
Lazy Functional State ThreadsJohn Launchbury and Simon L Peyton JonesUniversity of GlasgowEmail: {simonpj,jl}@dcs.glasgow.ac.uk. Phone: +44-41-330-4500November 8, 1993AbstractSome algorithms make critical internal use of updatablestate, even though their external speci�cation is purelyfunctional. Based on earlier work on monads, we presenta way of securely encapsulating such stateful computa-tions, in the context of a non-strict, purely-functionallanguage.There are two main new developments in this paper.First, we show how to use the type system to securelyencapsulate stateful computations, including ones whichmanipulate multiple, named, mutable objects. Second,we give a formal semantics for our system.This paper has been submitted to Programming LanguagesDesign and Implementation (PLDI) '94.1 IntroductionPurely functional programming languages allow many al-gorithms to be expressed very concisely, but there are afew algorithms in which in-place updatable state seemsto play a crucial role. For these algorithms, purely-functional languages, which lack updatable state, appearto be inherently ine�cient (Ponder, McGeer & Ng [1988]).Take, for example, algorithms based on the use ofincrementally-modi�ed hash tables, where lookups are in-terleaved with the insertion of new items. Similarly, theunion/�nd algorithm relies for its e�ciency on the setrepresentations being simpli�ed each time the structureis examined. Likewise, many graph algorithms require adynamically changing structure in which sharing is ex-plicit, so that changes are visible non-locally.There is, furthermore, one absolutely unavoidable use ofstate in every functional program: input/output. Theplain fact of the matter is that the whole purpose of run-ning a program, functional or otherwise, is to make someside e�ect on the world | an update-in-place, if youplease. In many programs these I/O e�ects are rathercomplex, involving interleaved reads from and writes to

the world state.We use the term \stateful" to describe computations oralgorithms in which the programmer really does want tomanipulate (updatable) state. What has been lacking un-til now is a clean way of describing such algorithms in afunctional language| especially a non-strict one |with-out throwing the main virtues of functional languages:independence of order of evaluation (the Church-Rosserproperty), referential transparency, non-strict semantics,and so on.In this paper we describe a way to express stateful al-gorithms in non-strict, purely-functional languages. Theapproach is a development of our earlier work on monadicI/O and state encapsulation (Launchbury [1993]; Pey-ton Jones & Wadler [1993]), with two main new devel-opments. First, we present an important technical inno-vation: we use parametric polymorphism to achieve safeencapsulation of state. It turns out that this allows muta-ble objects to be named without losing safety, and it alsoallows input/output to be smoothly integrated with otherstate mainpulation. Second, we give a formal semanticsfor our approach.The other important feature of this paper is that it de-scribes a complete system, and one that is implementedin the Glasgow Haskell compiler and freely available. Thesystem has the following properties:� Complete referential transparency is maintained.That is to say, the semantics of the program re-mains purely functional, even though its operationalbehaviour includes in-place updates on mutable ob-jects. It follows that stateful computations can beexposed to the full range of program transformationsapplied by a compiler, with no special cases or sideconditions.� The programmer has complete control over where in-place updates are used and where they are not. Forexample, there is no complex analysis to determinewhen an array is used in a single-threaded way. Sincethe viability of the entire program may be predicated1

on the use of in-place updates, the programmer mustbe con�dent in, and be able to reason about, theoutcome.� Mutable objects can be named. This ability soundsinnocuous enough, but once an object can be namedits use cannot be controlled as readily. Yet namingis important. For example, it gives us the ability tomanipulate multiple mutable objects simultaneously.� Input/output takes its place as a specialised formof stateful computation. Indeed, the type of I/O-performing computations is an instance of the (morepolymorphic) type of stateful computations. Alongwith I/O comes the ability to call imperative proce-dures written in other languages.� It is possible to encapsulate stateful computations sothat they appear to the rest of the program as pure(stateless) functions which are guaranteed by the typesystem to have no interactions whatever with othercomputations, whether stateful or otherwise (exceptvia the values of arguments, of course).Complete safety is maintained by this encapsula-tion. A program may contain an arbitrary number ofstateful sub-computations, each simultaneously ac-tive, without concern that a mutable object from onemight be mutated by another.� Stateful computations can even be performed lazilywithout losing safety. For example, suppose thatstateful depth-�rst search of a graph returns a listof vertices in depth-�rst order. If the consumer ofthis list only evaluates the �rst few elements of thelist, then only enough of the stateful computation isexecuted to produce those elements.2 OverviewThis section introduces the key ideas of our approach tostateful computation. We begin with the programmer's-eye-view.2.1 State transformersA value of type (ST s a) is a computation which trans-forms a state indexed by type s, and delivers a value oftype a. You can think of it as a box, like this:
State outState in

Result

Notice that this is a purely-functional account of state.The \ST" stands for \a state transformer", which we taketo be synonmous with \a stateful computation": the com-putation is seen as transforming one state into another.(Of course, it is our intention that the new state will ac-tually be constructed by modifying the old one in place,a matter to which we return in Section 6.) A state trans-former is a �rst-class value: it can be passed to a function,returned as a result, stored in a data structure, duplicatedfreely, and so on.A state transformer can have other inputs besides thestate; if so, it will have a functional type. It can also havemany results, by returning them in a tuple. For example,a state transformer with two inputs of type Int, and tworesults of type Int and Bool, would have the type:Int -> Int -> ST s (Int,Bool)Its picture might look like this:
State outState in

Inputs ResultsThe simplest state transformer, returnST, simply deliversa value without a�ecting the state at all:returnST :: a -> ST s aThe picture for returnST is like this:
State outState in2.2 ReferencesWhat, then, is a \state"? Part of every state is a �nitemapping from references to values. (A state may alsohave other components, as we will see in Section 4.) Areference can be thought of as the name of (or address of)a variable, an updatable location in the state capable ofholding a value. The following primitive operations areprovided:newVar :: a -> ST s (MutVar s a)readVar :: MutVar s a -> ST s awriteVar :: MutVar s a -> a -> ST s ()The function newVar takes an initial value, of typea, say, and delivers a state transformer of typeST s (MutVar s a). When this is applied to a state,it allocates a fresh reference | that is, one currently notused in the state. It augments the state with a mapping2

from this reference to the supplied value, and returns thereference along with the modi�ed state.The type MutVar s a is the type of references allocatedfrom a store of type s, containing a value of type a. Noticethat, unlike SML's Ref types, for example, MutVars areparameterised over the type of the state as well as overthe type of the value to which the reference is mappedby the state. (We use the name MutVar for the typeof references, rather than Ref, to avoid confusion withSML.)Given a reference v, readVar v is a state transformerwhich leaves the state unchanged, but uses the state tomap the reference to its value.The function writeVar transforms the state so that itmaps the given reference to a new value. Notice that thereference itself does not change; it is the state which ismodi�ed. writeVar delivers a result of the unit type (),a type which only has one value (apart from bottom), alsowritten (). A state transformer of type ST s () is usefulonly for its e�ect on the state.2.3 Composing state transformersState transformers can be composed in sequence, to forma larger state transformer, using thenST, which has typethenST :: ST s a -> (a -> ST s b) -> ST s bThe picture for (s1 `thenST` s2) is like this1 :
s1 s2

State outState inNotice that the two computations must manipulate stateindexed by the same type, s. Notice also that thenST isinherently sequential, because the state consumed by thesecond computation is that produced by the �rst. Indeed,we often refer to a state transformer as a thread, invok-ing the picture of a series of primitive stateful operations\threaded together" by a state passed from one to thenext.Putting together what we have so far, here is a \proce-dure" which swaps the contents of two variables:swap :: MutVar s a -> MutVar s a -> ST s ()swap v w = readVar v `thenST` (\a ->readVar w `thenST` (\b ->writeVar v b `thenST` (_ ->writeVar w a)))The syntax needs a little explanation. The form \\a->e"1Backquotes are Haskell's notation for an in�x operator.

is Haskell's syntax for a lambda abstraction. The bodyof the lambda abstraction, e, extends as far to the rightas possible. So in the code for swap, the second argumentof the �rst thenST exends all the way from the \a to theend of the function. That's just as you would expect: thesecond argument of a thenST is meant to be a function.The _" in the second-last line is a wild-card pattern,which matches any value. We use it here because thewriteVar does not return a value of interest.The parentheses can be omitted, since in�x operationsbind less tightly than the lambda abstraction operator.Furthermore, we provide a special form of thenST, calledthenST_, with the following type signature:thenST_ :: ST s () -> ST s b -> ST s bUnlike thenST its second argument is not a function, sothe lambda isn't required. So we can rewite swap as fol-lows:swap :: MutVar s a -> MutVar s a -> ST s ()swap v w = readVar v `thenST` \a ->readVar w `thenST` \b ->writeVar v b `thenST_`writeVar w aWhen swap v w is executed in a state thread (that is,when given a state), v is dereferenced, returning a valuewhich is bound to a. Similarly the value of w is boundto b. New values are then written into the state at theselocations, these values being b and a respectively.In addition to thenST and returnST, we have found ituseful to introduce one other \plumbing" combinator,fixST. It has the typefixST :: (a -> ST s a) -> ST s aand the usual knot-tying semantics, which we depict thus:
State outState in

s2.4 EncapsulationSo far we have been able to combine state transformersto make larger state transformers, but how can we makea state transformer part of a larger program which doesnot manipulate state at all? What we need is a function,runST, with a type something like the following:runST :: ST s a -> aThe idea is that runST takes a state transformer as itsargument, conjures up an initial empty state, applies thestate transformer to it, and returns the result while dis-carding the �nal state. The initial state is \empty" in3

the sense that no references have been allocated in it bynewVar; it is the empty mapping.But there seems to be a terrible
aw: what is to preventa reference from one thread being used in another? Forexample:let v = runST (newVar True)inrunST (readVar v)Here, the reference allocated in the �rst runST's thread isused inside the second runST. Doing so would be a greatmistake, because a reads in one thread are not sequencedwith respect to writes in the other, and hence the result ofthe program would depend on the evaluation order usedto execute it. It seems at �rst that a runtime check mightbe required to ensure that references are only derefer-enced in the thread which allocated them. Even worse,our experience suggests that is it surprisingly tricky toimplement such a check | the obvious ideas fail | andwe still do not know a straightforward way to do so.This problem brings us to the main technical contributionof the paper: the di�culties with runST can all be solvedby giving it a more speci�c type. The type given forrunST above is implicitly universally quanti�ed over boths and a. If we put in the quanti�cation explicitly, thetype might be written:runST :: 8s,a. ST s a -> aNow, what we really want to say is that newST shouldonly be applied to a state transformer which uses newVarto create any references which are used in that thread.To put it another way, the argument of runST shouldnot make any assumptions about what has already beenallocated in the initial state. That is, runST should workregardless of what initial state it is given. So the type ofrunST should be:runST :: 8a. (8s. ST s a) -> aThis is not a Hindley-Milner type, because the quanti�ersare not all at the top level; it is an example of rank-2polymoprhism (McCracken [1984]).Why does this type prevent the \capture" of referencesfrom one thread into another? Consider our exampleagainlet v = runST (newVar True)inrunST (readVar v)Here a reference v is used in a stateful thread(readVar v), even though the latter is supposedly en-capsulated by runST. However, when typechecking, thetype of readVar v will depend on the type of v so, for

example, the type derivation will contain a judgment ofthe form:fv : MutVar s Boolg ` readVar v : ST s BoolNow in order to apply runST we have to be able to gen-eralise the type of readVar v with respect to s, but wecannot as s is free in the type environment: readVar vsimply does not have type 8s.ST s Bool.What about the other way round? Let's check that thetype of runST prevents the \escape" of references from athread. Consider the de�nition of v above:v = runST (newVar True)Here, v is a reference allocated within the thread, but thenreleased to the outside world. Again, consider what hap-pens when typechecking. The expression (newVar True)has type ST s (MutVar s Bool), which will generalisenicely to 8s.ST s (MutVar s Bool). However, this isstill a mismatch with the type of runST. To see this,consider the instance of runST with a specialised toMutVar s Bool:runST :: (8s'. ST s' (MutVar s Bool))-> MutVar s BoolWe have renamed the bound variable s in the type ofrunST to s', to avoid it erroneously capturing the s in thetype MutVar s Bool. The argument type now doesn'tmatch v's type. Indeed there is no instance of runSTwhich can be applied to v.Finally, here is an example that is �ne:f :: MutVar s a -> MutVar s af v = runST (newVar v `thenST` \w->read w)where v is a reference from some arbitrary state thread.Because v is not accessed, its state type does not a�ect thelocal state type of the short thread (which is in fact totallypolymorphic in v). Thus it is �ne for an encapsulatedstate thread to manipulate references from other threadsso long as no attempt is made to dereference them.In short, by the expedient of giving runST a rank-2 poly-morphic type we can enforce the safe encapsulation ofstate transformers. More details on this are given in Sec-tion 5.2, where we show that runST's type can be ac-commodated with only a minor enhancement to the typechecker.3 Array referencesSo far we have introduced the idea of references (Sec-tion 2.2), which can be thought of as a single mutable4

\box". Sometimes, though we want to update an arraywhich should be thought of as many \boxes", each in-dependently mutable. For that we provide primitives toallocate, read and write elements of arrays. They havethe following types2 :newArr :: Ix i => (i,i) -> elt-> ST s (MutArr s i elt)readArr :: Ix i => MutArr s i elt -> i-> ST s eltwriteArr :: Ix i => MutArr s i elt -> i -> elt-> ST s ()freezeArr :: Ix i => MutArr s i elt-> ST s (Array i elt)Like references, newArr allocates a new array whosebounds are given by its �rst argument. The second ar-gument is a value to which each location is initialised.The state transformer returns a reference to the array,which we call an array reference. The functions readArrand writeArr do what their names suggest. The resultis unde�ned if the index is out of bounds.The interesting function is freezeArr which turns aMutArr into a standard Haskell array. The latter is animmutable value, which can certainly be returned from astateful thread, and which hence lacks the parameterisa-tion on the state s. Operationally speaking, freezeArrtakes the name of an array as its argument, looks it up inthe state, and returns a copy of what it �nds, along withthe unaltered state. The copy is required in case a sub-sequent writeArr changes the value of the array in thestate, but it is sometimes possible to relax this condition(see Section 6.2.3).We give two examples of mutable arrays in action, butleave the larger one to the Appendix.3.1 Haskell ArraysUsing mutable arrays, we shall de�ne the Haskell \prim-itive" accumArray, a high level array operation with thetype3 :accumArray :: Ix i => (a->b->a) -> a -> (i,i)-> [(i,b)] -> Array i aThe result of a call (accumArray f x bounds ivs) isan array whose size is determined by bounds, and whosevalues are de�ned by separating all the values in the list2The \Ix i =>" part of the type is just Haskell's way of sayingthat the type a must be an index type; that is, there must be amapping of a value of type a to an o�set in a linear array. Integers,characters and tuples are automatically in the Ix class, but arrayindexing is not restricted to these. Any type for which a mappingto Int is provided (via an instance declaration for the class Ix atthat type) will do.3Technically the (i,b) should be Assoc i b

ivs according to their index, and then performing a left-fold operation, using f, on each collection, starting withthe value x.Typical uses of accumArray might be a histogram, forexample:hist bnds is = accumArray (+) 0 bnds[(i,1)|i<-is, inRange bnds i]which counts the occurrences of each element of the listsis that falls within the range given by the bounds bnds.Another example is bin sort:binSort bnds key vs= accumArray (flip (:)) [] bnds [(key v, v)|v<-vs]where the value in vs are placed in bins according to theirkey value as de�ned by the function key (whose results areassumed to lie in the range speci�ed by the bounds bnds.Each bin (that is, each element of the array) will containa list of the values with the same key value. The listsstart empty, and new elements are added using a versionof cons in which the order of arguments is reversed. Inboth examples, the array is built by a single pass alongthe input list.The implementation is as follows.accumArray bds f z ivs = runST(newArr bds z `thenST` \a ->fill a f ivs `thenST_`freezeArr a)fill a f [] = returnST ()fill a f ((i,v):ivs)= readArr a i `thenST` \x ->writeArr a i (f x v) `thenST_`fill a f xs)On evaluating a call to accumArray, a new state thread isgenerated. Within this thread an array is allocated, eachelement of which is initialised to z. The reference to thearray is named a. This is passed to the fill procedure,together with the accumulator function f, and the list ofindex/value pairs.When this list is exhausted, fill simply returns. If thereis at least one element in the list, it will be a pair (i,v).The array a is accessed at location i, the value obtainedbeing bound to x, and a new value, namely (f x v), iswritten into the array, again at location i. Then fill iscalled recursively on the rest of the list.Once fill has �nished, the array is frozen into an im-mutable Haskell array which is returned from the thread.Using mutable-array operations has enabled us to de-scribe a complex array \primitive" in terms of much sim-pler operations. Not only does this make the compiler-5

writer's job easier, but it also allows programmersto de�ne their own variants, say, for the cases whenaccumArray does not match their application precisely| a RISC approach.The example is also interesting because of its use of encap-sulated state. The implementation (or internal details) ofaccumArray is imperative, but its external behaviour ispurely functional. Even the presence of the state cannotbe detected from outside the de�nition of accumArray.3.1.1 Combining State TransformersBecause state transformers are �rst class values, we canuse the power of the functional language to de�ne newcombining forms. One that would be useful in the exam-ple above is for sequencing a list of these \procedures":seqST :: [ST s ()] -> ST s ()seqST = foldr thenST_ (returnST ())Using this the example above can be rewritten:accumArray bds f z ivs = runST(newArr bds z `thenST` \a ->let update (i,v) = readArr a i `thenST` \x->write a i (f x v)inseqST (map update ivs) `thenST_`freezeArr a)The local function update takes an index/value pair andevaluates to a state transformer which updates the arrayreferenced by a. Mapping this function down the list ofindex/value pairs ivs produces a list of state transform-ers, and these are sequenced together by seqST.4 Input/outputNow that we have the state-transformer framework inplace, we can give a new account of input/output. AnI/O-performing computation is of type ST RealWorld a;that is, it is a state transformer transforming a state oftype RealWorld, and delivering a value of type a. Theonly thing which makes it special is the type of the stateit transforms, an abstract type whose values representthe real world. It is convenient to use a type synonym toexpress this specialisation:type IO a = ST RealWorld aSince IO a is an instance of ST s a, it follows that all thestate-transformer primitives concerning references andarrays work equally well when mixed with I/O opera-tions. More than that, the same \plumbing" combina-tors, thenST, returnST and so on, work for I/O as forother state transformers. In addition, however, we pro-vide a variety of I/O operations that work only on the IOinstance of state (that is, they are not polymorphic in the

state), such as:putChar :: Char -> IO ()getChar :: IO CharIt is easy to build more sophisticated I/O operations ontop of these. For example:putString :: [Char] -> IO ()putString [] = returnST ()putString (c:cs) = putChar c `thenST_`putString csor, equivalently,putString cs = seqST (map putChar cs)There is no way for a caller to tell whether putStringis \primitive" or \programmed". Indeed, putChar andgetChar are not primitive either. There is actually onlyone primitive I/O operation, called ccall, which allowsthe Haskell programmer to call any C procedure. Forexample, putChar is de�ned like this:putChar :: Char -> IO ()putChar c = ccall putchar c `thenST` _ ->returnST ()That is, the state transformer (putChar c) transforms thereal world by calling the C function putchar, passing itthe character c. The value returned by the call is ignored,as indicated by the _" wild card. Similarly, getChar isimplemented like this:getChar :: IO ChargetChar = ccall getcharccall is actually implemented as a new language con-struct, rather than as an ordinary function, because wewant it to work regardless of the number and type of itsarguments. The restrictions placed on its use are:� All the arguments, and the result, must be typeswhich C understands: Int, Float, Double, Bool, orArray. There is no automatic conversion of morecomplex structured types, such as lists or trees.� The �rst \argument" of ccall, which is the name ofthe C function to be called, must appear literally. Itis really part of the construct.4.1 Running IOThe IO type is a particular instance of state transformersso, in particular, I/O operations are not polymorphic inthe state. An immediate consequence of this is that IOoperations cannot be encapsulated using runST. Why not?Again, because of runsST's type. It demands that itsstate transformer argument be universally quanti�ed overthe state, but that is exactly what IO is not!6

Fortunately, this is exactly what we want. If IO oper-ations could be encapsulated then it would be possibleto write apparently pure functions, but whose behaviourdepended on external factors, the contents of a �le, userinput, a shared C variable etc. The language would nolonger exhibit referential transparency.However, this does leave us with a problem: how are IOoperations executed? The answer is to provide a top levelidenti�er,mainIO : IO ()and to de�ne the meaning of a program in terms of it.When a program is executed, mainIO is applied to thetrue external world state, and the meaning of the pro-gram is given by the �nal world state returned by theprogram (including, of course, all the incremental changesen route).By this means it is possible to give a full de�nitionof Haskell's standard input/output behaviour (involvinglists of requests and responses) as well as much more. In-deed, the Glasgow implementation of the Haskell I/O sys-tem is itself now written entirely in Haskell, using ccallto invoke Unix I/O primitives directly. The same tech-niques have been used to write libraries of routines forcalling X, etc.5 FormalismHaving given the programmer's eye view, it is time now tobe more formal and to de�ne precisely the ideas we havediscussed. We have presented state transformers in thecontext of the full-sized programming language Haskell,since that is where we have implemented the ideas. Inorder to give semantics to the constructs, however, it isconvenient to restrict ourselves to the essentials.5.1 A LanguageWe focus on lambda calculus extended with the statetransformer operations. The syntax of the language isgiven by:e ::= x j k j e1 e2 j �x :e jlet x = e1 in e2 j runST ek ::= : : : j thenST j returnST j fixST jnewVar j readVar j writeVar jnewArr j readArr j writeArr jfreezeArr j ccallBoth let and runST are language constructs rather thanconstants because they each have their own typing judg-ments.

5.2 Type rulesThe type rules are the usual Hindley-Milner rules, exceptthat runST also requires a judgment of its own. Treatingit as a language construct avoids the need to go beyondHindley-Milner types. So rather than actually give runSTthe type runST :: 8a.(8s.ST s a) -> aas suggested in the introduction, we ensure that its typingjudgment has the same e�ect.As usual, we talk both of types and type schemes (that is,types possibly with universal quanti�ers on the outside).We use T for types, S for type schemes, and K for typeconstants such as Int and Bool .T ::= t j K j T1 ! T2 j ST T1 T2 jMutVar T1 T2 j MutArr T1 T2S ::= T j 8t :SNote that the MutArr type constructor has only two ar-guments here. The missing one is the index type. For thepurposes of the semantics we shall assume that arrays arealways indexed by naturals, starting at 0. The type rulesAPP � ` e1 : T1 ! T2 � ` e2 : T1� ` (e1 e2) : T2LAM � ; x : T1 ` e : T2� ` �x :e : T1 ! T2LET � ` e1 : S � ; x : S ` e2 : T� ` (let x = e1 in e2) : TVAR � ; x : S ` x : SSPEC � ` e : 8t :S� ` e : S [T=t] t 62 FV (T)GEN � ` e : S� ` e : 8t :S t 62 FV (�)RUN � ` e : 8t :ST t T� ` (runST e) : T t 62 FV (T)Figure 1: Type rulesare given in Figure 1. � ranges over type environments(that is, partial functions from references to types), and7

we write FV (T) for the free variables of type T and like-wise for type environments. The only non-standard typerule is the last, which is designed to be consistent with thetype for runST we gave earlier, so our previous intuitionstill applies.5.3 Denotational SemanticsThe denotational semantics of state operations is easyto add to standard semantics for lazy functional lan-gauges. Figure 2 gives a standard semantics for a non-strict lambda calculus, except that we extend it with statetransformers.The valuation function E [[]] takes an expression and anenvironment and returns a value. We use Env for the do-main of environments, and Val for the domain of values,de�ned as follows:Env = S� (var� !D�)Val = S� D�The environment maps a variable of type � to a value inthe domain D� , and the domain of values is the union ofall the D� , where � ranges over monotypes.From the point of view of the language, the type con-structors ST, MutVar and MutArr are opaque. To givethemmeaning, however, the semantics must provide themwith some structure.DST s a = States ! (Da � State s)DMutVar s a = N?DMutArr s a = (N �N)?State s = ((N ,! Val) �Ds)?The state is a �nite partial function from locations (rep-resented by natural numbers) to values, together witha component which depends on the type of the state.The only type of values here which will concern us isRealWorld, the type that s takes in IO computations.More on this later. We also add a bottom element to rep-resent an unde�ned state, and distinguish between thisunde�ned state and states which are well-de�ned partialfunctions, but which map every thing to ?. The unde-�ned state arises naturally as the state which results froman in�nite loop of state transformers, for example.The meaning of a state transformer is a function which,given a state, produces a pair of results: a value and a newstate. The least de�ned state transformer is the functionwhich, given any state, returns the pair containing anunde�ned value and an unde�ned state (i.e. the bottomof the product domain).References are denoted simply by natural numbers, ex-cept that it is possible to have an unde�ned reference

E [[Expr]] : Env ! ValE [[k]] � = B[[k]]E [[x]] � = � xE [[e1 e2]] = (E [[e1]] �) (E [[e2]] �)E [[\x->e]] � = �v :(E [[e]] (�� fx 7! vg)E [[runST e]] = run (E [[e]] �)E [[e1 `thenST` e2]] = bind (E [[e1]] �) (E [[e2]] �)E [[returnST e]] = unit (E [[e]] �)E [[fixST e]] = loop (E [[e]] �)run m = �1 (m (;;?))(bind m k) � = k x �0 where (x ; �0) = m �(unit v) � = (v ; �)(loop f) � = f x �where x = �x (�y :�1 (f y �))Figure 2: Semantics of State Combinatorsalso, denoted by ?. The number represents a \location"in the state. Arrays are located by a pair of naturals rep-resenting the location of element 0, and the size of thearray, but again it is possible to have a totally unde�nedarray reference.Turning to the details of Figures 2 to 5, we note a numberof aspects. Some of the operations are strict. For exam-ple, readVar, and writeVar are strict in their references,but none of the operations are strict in the values stored.Again, newVar, readVar, and writeVar are strict in thestate, but thenST and returnST are not. We shall returnto this point in a moment.Array references are treated similarly, except that theycome in two parts: the base reference and an o�set (thearray index). We assume indexing ranges from 0 to thesize of the array minus 1. Because of the strict functionapplication, readArr and writeArr are strict in both thearray reference and in the index. They also return un-de�ned if the index is out of bounds. Finally, they andnewArr are strict in the state. newArr is also strict in thearray size.The semantics makes the nature of arrays crystal clear.They are composed of many separate locations in thestate, each independently updatable, each update cost-ing no more than a variable update would cost.The semantics of IO operations is given with respect toan unspeci�ed function IO which is a state transformeron the RealWorld.The primitive operations, such as newVar, readVar, and8

E [[newVar e1]] = newVar v1E [[readVar e1]] = � ?; if v1 = ?readVar v1 otherwiseE [[writeVar e1 e2]] = � ?; if v1 = ?writeVar v1 v2 otherwisewhere vi = E [[ei]] �(newVar v) ? = (?; ?)(newVar v) (�;w) = (p; (� [p 7! v];w)) where p 62 dom(�)(readVar p) ? = (?; ?)(readVar p) (�;w) = � (?; ?); if p 62 dom(�)(� p; (�;w)); otherwise(writeVar p v) ? = (?; ?)(writeVar p v) (�;w) = � (?; ?); if p 62 dom(�)((); � [p 7! v]); otherwiseFigure 3: Semantics of variablesE [[newArr e1 e2]] = � ?; if v1 = ?newArr v1 v2 otherwiseE [[readArr e1 e2]] = � ?; if v1 = ? or v2 = ?readArr v1 v2 otherwiseE [[writeArr e1 e2 e3]] = � ?; if v1 = ? or v2 = ?writeArr v1 v2 v3 otherwiseE [[freezeArr e1]] = � ?; if v1 = ?freezeArrv1 otherwisewhere vi = E [[ei]] �(newArr n v) ? = (?;?)(newArr n v) (�;w) = ((p; n); (� [p 7! v ; : : : ; (p + n � 1) 7! v];w))where 8q : fp : : : (p + n � 1)g:q 62 dom(�)(readArr (p; n) i) ? = (?;?)(readArr (p; n) i) (�;w) = � (?;?); if i 62 f0 : : : (n � 1)g or p + i 62 dom(�)(� (p + i); (�;w)); otherwise(writeArr (p; n) i v) ? = (?;?)(writeArr (p; n) i v) (�;w) = � (?;?); if i 62 f0 : : : (n � 1)g or p + i 62 dom(�)((); (� [p + i 7! v];w)); otherwise(freezeArr (p; n)) ? = (?;?)(freezeArr (p; n)) (�;w) = � (?;?); if 9q : fp : : : (p + n � 1)g:q 62 dom�(fi 7! � (p + i)gni=0 ; (�;w)); otherwiseFigure 4: Semantics of Arrays9

E [[ccall fn e1 : : :en]]= � ?; if 9i :vi = ?doIO fn [v1 ; : : : ; vn] otherwisewhere vi = E [[ei]] �doIO : Name ! SeqVal !State RealWorld ! (Val � State RealWord)doIO fn args ? = (?; ?)doIO fn args (�; rw) = (v ; (�; rw 0))where (v ; rw 0) = IO fn args rwIO : Name ! Seq Val !RealWorld ! (Val �RealWorld)Figure 5: Semantics of IO operationsso on, are necessarily strict in the state. After all, theyeach depend on the value of the state. In contrast, thesemantics do not make thenST or runST strict in the state,since they do not need its value.What di�erence might this make? Consider the inter-preter for a language with IO operations and state givenin Figure 6. The values of variables are stored in a mu-table array, and a variable is used to store the input (alazy list). The result of obeying the commands is a listof the output values. The output should appear as it isgenerated: whenever a Write is obeyed, the returnSTshould be able to make the �rst element of its output listavailable to the outside world before obeying the rest ofthe commands.5.4 SafetyHow can we be sure that the above type system ensuresthat each state thread is independent of all others? A fullproof lies well outside the scope of this paper, but we willprovide an outline of the ideas, together with a (slightlyinformal) statement of the main result.Our ultimate intention is to implement all the distinctstate threads using the single, global, machine state, butto do so without a�ecting the values returned by statecomputations. That is, we want to be able to map eachthread on to the global state, and to ensure that the indi-vidual state threads cannot communicate with each otherexcept through purely functional values. Similarly, wewant to guarantee that we can arbitrarily interleave theevaluation of separate state threads, still without a�ect-ing the result of the computation because, in practice, theamount of computation which takes place in each threadwill depend on the demand for its �nal value. We cer-

tainly do not want the value of the result to depend onthe pattern of demand.Consider then a single state thread. In the semantics itis applied to the empty state, and this state is extendedby applications of newVar (and newArr of course). Thereare no other active locations, and the state undergoes notransformations other than those speci�ed by these readsand writes.In contrast, if we were to imagine using a single globalstate for all the threads, then many more locations wouldbe active and, because of possible interleavings of op-erations from other threads, the underlying state mightchange while passing from one primitive operation to thenext. The big question is: how can we guarantee thatthese changes do not a�ect the result of the state thread?We view the state from the perspective of a single thread,runST m, and model the changes made by other threads asnon-deterministic changes to the state. So, �rst, we haveto map the state of this particular thread into a globalstate containing material from many separate threads.We model this mapping by an injection (one-to-one map-ping) � : N ! N which maps a reference from the localstate of m to a reference in a global state. The range of� is that part of the global address space which supportsthe execution of m.We will say that a global state �1 models the local state ofthe semantics, �m , if �m = �1 ��. That is, if �m is de�nedat some location v to have a value x , then �1 is de�nedat location � x also having value x . In addition, however,�1 may be de�ned at lots of other locations outside therange of �.We can also relate two global states using �: two globalstate are related by � if they both model the same localstate. That is, b� : �0 $ �1 is a relation de�ned by �0 �� =�1 ��. So, two global states are related by b� if they agreein all the positions in the range of �, but they can haveany old junk in all other locations.Now, when we actually evaluate runST m, we will allocatelocations only in the range of �. Of course, � only exists asa mathematical abstraction. The allocation mechanismwill merely choose a free location: � acts as a descriptionof how the allocation mechanism will have behaved.Each separate thread will allocate references in non-overlapping areas (otherwise the locations would not beavailable). So from the perspective of a single thread,the possible changes to the references belonging to otherthreads can be described by allowing the state to be anystate which happens to model the true local state by �.Now we can almost state the main correctness theorem.10

To do so, we write m for the meaning of a state trans-former m as given by the semantics, and m� as the mean-ing of m assuming states are referenced via the codingfunction �. That is, the same semantics, except that bindand newVar are replaced with bind� and newVar�(bind� m k) � = k x �00where (x ; �0) = m ��0 b� �00(newVar� v) (�;w) = (p; (� [p 7! v];w))where p 62 dom(�) ^ p 2 ran(�)The only di�erences are that newVar is only allowed toallocate locations in the range of �, and that bind canalter its intermediate state so long as the status of thelocations in the range of � are preserved.Theorem. If m : 8s:ST s T (where s 62 FV (T)) thenfor any injection � : N ! N , and any � : N ,! Val suchthat � � � = ;, we have �1 (m (;;w)) = �1 (m� (�;w)),for all real worlds w .The proof uses parametric polymorphism in the style ofMitchell & Meyer [1985].The theorem says that we can choose any initial state, solong as nothing is de�ned in the range of �, and the �nalresult is the same as when the semantics explicitly usedpurely local state. Furthermore, the state can change ineach use of thenST (modelled by bind) so long as nothingin the range of � is touched and, again, the �nal result isunchanged.The corollary to this is that no state thread can read a ref-erence allocated by another thread (otherwise the resultof runST m would depend on the choice of initial state,or on how the other parts of the state changed withinan application of bind). Similarly, no state thread canwrite to a reference belonging to another thread becausethe result of writeVar depends on whether the locationis allocated or not, but again, the result of runST m isindependent of such matters.In conclusion, therefore, each thread is independent ofother threads, even when implemented in a single globalstore.6 ImplementationThe whole point of expressing stateful computations inthe framework that we have described is that operationswhich modify the state can update the state in place.The implementation is therefore crucial to the whole en-terprise, rather than being a peripheral issue.

We have in mind the following implementation frame-work:� The state of each encapsulated state thread is rep-resented by a collection of objects in heap-allocatedstorage.� A reference is represented by the address of an objectin heap-allocated store.� A read operation returns the current contents of theobject whose reference is given.� A write operation overwrites the contents of the spec-i�ed object or, in the case of mutable arrays, part ofthe contents.� The I/O thread is a little di�erent because, as dis-cussed in Section 5.3, its state also includes the actualstate of the real world. I/O operations are carried outdirectly on the real world (updating it in place, as itwere).As the previous section demonstrated, the correctness ofthis implementation relies totally on the type system.Such a reliance is quite familiar: for example, the im-plementation of addition makes no attempt to check thatits arguments are indeed integers, because the type sys-tem ensures it. In the same way, the implementation ofstate transformers makes no attempt to ensure, for exam-ple, that references are only used in the same state threadin which they were created; the type system ensures thatthis is so.6.1 Update in placeThe most critical correctness issue concerns the update-in-place behaviour of write operations. Why is update-in-place safe? It is safe because all the combinators (thenST,returnST, fixST) use the state only in a single-threadedmanner (Schmidt [1985]); that is, they each use the in-coming state exactly once, and none duplicates it (Fig-ure 2). Furthermore, all the primitive operations on thestate are strict in it. A write operation can modify thestate in place, because (a) it has the only copy of theincoming state, and (b) since it is strict in the incomingstate, there can be no as-yet-unevaluated read operationspending on that state.Can the programmer somehow duplicate the state? No:since the ST type is opaque, the only way the programmercan manipulate the state is via the combinators thenST,returnST and fixST. On the other hand, the program-mer certainly does have access to named references intothe state. However, it is perfectly OK for these to be du-plicated, stored in data structures and so on. Variables11

are immutable; it is only the state to which they referwhich is altered by a write operation.We �nd these arguments convincing, but they are cer-tainly not formal. A formal proof would necessarily in-volve some operational semantics, and a proof that noevaluation order could change the behaviour of the pro-gram. We have not yet undertaken such a proof.6.2 E�ciency considerationsIt would be possible to implement state transformers byproviding the combinators (thenST, returnST, etc) andprimitive operations (readVar, writeVar etc) as libararyfunctions. But this would impose a very heavy overheadon each operation and (worse still) on composition. Forexample, a use of thenST would entail the construction oftwo function-valued arguments, followed by a procedurecall to thenST. This compares very poorly with simplejuxtaposition of code, which is how sequential composi-tion is implemented in conventional languages!A better way would be to treat state-transformer opera-tions specially in the code generator. But that risks com-plicating an already complex part of the compiler. Weinstead implement state transformers in a way which isboth direct and e�cient: we simply give Haskell de�ni-tions for the combinators.type ST s a = State s -> (a, State s)returnST x s = (x,s)thenST m k s = k x s' where (x,s') = m sfixST k s = (r,s') where (r,s') = k r srunST m = r where (r,s) = m currentStateRather than provide ST as a built-in type, opaque tothe compiler, we give its representation with an explicitHaskell type de�nition. (The representation of ST is not,of course, exposed to the programmer, lest he or she writefunctions which duplicate or discard the state.) It isthen easy to give Haskell de�nitions for the combinators,which mirror precisely the semantics given for them inFigure 24 .The implementation of runST is intriguing. Since its ar-gument, m, works regardless of what state is passed to it,we simply pass a value representing the current state ofthe heap. As we will see shortly (Section 6.2.2), this valueis never actually looked at, so a constant value will do.The code generator must, of course, remain responsiblefor producing the appropriate code for each primitive op-eration, such as readVar, ccall, and so on. In our im-4 Indeed, we are ashamed to admit that the implementationcame�rst!

plementation we actually provide a Haskell \wrapper" foreach primitivewhich makes explicit the evaluation of theirarguments, using so-called \unboxed values". Both themotivation for and the implementation of our approachto unboxed values is detailed in Peyton Jones & Launch-bury [1991], and we do not rehearse it here.6.2.1 TransformationThe beauty of this approach is that all the combinatorscan then be inlined at their call sites, thus largely remov-ing the \plumbing" costs. For example, the expressionm1 `thenST` \v1 ->m2 `thenST` \v2 ->returnST ebecomes, after inlining thenST and returnST,\s -> let (v1,s1) = m1 s(v2,s2) = m2 s1in (e,s3)Furthermore, the resulting code is now exposed to thefull range of analyses and program transformations im-plemented by the compiler. For example, if the compilercan spot that the above code will be used in a contextwhich is strict in either component of the result tuple, itwill be transformed to\s -> case m1 s of(v1,s2) -> case m2 s1 of(v2,s2) -> (e,s2)In the let version, heap-allocated thunks are created form1 s and m2 s1; the case version avoids this cost. Thesesorts of optimisations could not be performed if the STtype and its combinators were opaque to the compiler.6.2.2 Passing the state aroundThe implementation of the ST type, given above, passesaround an explicit state. Yet, we said earlier that state-manipulating operations are implemented by performingside e�ects on the common, global heap. What, then,is the role of the explicit state values which are passedaround by the above code? It plays two important roles.Firstly, the compiler \shakes the code around" quite con-siderably: is it possible that it might somehow end upchanging the order in which the primitive operations areperformed? No, it is not. The input state of each primi-tive operation is produced by the preceding operation, sothe ordering between them is maintained by simple datadependencies of the explicit state, which are certainly pre-served by every correct program transformation.Secondly, the explicit state allows us to express to thecompiler the strictness of the primitive operations in the12

state. The State type is de�ned like this:data State s = MkState (State# s)That is, a state is represented by a single-constructor al-gebraic data type, whose only contents is a value of typeState# s, the (�nally!) primitive type of states. Thelifting implied ty the MkState constructor correspondsexactly to the lifting in the semantics. Using this de�-nition of State we can now de�ne newVar, for example,like this:newVar init (MkState s#)= case newVar# init s# of(v,t#) -> (v, MkState t#)This de�nition makes absolutely explicit the evaluationof the strictness of newVar in its state argument, �nallycalling the truly primitive newVar# to perform the allo-cation.We think of a primitive state | that is, a value of typeState# s, for some type s | as a \token" which standsfor the state of the heap and (in the case of the I/Othread) the real world. The implementation never ac-tually inspects a primitive state value, but it is faith-fully passed to, and returned from every primitive state-transformer operation. By the time the program reachesthe code generator, the role of these state values is over,and the code generator arranges to generate no code atall to move around values of type State#.6.2.3 ArraysThe implementation of arrays is straightforward. Theonly complication lies with freezeArray, which takes amutable array and returns a frozen, immutable copy. Of-ten, though, we want to construct an array incrementally,and then freeze it, performing no further mutation on themutable array. In this case it seems rather a waste tocopy the entire array, only to discard the mutable versionimmediately thereafter.The right solution is to do a good enough job in thecompiler to spot this special case. What we actually doat the moment is to provide a highly dangerous opera-tion dangerousFreezeArray, whose type is the same asfreezeArray, but which works without copying the mu-table array. Frankly this is a hack, but since we onlyexpect to use it in one or two critical pieces of the stan-dard library, we couldn't work up enough steam to do thejob properly just to handle these few occasions. We donot provide general access to dangerousFreezeArray.

6.2.4 More efficient I/OThe I/O state transformer is a little special, because ofthe following observation: the �nal state of the I/O threadwill certainly be demanded. Why? Because the wholepoint in running the program in the �rst place is to causesome side e�ect on the real world!We can exploit this property to gain a little extra e�-ciency. Since the �nal state of the I/O thread will bedemanded, so will every intermediate thread, so we cansafely use a strict, and hence more e�cient, version ofthenST:thenIO :: IO a -> (a->IO b) -> IO bthenIO m k s = case m s of(r,s') -> k r s'By using case instead of the let which appears inthenST, we avoid the construction of a heap-allocatedthunk for m s. It is also possible, but not certain, thatsome optimisationwill have the same e�ect even if thenSTwas used. The use of thenIO, which seems desirable onstylistic grounds anyway, makes it certain.7 Other useful combinatorsWe have found it useful to expand the range of combina-tors and primitives beyond the minimal set presented sofar. This section presents the ones we have found mostuseful.7.1 EqualityThe references we have correspond very closely to \point-ers to variables". One useful additional operation onreferneces is to determine whether two references arealiases for the same variable (so writes to the one willa�ect reads from the other). It turns out to be quitestraightforward to add an additional constant,eqMutVar :: MutVar s a -> MutVar s a -> BooleqMutArr :: Ix i =>MutArr s i a -> MutArr s i a -> BoolNotice that the result does not depend on the state|it issimply a boolean.7.2 Interleaved and parallel operationsThe state-transformer composition combinator de�ned sofar, thenST, is strictly sequential: the state is passed fromthe �rst state transformer on to the second. But some-times that is not what is wanted. Consider, for exam-ple, the operation of reading a �le. We may not wantto specify the precise relative ordering of the individualchararacter-by-character reads from the �le and other I/O13

operations. Rather, we may want the �le to be read lazily,as its contents is demanded.We can provide this ability with a new combinator,interleaveST:interleaveST :: ST s a -> ST s aUnlike every other state trans-former so far, interleaveST duplicates the state! The\plumbing diagram" for (interleaveST s) is like this:
State outState in

Result

sMore precisely, interleaveST splits the state into twoparts, which should be disjoint. In the lazy-�le-read ex-ample, the state of the �le is passed into one branch, andthe rest of the state of the world is passed into the other.Since these states are disjoint, an arbitrary interleavingof operations in each branch of the fork is legitimate.To make all this concrete, here is an implementation oflazy �le read:readFile :: String -> IO [Char]readFile filename= openFile filename `thenST` \f ->readCts freadCts :: FileDescriptor -> IO [Char]readCts f = interleaveST(readCh f `thenST` \c ->if c == eofCharthen returnST []else readCts f `thenST` \cs ->returnST (c:cs))We speculate that a parallel version of interleaveST,which starts up a concurrent task to perform the forkedI/O thread, will prove useful in building responsive graph-ical user interfaces. The idea is that forkIO would beused to create a new widget, or window, which would becapable of independent I/O through its part of the screen.The only unsatisfactory feature of all this is that we seeabsolutely no way to guarantee that the side e�ects per-formed in the two branches of the fork are indeed inde-pendent. That has to be left as a proof obligation forthe programmer; the only consolation is that at least thelocation of these proof obligations is explicit. We believethat there is no absolutely secure system which is alsoexpressive enough to describe the programs which realprogrammers want to write.

8 Related workSeveral other languages from the functional stable providesome kind of state.For example, Standard ML provides reference types,which may be updated (Paulson [1991]). The resultingsystem has serious shortcomings, though. The meaningof programs which use references depends on a completespeci�cation of the order of evaluation of the program.Since SML is strict this is an acceptable price to pay,but it would become unworkable in a non-strict languagewhere the exact order of evaluation is hard to �gure out.What is worse, however, is that referential transparencyis lost. Because an arbitrary function may rely on stateaccesses, its result need not depend purely on the val-ues of its arguments. This has additional implicationsfor polymorphism, leading to a weakened form in orderto maintain type safety (Tofte [1990]). We have none ofthese problems here.The data
ow language Id provides I-structures and M-structures as mutable datatypes (Nikhil [1988]). Withina stateful program referential transparency is lost. For I-structures, the result is independent of evaluation order,provided that all sub-expressions are eventually evaluated(in case they side-e�ect an I-structure). For M-structures,the result of a program can depend on evaluation order.Compared with I- structures and M-structures, our ap-proach permits lazy evaluation (where values are evalu-ated on demand, and may never be evaluated if they arenot required), and supports a much stronger notion ofencasulation. The big advantage of I-structures and M-structures is that they are better suited to parallel pro-gramming than is our method.The Clean language takes a di�erent approach (Barend-sen & Smetsers [1993]). The Clean type system supportsa form of linear types, called \unique types". A valuewhose type is unique can safely be updated in place, be-cause the type system ensures that the updating oper-ation has the sole reference to the value. The contrastwith our work is interesting. We separate references fromthe state to which they refer, and do not permit explicitmanipulation of the state. Clean identi�es the two, andin consequence requires state to be manipulated explic-itly. We allow references to be duplicated, stored in datastructures and so on, while Clean does not. Clean requiresa new type system to be explained to the programmer,while our system does not. On the other hand, the seper-ation between references and state is sometimes tiresome.For example, while both systems can express the idea ofa mutable list, Clean does so more neatly because thereis less explicit de-referencing. The tradeo� between im-plicit and explicit state in purely-functional languages is14

far from clear.There are signi�cant similarities with Gi�ord and Lu-cassen's e�ect system which uses types to record sidee�ects performed by a program (Gi�ord & Lucassen[1986]). However, the e�ects system is designed to de-limit the e�ect of side e�ects which may occur as a resultof evaluation. Thus the semantic setting is still one whichrelies on a predictable order of evaluation.Our work also has strong similarities with Odersky, Ra-bin and Hudak's �var (Odersky, Rabin & Hudak [1993]),which itself was in
uenced by the Imperative LambdaCalculus (ILC) of Swarup, Reddy & Ireland [1991]. ILCimposed a rigid strati�cation of applicative, state reading,and imperative operations. The type of runST makes thisstrati�cation unnecessary: state operations can be encap-sulated and appear purely functional. This was also trueof �var but there it was achieved only through run-timechecking which, as a direct consequence, precludes thestyle of lazy state given here.In two earlier papers, we describe an approach to these is-sues based onmonads, in the context of non-strict, purely-functional languages. The �rst, Peyton Jones & Wadler[1993], focuses mainly on input/output, while the sec-ond, Launchbury [1993], deals with stateful computationwithin a program. The approach taken by these papershas two major shortcomings:� State and input/output existed in separate frame-works. The same general approach can handle bothbut, for example, di�erent combinators were requiredto compose stateful computations from those re-quired for I/O-performing computation.� State could only safely be handled if it was anony-mous. Consequently, it was di�cult to write pro-grams which manipulate more than one piece of stateat once. Hence, programs became rather \brittle":an apparently innocuous change (adding an extra up-datable array) became di�cult or impossible.� Separate state threads required expensive run-timechecks to keep them apart. Without this, there wasthe possibility that a reference might be created inone stateful thread, and used asynchronously in an-other, which would destroy the Church-Rosser prop-erty.References

E Barendsen & JEW Smetsers [Dec 1993], \Conventionaland uniqueness typing in graph rewrite systems,"in Proc 13th Conference on the Foundations ofSoftware Technology and Theoretical ComputerScience, Springer Verlag LNCS.DK Gi�ord & JM Lucassen [Aug 1986], \Integrating func-tional and imperative programming," in ACMConference on Lisp and Functional Program-ming, MIT, ACM, 28{38.J Launchbury [June 1993], \Lazy imperative program-ming," in Proc ACM Sigplan Workshop on Statein Programming Languages, Copenhagen (avail-able as YALEU/DCS/RR-968, Yale University),pp46{56.NJ McCracken [June 1984], \The typechecking of pro-grams with implicit type structure," in Seman-tics of data types, Springer Verlag LNCS 173,301{315.JC Mitchell & AR Meyer [1985], \Second-order logical re-lations," in Logics of Programs, R Parikh, ed.,Springer Verlag LNCS 193.Rishiyur Nikhil [March 1988], \Id Reference Manual,"Lab for Computer Sci, MIT.M Odersky, D Rabin & P Hudak [Jan 1993], \Call byname, assignment, and the lambda calculus," in20th ACM Symposium on Principles of Program-ming Languages, Charleston, ACM, 43{56.LC Paulson [1991], ML for the working programmer,Cambridge University Press.SL Peyton Jones & J Launchbury [Sept 1991], \Unboxedvalues as �rst class citizens," in Functional Pro-gramming Languages and Computer Architec-ture, Boston, Hughes, ed., LNCS 523, SpringerVerlag, 636{666.SL Peyton Jones & PL Wadler [Jan 1993], \Imperativefunctional programming," in 20th ACM Sympo-sium on Principles of Programming Languages,Charleston, ACM, 71{84.CG Ponder, PC McGeer & A P-C Ng [June 1988],\Are applicative languages ine�cient?," SIG-PLAN Notices 23, 135{139.DA Schmidt [Apr 1985], \Detecting global variables in de-notational speci�cations," TOPLAS 7, 299{310.15

V Swarup, US Reddy & E Ireland [Sept 1991], \Assign-ments for applicative languages," in FunctionalProgramming Languages and Computer Archi-tecture, Boston, Hughes, ed., LNCS 523, SpringerVerlag, 192{214.M Tofte [Nov 1990], \Type inference for polymorphic ref-erences," Information and Computation89.AppendixFigure 6 gives a larger example of array references inuse. It de�nes an interpreter for a simple imperative lan-guage, whose input is the program together with a listof input values, and whose output is the list of valueswritten by the program. The interpreter naturally in-volves a value representing the state of the store. Theidea is, of course, that the store should be implementedas an in-place-updated array, and that is precisely whatis achieved5 .

5This programalso exhibits an awkward shortcomingof Haskell'stype signatures, which it shares with every other widely-used func-tional language we know. The type signatures for obey and evalare given in comments only, because Haskell understands them asimplicitly universally quanti�ed over s. But of course they aremonomorphic in s! Alas.

This example has long been a classic test case for systemswhich infer single-threadedness (Schmidt [1985]). Theonly unsatisfactory feature of the solution is that eval hasto be written as a fully-
edged state transformer, whileone might perhaps like to take advantage of its \read-only" nature.

16

data Com = Assign Var Exp | Read Var | Write Exp | While Exp [Com]type Var = Chardata Exp =interpret :: [Com] -> [Int] -> [Int]interpret cs input = runST (newArr ('A','Z') 0 `thenST` \store ->newVar input `thenST` \inp->command cs store inp)command :: [Com] -> MutArray s Int -> MutVar s [Int] -> ST s [Int]command cs store inp = obey cswhere-- obey :: [Com] -> ST s [Int]obey [] = returnST []obey (Assign v e:cs) = eval e `thenST` \val->writeArr store v a `thenST_`obey csobey (Read v:cs) = readVar inp `thenST` \(x:xs)writeArr store v x `thenST_`writeVar inp xs `thenST_`obey csobey (Write e:cs) = eval e `thenST` \out->obey cs `thenST` \outs->returnST (out:outs)obey (While e bs:cs) = eval e `thenST` \val->if val==0 thenobey cselseobey (bs ++ While e bs : cs) inp-- eval :: Exp -> ST s Inteval e = Figure 6: An interpreter with lazy stream output
17

