Abstract—This paper proposes Spinning Sensors, a middleware system for creating robotic sensor network applications. This middleware enables application programmers to easily write application software which utilizes both sensors and actuators in their network. In the Spinning Sensors model, a sensor node is attached to a robotic actuator to change its position and/or direction. The continuous position change enables the single robotic sensor node to cover greater sensing area and sensing time. This paper describes robotic sensor node model that the sensor and the actuator are attached together as one node, then present our design and implementation of the software which achieved both versatility and functionality simultaneously. We constructed three applications using the middleware: an environment monitoring, a radio control robot, and context-aware services. We show the result of experiment in which we utilized multiple robotic sensor nodes to monitor the environment.

KEYWORDS
Sensors, Actuators, Robotic Sensors, Sensor Network, Coordination, Middleware, Robotic Interactions with Sensors

I. INTRODUCTION

A variety of sensor-based ubiquitous computing applications, such as environment monitoring, industrial monitoring, and context acquisition are proposed. The major issue in these applications is achieving maximum effectiveness (e.g. coverage and granularity of sensing targets) with minimum consumption (e.g. the number of sensors and maintenance cost). One approach to construct a sensor network system with large coverage and high granularity is to deploy as many sensor nodes as possible in the environment. This is feasible in case the sensor node is cheap. The other approach is to make a sensor node mobile so as to change its coverage area dynamically. This approach is feasible when the sensor node is expensive or when the administrator wants to reduce the number of the sensor nodes.

We propose Spinning Sensors system that increases coverage of a sensor node, and decreases the number of sensors required in an application by realizing a robotic sensor node. In the system, a sensor node is attached to a robotic actuator in order to move or rotate the sensor node to follow moving objects or to increase its coverage, respectively. The three major features of Spinning Sensors are hardware abstraction of sensors and actuators, communication and coordination mechanism for sensors and actuators, and application programming interface for developers.

As the newest information system is composed of heterogeneous general purpose information devices, the sensor network system will be composed of general purpose sensors and actuators in the near future. Since there are many kinds of sensors, actuators, and robots in our network, the Spinning Sensors needs to hold versatility and functionality simultaneously. In terms of versatility, we have divided the hardware control software into two classes: abstract class and implementation class. With this design, we could separate hardware specific programming and general purpose middleware. The communication and coordination mechanism is provided by this middleware layer so that the application programmers can easily construct multiple robotic sensor nodes environment.

The contributions of this paper are the following. Spinning Sensors showed the concept of putting together general purpose sensors and actuators to increase the sensing coverage and sensing granularity by showing the design and implementation of Spinning Sensors. The middleware of Spinning Sensors realized both versatility and functionality by adopting modular design of the software so that the system can be utilized for many kinds of hardware devices and applications. Finally we could show the result of implementation of Spinning Sensors by showing the experiment data telling that there is an improvement in the quality of sensed data by using the Spinning Sensors model.

The rest of the paper is organized as follows. Sections 2 categorizes the conventional sensors and actuators and explain the necessity of the robotic sensor node which combines general purpose sensors and actuators as one node. Section 3 presents the design and implementation of Spinning Sensors. In section 4, we show the result of experiment using multiple robotic sensor nodes. Section 5 surveys related work and section 6 concludes this paper.

II. ROBOTIC SENSOR NETWORK

In this section, we classify the sensors and actuators by their characteristics. Sensors can be classified by two criteria: sensing range and sensing direction. Some of sensors cover a few meters (long range) and some others cover only a few centimeters (short range). The sensing angles also vary. For example, thermometers and hygrometers cover 360 degrees (non-directional) in a sense that they measure the condition of surrounding air. Contrarily, illuminometers, cameras, and
There are many kinds of sensors and actuators to be a part of our robotic sensor network environment. There are also many kinds of applications which can be realized by sensors and actuators. To cope with this heterogeneity, we adopted the layer architecture as shown in Fig 2. By adopting this modular architecture, we realized the versatility of middleware system.

By using the robotic sensor network, the application programmer may want to write various kinds of application software. To maximize the potential of robotic sensor network environment, we mainly designed three kinds of functions: data processing, multiple nodes coordination, and temporal spatial modeling. These functions are provided to the application programmers through the Spinning Sensors API.

A. Hardware Layer

The hardware layer includes the basic software to control sensors and actuators. In particular, this layer provides the interface to a temperature sensor, an illuminometer, a movement sensor, a servo motor, and a rack pinion. To provide the versatility, this layer is divided into two software modules: abstract class and implementation class. We have developed the implementation classes as shown in Table I. All these implementation class extends either an abstract sensor manager class or an abstract actuator manager class.

B. Middleware Layer

The coordination mechanism let the application programmer easily writes the application which uses multiple robotic sensor nodes. It is highly possible that the application programmer would like to construct one robotic sensor node by using one sensor and one actuator. In this case, the application programmer uses the fusion class which is provided by Spinning Sensors middleware. This fusion class is the abstract class which integrates more than two sensors and actuators as one node. In addition to the fusion class, the programmer can attach the observer function to each robotic sensor node so that each of the nodes can change its state according to the other node connected to itself by this observer.

By implementing the fusion class, the programmer can easily combine more than two devices and create a new self-defined robotic sensor node. Since each of these nodes are...
attached with the observer class, when the sensed value of
one sensor changes, the message will be automatically sent
to another node to work collaboratively. All the communi-
cation between several nodes is done by using this event
driven architecture. Since the Spinning Sensors provides its ap-
lication programming interface to the application programmer,
they can write the sensors and actuators implementation class
easily and can register these implementation classes to the
middleware.

C. Application Layer

The programmers can use Spinning Sensors API to create
application software. We developed three kinds of application
prototype as shown in Table II. All these applications are
written by extending the abstract fusion class. First one is
the environment monitoring application which uses UpartSen-
sorImpl class and DataViewerImpl class to show the room’s
illuminance in the graph type of GUI. The second one is the
radio control robot application which uses PhidgetsSensorImpl
class as controllers and MindstormsActuatorImpl class. The
third one is the context-aware service which uses PhidgetsRF-
DImpl class and DataViewerImpl class to show the room’s
environment monitoring application which uses UpartSensorImpl
radio control robot application which uses PhidgetsSensorImpl
context-aware service which uses PhidgetsRFIDImpl class, IpPowerImpl
class as services activated by nearing RFID tag.

IV. EXPERIMENT

Three kinds of experiments using Spinning Sensors middle-
ware were conducted to evaluate usability and performance of
robotic sensor nodes.

The first experiment uses a pair of an light sensor and a
servo motor. This robotic sensor node is placed on a desk
and one spotlight which outputs directional light is placed at
multiple locations. Since the light sensor is attached onto the
rotating motor, the sensor outputs different values according
to the direction the robotic sensor node faces. We placed
the spotlight at four positions. The position 1 is 8cm away from
the node. The position 2 is 16cm away from the node. The position
3 is 24cm away from the node. And the position 4 is 16cm
away from the node but the light is non-directional one. Fig 3
shows the result of this experiment. In every position, the
light is settled straight in front of the robotic sensor node. In these
three positions, the result differs depending on the distance
from the sensor node to the light. In position 1, the sensor
node is placed too close to the light so that the sensor can not
verify the direction of the light. In position 2, since the distance
between the sensor node and the light is appropriate, the sensor
could figure out the directions of the light properly. In position
3, the distance between the sensor node and the light is a little
too far so that it is hard to figure out the directions of the light.
In position 4, since we used the non-directional light, the result
shows that we can not figure out the direction of the light from
the sensed value.

The second experiment uses a sound sensor, an ultrasonic
sensor, a light sensor, and a robot which can move around.
One speaker making pink noise, a paper box, and a spotlight
are placed around this robotic sensor node. Fig 4 shows the
result of this experiment. In terms of light sensor and ultrasonic
sensor, we can figure out the placed angles of a spotlight
and position of a paper box. However, since the speaker’s
sound proliferated, the output value of sound sensor does
not differ in all positions. From these experiments, we could
do the operation check of our middleware and application.
Furthermore, we found that the robotic sensor node can cover
greater directions than the fixed sensor node and could even
figure out the object’s facing direction or position. By using
the middleware and the robotic sensor nodes, we could know
about our environment more accurately.

The third experiment uses a rotation sensor, a slider sensor,
and a motor. In this experiment, either the rotation sensor
or the slider sensor is utilized as a controller of the motors.
We measured the total time required for sensor sensing, event
dispatch, and actuator execution. Fig 5 shows the result. The
result shows that when we increase the total number of motors
to control, the total time increased. This result also shows

\begin{table}[h]
\centering
\caption{List of Supported Sensors and Actuators}
\begin{tabular}{|c|c|c|c|c|}
\hline
Group & Hardware Name & Function & Implemented Class Name & Line & Size \\
\hline
Sensor & TECO uPart & light, temperature, movement & UpartSensorImpl & 117 lines & 2.83KB \\
Sensor & LEGO Mindstorms & light, sound, ultrasonic, touch & MindstormsSensorImpl & 82 lines & 2.18KB \\
Sensor & Phidgets & temp, light, rotation, slider, etc. & PhidgetsSensorImpl & 95 lines & 2.22KB \\
Sensor & Phidgets RFID & RFID reader and tags & PhidgetsRFIDImpl & 135 lines & 2.70KB \\
Robotic Actuator & LEGO Mindstorms & motor & MindstormsActuatorImpl & 107 lines & 2.81KB \\
Robotic Actuator & Phidgets & motor & PhidgetsActuatorImpl & 126 lines & 2.94KB \\
Service Actuator & Aviosys IPPower & power control & IpPowerImpl & 62 lines & 1.68KB \\
Service Actuator & JFreeChart & graph viewer & DataViewerImpl & 194 lines & 5.95KB \\
Service Actuator & Apple Quicktime & movie player & VideoControllerImpl & 57 lines & 1.46KB \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{List of Implemented Prototype Applications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Name of Application & Function & Implemented Class Name & Hardware & Line & Size \\
\hline
Environment Monitoring & Environment Monitoring & EnvMonitoring & Sensor, Motor, and Chart & 150 lines & 4.89KB \\
Radio Control Robot & Robot Controlled by Sensors & SensorControlRobot & Sensors and Robot & 183 lines & 5.23KB \\
Context-aware Service & Light ON/OFF by RFID & RFIDControlLight & RFID and Power Control & 109 lines & 2.93KB \\
Context-aware Service & Movie ON/OFF by RFID & RFIDControlVideo & RFID and Movie Player & 108 lines & 2.94KB \\
\hline
\end{tabular}
\end{table}
that the required time is less than 30 milli-seconds and it is reasonable result especially in the environment such as home or office where there is not strong need of real-time applications.

V. RELATED WORK

Reference[1] describes a sensor network application construction kit. In this research, they have developed a configuration programming language called SNACK to reduce memory and power consumption of sensor nodes especially for the Crossbow’s MOTE hardware. They focus attention on the NesC’s inefficiency and do not pay much attention on general versatility, spatial modeling, or application for robotic sensor nodes.

There is also an issue of sensor coverage optimization. Reference[2] and Reference[3] proposed an approach to establish a sensor network with robotics so that the sensor can move freely to change its coverage area. Although this approach can increase the mobility of sensors and their coverage area, the whole architecture tends to be complicated and the power consumption would be relatively high. Reference[4] is an experimental laboratory for pervasive computing research and is equipped with various kinds of stable sensors. Spinning Sensors gets the best of both model, mobility of robotic actuators and simple design and low maintenance cost of stable sensors.

RT Middleware[5] is a middleware for robotics. It realizes modular design of robotic software based on distributed component technology called CORBA [6]. Since this technology is based on CORBA, the developers are forced to install many kinds of software before they use RT Middleware. Although they succeeded in realizing modularity of robotic actuators, there is no discussion regarding the robotic sensor node.

Reference[7] discusses the sensor’s exposure in wireless ad-hoc sensor networks. Although this research provides valuable formulation and experimental results by using assuming stable sensors, Spinning Sensors differs from this research in mobility of sensors. Spinning Sensors optimizes the sensor coverage area by not increasing the number of sensor nodes nor their power usage, but spinning the sensors themselves.

VI. CONCLUSION

In this paper, we presented Spinning Sensors, a novel sensors and actuators collaborative usage model realizing dynamic adaptation of coverage and increasing the coverage area. Spinning Sensors model illustrates the relationship among sensors, actuators, and target objects. Spinning Sensors system consists of three layers: sensors and actuators driver layer, middleware layer, and application layer. The middleware is designed and implemented to achieve versatility and functionality so that it can be used for many kinds of hardware devices and application programs. The experiment using the Spinning Sensors showed that a light sensor and ultrasonic sensor output wide range of data depending on the direction it towards. Therefore spinning the sensors is meaningful especially in case the sensor has unidirectional characteristic.

With the emerging technology of robotic sensor network, the internet not only can acquire real world environmental and physical data but also the physical feedback to the real world can be realized using the robotic actuators and robots. And as in the case of the current information system, the sensor network system might be built not by using the application specific hardware but by utilizing the general purpose sensors and actuators. When integrating these general purpose hardware devices the middleware would play an important role to connect each device. In this way, Spinning Sensors can accelerate the integration of real world and virtual world by providing the new middleware for robotic sensor network.

REFERENCES