the past years the problem of data integration has been largely discussed by the research community [8]. With the increasing volumes of data and the growing need to share information, data integration has become a fundamental process in the field of business applications.

The size of the market for data integration tools has been estimated at approximately $1.35 billion as of the end of 2009. A projected five-year compound annual rate of approximately 9.4% will yield a market of approximately $2.1 billion by 2014 [14].

As pointed out in [14], “Customers are seeking low-cost, good enough data integration capabilities”. MOMIS is distributed by DataRiver as an Open Source

\(^3\) http://www.datariver.it/
tool to be competitive compared to big vendors and to benefit from the contribution of the Open Source community that can develop and make available extensions of the system.

The goal of the Open Source MOMIS system is the minimization of the integration process costs. A data integration project is often developed by integration designers that have a partial knowledge of the data sources and of the application domain. Even if the designers have a good knowledge of the application domain, often they are not skilled on the techniques to integrate the data stored in the data sources. In traditional Data Integration Systems, designers have to manually build the integrated schema, defining all the mappings between each global class/attribute and the corresponding local classes/attributes on the local data sources, thus the integration process requires several days/weeks depending on the size of the integration project. Another drawback is due to the fact that designers can see the global result of the integration only at the end of the overall integration process, and it is only at that time that they can refine mappings in order to improve the integrated schema.

To overcome these problems, a first result of integration is semi-automatically derived by MOMIS and proposed to the designer in few minutes; she/he can then improve this integration result, through an iterative refinement process and a set of features (described in details in Section 3). The main features proposed in MOMIS are: (1) a GUI that facilitates the integration process, (2) a set of explore and preview tools that allow the designer to preview the integration result during each phase, (3) the possibility to create different unified views to explore the global result of the data integration process, (4) a suite of tools to semantically annotate data sources w.r.t. a common lexical reference; these tools allow the designer to import/export the local source annotations, and permit to extend the lexical reference itself with domain glossaries, (5) a preview of the query plan that allows the designer to visualize, for each executed global query, the set of queries that compose the query plan.

Commercial and Open Source Data Integration Systems on the market, do not provide the semi-automatic generation of the Global Schema and the automatic generation of mappings. The MOMIS System helps the designer integrating data sources in a semi-automatic way, exploiting the semantics of data sources. In [3], the MOMIS system have been demonstrated to be able to support all the twelve queries of the THALIA benchmark for data Integration Systems, by simply extending and combining the declarative translation functions available in MOMIS and without any overhead of new code.

MOMIS development started in 1997 and the research activity continued within several national and international projects through the years. MOMIS was successfully exploited in several scenarios, e.g., for the integration of molecular and phenotypic data sources and the development of an integrated information system for cereals breeders in the CEREALAB project and for the integration of several tourism web sites and the development of a Tourism Vertical Web Portal.
in the WISDOM project\(^5\). Moreover, the Open Source MOMIS system has been
used on real-data sets to integrate clinical data of patients. This work has been
conducted in the Olive Tree Project for sharing data about Cancer registries of
ten different countries in the Mediterranean Sea. The application of the MOMIS
system have been demonstrated to be effective with a considerable saving in
time, compared to the manual building of the integrated schema implemented
in traditional Data Integration Systems.

The paper is organized as follows: Section 2 presents the MOMIS system, by
describing its architecture and by identifying the main phases of the data inte-
gration process. In Section 3, we describe the features that have been introduced
in the open source version of the tool. In Section 4, the web site, documentation,
tutorials and community of the Open Source MOMIS system are presented. At
the end, Section 5 sketches out the future development directions.

2 The Data Integration Process and Architecture

In this section, we present the MOMIS architecture and the main phases of the
data integration process. A full and detailed description of MOMIS is out of our
scope and can be found in \cite{6,2,5}.

MOMIS builds a unified schema, called Global Schema (GS), of several (het-
erogeneous) data sources (also called local sources), and allows users to formulate
queries on it. It follows a Global-As-View (GAV) approach for the definition of
mappings between the GS and local schemas: the GS is expressed in terms of the
local schemas. MOMIS performs data integration following a virtual approach
that preserves the autonomy and security of the original data sources. The GS
generation process is composed by four main phases:

1. **Local Source Upload**: (see Figure 1-1) the integrator designer exploits
 the wrapper tool (see Figure 2) to logically extract the schema of each local
 source and convert it into the common language ODL\(^6\).

2. **Local Source Annotation**: (see Figure 1-2) the designer is asked to anno-
tate the local sources, i.e. to associate to class and attribute names (in the
 following also called terms) one or more meanings w.r.t. a common lexical
 reference, that in our case is the lexical database WordNet \cite{10}. WordNet is a
 thesaurus for the English language, that groups terms (called lemmas in the
 WordNet terminology) into sets of synonyms called synsets, provides short
 definitions (called gloss), and connects the synsets through a wide network
 of semantic relationships.

 The designer can manually select a base form and the appropriate WordNet
 meaning(s) (i.e. synset(s)) for each term and/or perform automatic anno-
tation (see Section 3). Moreover, in the MOMIS Open Source version, the
designer can extend WordNet with domain glossaries (see Section 3). The

\(^5\) http://www.dbgroup.unimo.it/wisdom/

\(^6\) ODL\(_I^3\) is an object-oriented language, with an underlying Description Logic, deriving
from the standard ODMG.
Local Source Annotation phase is performed by the Global Schema Designer tool (see Figure 2).

3. **Semantic Relationships Extraction**: (see Figure 1-3) starting from the annotated local schemas, MOMIS derives a set of intra and inter-schema semantic relationships in the form of: synonyms (SYN), broader terms/narrower terms (BT/NT) and related terms (RT) relationships. The set of semantic relationships is incrementally built by adding: structural relationships (deriving from the structure of each schema), lexical relationships (deriving from the element annotations, by exploiting the WordNet semantic network), designer-supplied relationships (representing specific domain knowledge) and inferred relationships (deriving from Description Logics equivalence and subsumption computation). The Semantic Relationship Extraction phase is performed by the Global Schema Designer tool (see Figure 2).

4. **GS generation**: starting from the discovered semantic relationships and the local source schemas, MOMIS generates a GS consisting of a set of global classes, plus Mapping Tables which contain the mappings to connect the global attributes of each global class with the local source attributes. The GS generation is a process where classes describing the same or semantically related concepts in different sources are identified and clustered into the same global class (see Figure 1-4).

The designer may interactively refine and complete the proposed integration result through the GUI provided by the Global Schema Designer tool. In particular, he can: modify the proposed global classes and mappings; select the appropriate Join Function for each global class; define Transformation Functions in order to transform the local attribute values into the corresponding global attribute values; and solve possible data conflicts through
the definition of Resolution Functions (applied to each global attribute to obtain, starting from the values computed by the Transformation Functions the corresponding value of the global attribute).

Finally, once obtained the desired integration result, a user can pose queries on the GS by using the Query Manager tool (see Figure 2). As MOMIS follows a GAV approach, the query processing is performed by means of query unfolding [3]. The query unfolding process generates for each global query (i.e. a query on the GS) a Query Plan composed by a set of queries:

– a set of local queries that have to be executed on the local sources simultaneously by means of wrapper,
– a mapping query for merging the partial results (defined by means of the join function),
– a final query to apply the resolution functions and residual clauses.

In the Open Source version of MOMIS, we implemented the Query Manager Web Service which allows to integrate MOMIS with other applications (e.g. Business Intelligence solutions). Moreover, a user-friendly Web Application (see Figure 2) has been implemented to guide an end-user, without experience on data integration solutions, to easily compose and execute queries on the integrated schema.

3 Features

The MOMIS system has been reengineered and extended by DataRiver with a set of features and components to address several important data integration challenges and speed up data integration projects:
Multiple Global Schemas. Within the MOMIS system, each project can be composed by several alternative Global Schemas representing different views of the set of the underlying data sources. The creation of a new project is performed by following few steps: first of all, the designer creates a new project, then uploads the local sources and starts the creation of a new GS by editing each section that composes the integration process; once completed the GS the designer can:

- pose queries on the created GS
- upload other sources
- create a new GS on the local sources (or a subset of the local sources)

The Global Schemas can be easily imported/exported from a Data Integration project to other projects.

User-friendly and flexible GUI. In order to guide the designer through the integration process, a very intuitive, flexible and user-friendly interface has been designed. MOMIS has been developed as an Eclipse Rich Client Platform\(^7\) (RCP) application that allows developers to use the IBM’s open source popular

\(^7\) http://wiki.eclipse.org/Rich_Client_Plateform
Eclipse platform\(^8\) to create flexible and extensible desktop applications. All system components are built as plug-ins of the Eclipse development environment, which supports also an easy incorporation of new tools. As shown in Figure 3, the MOMIS GUI is divided in three main sections: Source Explorer, Global Schema Explorer and Global Schema Designer.

Annotation Suite. The annotation phase is one of the most critical and expensive step because it deeply affects the subsequent phases.

Usually integration projects involve large data sources, with hundreds of tables and attributes, coming from a particular domain of interest (e.g. medical, biological, tourism). The manual annotation of each data source element is a time consuming and potentially boring work that can lead to omissions and errors. Moreover, the semantics of local schemas could not be represented in the lexical resource, in such cases the designer is unable to select the exact meaning for a term, thus generating missing or inaccurate annotations.

Therefore, a set of tools have been developed in order to optimize the annotation phase and help the designer during the extension of the lexical reference:

- **Annotation Importer:** the reuse of previous annotations is an important feature. For this reason, a tool for easily importing source annotations from a GS to another GS has been developed.

- **WordNet Extender:** the WordNet Extender [1] tool enables the extension of the lexical reference with domain glossaries. An intuitive GUI (see Figure 4), for the extension of the lexical reference, guides the designer to perform step-by-step operations such as providing new terms (lemmas), writing definitions for new concepts (glosses) and building relationships between the added concepts and the pre-existing ones. In order to optimize the annotation phase and increase the annotation accuracy, we implemented an automatic annotation algorithm which includes stemming and stop words removal functionalities.

- **Automatic Annotation:** The main advantage of automatic annotation is simply speed: wholly or partially automated methods facilitate the annotation of large sets of classes. If the lexical reference has been extended, the automatic annotation algorithm associates to each data source element the more recent meaning of the domain glossary, else, it associates to the data source element the first meaning present in WordNet\(^9\).

- **Hypernym Graph Viewer:** to help the designer to build sound relationships between the added synsets and the pre-existing ones, we implemented the Hypernym Graph Viewer tool (see Figure 5). A hypernym relationship is a WordNet semantic relationship that connects two synsets where the first generalizes the second (e.g. animal is a hypernym of dog); the opposite of hypernym is the hyponym relationship (e.g. student is a hyponym of person). The hypernym relationships chain of a specific lemma (more precisely,
of the set of synsets associated to a lemma) or of a specific synset is shown by an interactive graph. The designer can navigate the graph by focusing on a specific synset to view only the branch of its hypernyms, or by using the keyword search.

Figure 4 and 5 show an example; a designer has to integrate data coming from tourism data sources, in particular data that refer to hotels and camps. Let us suppose the designer does not find satisfactory the meaning associated to hotel (i.e. “a building where travelers can pay for lodging and meals and other services”). From the Hypernym Graph Viewer the designer can notice that the synset associated to hotel is a hyponym of the synset “a structure that has a roof and walls”. The designer creates a new synset for the lemma hotel by introducing the gloss “a lodging that provides accommodation, meals and other services for paying guests”. Then, the designer links the new synset of hotel with the synset associated to the lemma living accommodations and defines a new hypernym relationship.

- **Lexical shared Repository**: once the lexical reference has been extended, the designer can export the domain glossary and reuse it in other projects. Moreover, the glossary can be shared by different designers at the same time. WordNet is distributed as a set of data files. The WordNet internal orga-
zation has been extrapolated and all the terms, definitions and relationships are stored in an embedded relational database. We have chosen the HyperSQL10 DBMS, a lightweight and Open Source DBMS written in Java. The HyperSQL WordNet database has been embedded and distributed within the MOMIS system, so that no configuration is required. If an extended lexical reference has to be shared by an organization, a shared repository can be created by using the Open Source MySQL11 DBMS Server to store data. The MOMIS system can be configured to use this shared lexical reference and so, the designer can exploit already defined domain glossaries.

\textbf{Data Preview functionalities.} A data preview tool is helpful in each phase of the integration process as it provides an instant view of data at any step. By this tool, designers can explore the content of local source attributes, preview the partial integration results and then refine the GS. As described before, the annotation phase is one of the most critical as it deeply affects the subsequent phases. Table and attribute names are often labeled with abbreviations or company codes. The data preview tool may help the designer choosing the right meaning of a term in all these cases where the labels do not represent the instances they contain. The GS, automatically generated by the system, can be refined interactively via a set of editors that help the designer during the definition of \textit{Join}, \textit{Transformation} and \textit{Resolution Functions}. Through the

10 http://hsqldb.org/
11 http://www.mysql.com/
A relational DBMS gives support to the Query Manager (QMDB) for the fusion of partial results that are stored in temporary tables. We have chosen as DBMS for the Query Manager, HyperSQL, so the installation of the MOMIS system doesn’t need any configuration at all. Through the Query Plan Viewer (see Figure 6), for each executed global query the designer can visualize the set of queries that compose the Query plan, and can make a preview of the data contained in the temporary tables created on the QMDB (see Figure 6). In this way, the query execution process is completely visible to the designer.

4 The MOMIS Toolkit

MOMIS is an Open Source Software released by DataRiver under the GNU General Public License (GPLv2), which permits use, modification and incorporation
into Open Source products. We encourage both developers and researchers to
download the version 1.1 of the software (from http://www.datariver.it), and
to contribute to the future developments of the MOMIS system. The developer
documentation is available with the source code. Together with the version 1.1,
DataRiver published on the website a detailed user manual and a set of video
tutorials to learn quickly how to integrate data sources with the MOMIS system.

MOMIS can serve as an open research platform, providing many useful com-
ponents that can be extended by developers and researchers. We invite both
developers and researchers to discuss specific issues, ideas and design with the
DataRiver team.12

5 Future Work

The Roadmap of the Open Source MOMIS system includes improvements about
Provenance, Automatic annotation, Object identification and Collaboration:

1. \textbf{Provenance} (or lineage) describes where data came from and how it was
derived. It provides valuable information that can be exploited for many
purposes, ranging form statistical resumes presented to the end-user, to more
complex applications such as data cleaning (identifying and correcting data
errors) \[4\];

2. \textbf{Advanced Automatic Annotation} techniques will be included for a faster
integration process: combination of several annotation methods, also prob-
abilistic methods \[11\]; abbreviations and acronyms expanded by using the
information provided by the schemata and abbreviation dictionaries; com-
 pound nouns (composed of more words) automatically interpreted and an-
notated on the basis of their constituents \[13, 12\];

3. \textbf{Object Identification} techniques (also known as record linkage or dupli-
cate detection) identifies instantiation of the same object in different sources.
The current technique (exact matching) will be extended introducing ad-
vanced methods based on similarity measures \[7\];

4. \textbf{Collaboration environment} to enable real-time collaboration between in-
tegration designers during each phase of the integration process will be de vel-
oped. Teams of integration designers will be able to share domain glossaries,
annotations, integrated schemas, and whole integration projects, reducing
the cost of data integration.

6 Acknowledgment

We would like to thank all DataRiver members and collaborators that took part
in the re-engineering of the MOMIS system: Antonio Sala, Andrea Prandini,
Silvano Pancaldi, Daniele Miselli, Sara Quattrini, Enrico Calanchi, Matteo Di
Gioia, Fabrizio Orlandi.

12 Please contact the DataRiver team if you are interested in contributing to the
MOMIS system at info@datariver.it.
References