Bat Algorithm is Better Than Intermittent Search Strategy

Xin-She Yang
School of Science and Technology, Middlesex University,
London NW4 4BT, United Kingdom.

Suash Deb
Department of Computer Science and Engineering,
Cambridge Institute of Technology, Ranchi, India.

Simon Fong
Department of Computer and Information Science,
University of Macau, Macau SAR.

Abstract
The efficiency of any metaheuristic algorithm largely depends on the way of balancing lo-
cal intensive exploitation and global diverse exploration. Studies show that bat algorithm can
provide a good balance between these two key components with superior efficiency. In this
paper, we first review some commonly used metaheuristic algorithms, and then compare the
performance of bat algorithm with the so-called intermittent search strategy. From simulations,
we found that bat algorithm is better than the optimal intermittent search strategy. We also
analyse the comparison results and their implications for higher dimensional optimization prob-
lems. In addition, we also apply bat algorithm in solving business optimization and engineering
design problems.

Citation details: X. S. Yang, S. Deb, S. Fong, Bat Algorithm is Better Than Intermittent

1 Introduction

Global optimization, computational intelligence and soft computing often use metaheuristic algo-
rithms. These algorithms are usually nature-inspired, with multiple interacting agents. A subset of
metaheuristics are often referred to as swarm intelligence (SI) based algorithms, and these SI-based
algorithms have been developed by mimicking the so-called swarm intelligence characteristics of bio-
logical agents such as birds, fish, humans and others. For example, particle swarm optimization was
based on the swarming behavior of birds and fish [18], while the firefly algorithm was based on the
flashing pattern of tropical fireflies [33, 34] and cuckoo search algorithm was inspired by the brood
parasitism of some cuckoo species [38].

In the last two decades, more than a dozen new algorithms such as particle swarm optimization,
differential evolution, ant and bee algorithms, bat algorithm, firefly algorithm and cuckoo search have
appeared and they have shown great potential in solving tough engineering optimization problems
[33, 10, 6, 39, 23, 40, 35, 42, 11, 13, 7]. In this paper, we provide a first attempt to give some
theoretical basis for the optimal balance of exploitation and exploration for 2D multimodal objective
functions. Then, we use it for choosing algorithm-dependent parameters. Then, we use bat algorithm
as an example to show how such optimal combination can be achieved.
2 Brief Review of Metaheuristic Algorithms

Nature-inspired algorithms, especially those based on swarm intelligence, have become very popular in recent years. There are a few recent books which are solely dedicated to metaheuristic algorithms [33, 29, 35, 45]. Metaheuristic algorithms are very diverse, and here we will provide a brief review of some commonly used metaheuristics.

Ant algorithms, especially ant colony optimization [9], mimic the foraging behaviour of social ants, while bees-inspired algorithms use various characteristics such as waggle dance, polarization and nectar maximization are often used to simulate the allocation of the foraging bees along flower patches and thus different search regions in the search space, depending on many factors such as the nectar richness and the proximity to the bee hive [21, 32, 17, 22, 1]. For a more comprehensive review, please refer to Yang [35] and Parpinelli and Lopes [23].

Genetic algorithms are a class of algorithms using genetic operators such as crossover, mutation and selection of the fittest, pioneered by J. Holland and his collaborators in the 1960s and 1970s [16]. On the other hand, differential evolution (DE) was developed by R. Storn and K. Price by their nominal papers in 1996 and 1997 [27, 28, 25].

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in 1995 [18], based on the swarm behaviour such as fish and bird schooling in nature. There are many variants which extend the standard PSO algorithm [18, 33, 35, 13].

Firefly Algorithm (FA) was first developed by Xin-She Yang in 2007 [33, 34, 37, 15] which was based on the flashing patterns and behaviour of fireflies. Firefly algorithm has attracted much attention [26, 2, 14]. A discrete version of FA can efficiently solve NP-hard scheduling problems [26], while a detailed analysis has demonstrated the efficiency of FA over a wide range of test problems, including multiobjective load dispatch problems [2]. High nonlinear and non-convex global optimization problems can be solved using firefly algorithm efficiently [14].

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms, developed in 2009 by Xin-She Yang and Suash Deb [38]. CS is based on the brood parasitism of some cuckoo species. Furthermore, CS can be further enhanced by Lévy flights [24]. Extensive studies show that CS can perform much better than PSO and genetic algorithms. There have been a lot of attention and recent studies using cuckoo search with diverse range of applications [11, 30, 8]. Walton et al. improved the algorithm by formulating a modified cuckoo search algorithm [30], while Yang and Deb extended it to multiobjective optimization problems by Yang and Deb in 2011, though the paper was published later in 2013 [44].

3 Balancing Exploration and Exploitation

The main components of any metaheuristic algorithms are: intensification and diversification, or exploitation and exploration [6, 43]. Diversification can generate diverse, explorative solutions, and intensification provides a mechanism for exploiting local information so as to speed up convergence. In addition, selection of the best solutions often ensure the quality solution will remain in the population so as to avoid potential divergence.

Exploration in metaheuristics can be achieved often by the use of randomization [6, 33, 37], which enables an algorithm to have the ability to jump out of any local optimum so as to explore the search space globally. Randomization often use random walks, and it can use for both local and global search, depending on the step sizes and way to generate new solutions. Fine-tuning the right amount of randomness and balancing local search and global search may be essential for any algorithm to perform well.

Exploitation is the use of local knowledge of the search and solutions found so far so that new search moves can concentrate on the local regions or neighborhood where the optimality may be close; however, this local optimum may not be the global optimality. Exploitation tends to use strong local information such as gradients, the shape of the mode such as convexity, and the history of the search process. A classic technique is the so-called hill-climbing which uses the local gradients or derivatives intensively.
Empirical knowledge from observations and simulations of the convergence behaviour of common optimization algorithms suggests that exploitation tends to increase the speed of convergence, while exploration tends to decrease the convergence rate of the algorithm. On the other hand, too much exploration increases the probability of finding the global optimality, while strong exploitation tends to make the algorithm being trapped in a local optimum. Therefore, there is a fine balance between the right amount of exploration and the right degree of exploitation. Despite its importance, there is no practical guideline for this balance.

4 Intermittent Search Strategy

Even there is no guideline in practice, some preliminary work on the very limited cases exists in the literature and may provide some insight into the possible choice of parameters so as to balance these components. Intermittent search strategies concern an iterative strategy consisting of a slow phase and a fast phase [3, 4]. Here the slow phase is the detection phase by slowing down and intensive, static local search techniques, while the fast phase is the search without detection and can be considered as an exploration technique. For example, the static target detection with a small region of radius \(a \) in a much larger region \(b \) where \(a \ll b \) can be modelled as a slow diffusive process in terms of random walks with a diffusion coefficient \(D \).

Let \(\tau_a \) and \(\tau_b \) be the mean times spent in intensive detection stage and the time spent in the exploration stage, respectively, in the 2D case. The diffusive search process is governed by the mean first-passage time satisfying the following equations

\[
D \nabla^2 t_1 + \frac{1}{2\pi \tau_a} \int_0^{2\pi} [t_2(r) - t_1(r)]d\theta + 1 = 0, \\
u \cdot \nabla_r t_2(r) - \frac{1}{\tau_b} [t_2(r) - t_1(r)] + 1 = 0,
\]

where \(t_2 \) and \(t_1 \) are mean first-passage times during the search process, starting from slow and fast stages, respectively, and \(u \) is the mean search speed [4].

After some lengthy mathematical analysis, the optimal balance of these two stages can be estimated as

\[
\tau_{\text{optimal}} = \frac{\tau_a}{\tau_b} \approx \frac{D}{a^2 \left[2 - \frac{1}{\ln(b/a)}\right]^2}.
\]

Assuming that the search steps have a uniform velocity \(u \) at each step on average, the minimum times required for each phase can be estimated as

\[
\tau_a^{\text{min}} \approx \frac{D}{2u^2\left[2\ln(b/a) - 1\right]},
\]

and

\[
\tau_b^{\text{min}} \approx \frac{a}{u} \sqrt{\ln(b/a) - \frac{1}{2}}.
\]

When \(u \to \infty \), these relationships lead to the above optimal ratio of two stages.

It is worth pointing out that the above result is only valid for 2D cases, and there is no general results for higher dimensions, except in some special 3D cases [3]. Now let us use this limited results to help choose the possible values of algorithm-dependent parameters in bat algorithm [30], as an example.

For higher-dimensional problems, no result exists. One possible extension is to use extrapolation to get an estimate. Based on the results on 2D and 3D cases [4], we can estimate that for any \(d \)-dimensional cases \(d \geq 3 \)

\[
\frac{\tau_1}{\tau_2^2} \sim O\left(\frac{D}{a^2}\right), \quad \tau_m \sim O\left(\frac{b}{u} \left(\frac{b}{a}\right)^{d-1}\right),
\]

where \(\tau_m \) the mean search time or average number of iterations. This extension may not be good news for higher dimensional problems, as the mean number of function evaluations to find optimal
solutions can increase exponentially as the dimensions increase. However, in practice, we do not need to find the guaranteed global optimality, we may be satisfied with suboptimality, and sometimes we may be lucky to find such global optimality even with a limited/fixed number of iterations. This may indicate there is a huge gap between theoretical understanding and the observations as well as run-time behaviour in practice. More studies are highly needed to address these important issues.

5 Bat Algorithm

Bat algorithm was developed by Xin-She Yang in 2010 [36], which were based on the fascinating characteristics of echolocation of microbats [31]. Bat algorithm uses the following two idealized rules:

- Bats fly randomly with velocity v_i at position x_i to search for food/prey. They emit short pulses at a rate of r, with a varying frequency f_{min}, wavelength λ and loudness A_0.
- Frequency (or wavelength) and the rate of pulse emission $r \in [0, 1]$ can be adjusted, depending on the proximity of their target.

Loudness can vary in many ways, though a common scheme is to vary from a large (positive) A_0 to a minimum constant value A_{min}. For simplicity, no ray tracing is used. Furthermore, the frequency f in a range $[f_{min}, f_{max}]$ corresponds to a range of wavelengths $[\lambda_{min}, \lambda_{max}]$.

5.1 Bat Motion

The positions x_i and velocities v_i of bat i in a d-dimensional search space are updated as follows:

\[
\begin{align*}
 f_i &= f_{min} + (f_{max} - f_{min}) \beta, \\
 v_i^{t+1} &= v_i^t + (x_i^t - x_*) f_i, \\
 x_i^{t+1} &= x_i^t + v_i^t,
\end{align*}
\]

where the random number is drawn uniformly from $\beta \in [0, 1]$. Here x_* is the current global best location (solution) which is located after comparing all the solutions among all the n bats at each iteration t. For ease of implementation, $f_{min} = 0$ and $f_{max} = O(1)$ are used, depending on the domain size of the problem of interest. At the start of the simulation, each bat is randomly initialized with a frequency in $[f_{min}, f_{max}]$.

As part of local random walks, once a solution is selected among the current best solutions, a new solution for each bat is generated by

\[
x_{new} = x_{old} + \epsilon A^t,
\]

where ϵ is a random number vector drawn from $[-1, 1]$, while $A^t = <A_i^t>$ is the average loudness of all the bats at this time step.

Furthermore, for simplicity, we can also use $A_0 = 1$ and $A_{min} = 0$, assuming $A_{min} = 0$ means that a bat has just found the prey and temporarily stop emitting any sound. Now we have [36]

\[
\begin{align*}
 A_i^{t+1} &= \alpha A_i^t, \\
 r_i^t &= r_i^0[1 - \exp(-\gamma t)],
\end{align*}
\]

where α and γ are constants. Here, α has a similar role to that played by the cooling factor of a cooling schedule in the simulated annealing. For any $0 < \alpha < 1$ and $\gamma > 0$, we have

\[
A_i^t \to 0, \quad r_i^t \to r_i^0, \quad \text{as} \quad t \to \infty.
\]

Obviously, $\alpha = \gamma$ can be assumed for simplicity, and in fact $\alpha = \gamma = 0.9$ has been used in our simulations. Bat algorithm has been proved to be very efficient for solving various optimization problems [41].
Table 1: Variations of Q and its effect on the solution quality.

<table>
<thead>
<tr>
<th>Q</th>
<th>f_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>1.1e-12</td>
</tr>
<tr>
<td>0.2</td>
<td>2.3e-14</td>
</tr>
<tr>
<td>0.1</td>
<td>7.7e-12</td>
</tr>
<tr>
<td>0.05</td>
<td>8.1e-11</td>
</tr>
</tbody>
</table>

6 Numerical Experiments

6.1 Landscape-Dependent Optimality

If we use the 2D simple, isotropic random walks for local exploration, then we have

$$D \approx \frac{s^2}{2},$$

where s is the step length with a jump during a unit time interval or each iteration step. From equation (3), the optimal ratio of exploitation and exploration in a special case of $b \approx 10a$ becomes

$$\frac{\tau_a}{\tau_b} \approx 0.2.$$

(14)

In case of $b/a \rightarrow \infty$, we have $\tau_a/\tau_b^2 \approx 1/8$, which implies that more times should spend on the exploration stage. It is worth pointing out that the naive guess of 50-50 probability in each stage is not the best choice. More efforts should focus on the exploration so that the best solutions found by the algorithm can be globally optimal with possibly the least computing effort.

In the case studies to be described below, we have used the bat algorithm to find the optimal solutions to two design benchmarks. If we set $\tau_0 = 1$ as the reference timescale, then we found that the optimal ratio is between 0.18 to 0.24, which are roughly close to the above theoretical result. This may imply that bat algorithm has an intrinsic ability of balancing exploration and exploitation close to the true optimality.

6.2 Standing-Wave Function

Let us first use a multimodal test function to see how to find the fine balance between exploration and exploitation in an algorithm for a given task. A standing-wave test function can be a good example

$$f(x) = 1 + \left\{ \exp\left[-\sum_{i=1}^{d} \left(\frac{x_i}{\beta}\right)^{10}\right] \right\} - 2\exp\left[-\sum_{i=1}^{d} (x_i - \pi)^2\right] \cdot \prod_{i=1}^{d} \cos^2 x_i,$$

which is multimodal with many local peaks and valleys. It has a unique global minimum at $f_{\text{min}} = 0$ at $(\pi, \pi, ..., \pi)$ in the domain $-20 \leq x_i \leq 20$ where $i = 1, 2, ..., d$ and $\beta = 15$. In this case, we can estimate that $R = 20$ and $a \approx \pi/2$, this means that $R/a \approx 12.7$, and we have in the case of $d = 2$

$$p_e \approx \frac{1}{2^{1/2}} \approx 0.19.$$

(16)

This indicate that the algorithm should spend 80% of its computational effort on global explorative search, and 20% of its effort on local intensive search.

For the bat algorithm, we have used $n = 15$ and 1000 iterations. We have calculated the fraction of iterations/function evaluations for exploitation to exploration, that is $Q = \text{exploitation/exploration}$, thus Q can thus affect the solution quality. A set of 25 numerical experiments have been carried out for each value of Q and the results are summarized in Table 1.

This table clearly shows that $Q \approx 0.2$ provides the optimal balance of local exploitation and global exploration, which is consistent with the theoretical estimation.

Though there is no direct analytical results for higher dimensions, we can expect that more emphasis on global exploration is also true for higher dimensional optimization problems. Let us study this test function for various higher dimensions.
6.3 Comparison for Higher Dimensions

As the dimensions increase, we usually expect the number of iterations of finding the global optimality should increase. In terms of mean search time/iterations, Bénichou et al.’s intermittent search theory suggests that

\[\tau_m \bigg|_{(d=1)} = \frac{2b}{u} \sqrt{\frac{b}{3a}}, \]
\[\tau_m \bigg|_{(d=2)} = \frac{2b^2}{au} \sqrt{\ln \left(\frac{b}{a}\right)}, \]
\[\tau_m \bigg|_{(d=3)} = \frac{2.2b}{u} \left(\frac{b}{a}\right)^2. \]

For higher dimensions, we can only estimate the main trend based on the intermittent search strategy. That is,

\[\frac{\tau_1}{\tau_2} \sim O\left(\frac{D}{a^2}\right), \quad \tau_m \sim O\left(\frac{b}{u} \left(\frac{b}{a}\right)^{d-1}\right), \]

which means that number of iterations may increase exponentially with the dimension \(d \). It is worth pointing out that the ratio between the two stage are independent of the dimensions. In other words, once we find the optimal balance between exploration and exploitation, we can use the algorithm for any high dimensions. Now let us use bat algorithm to carry out search in higher dimensions for the above standing wave function and compare its performance with the implication of intermittent search strategy.

For the case of \(b = 20, a = \pi/2 \) and \(u = 1 \), Fig. 1 shows the comparison of the numbers of iterations suggested by intermittent search strategy and the actual numbers of iterations using bat algorithm to obtain the globally optimal solution with a tolerance or accuracy of 5 decimal places. It can be seen clearly that the number of iterations needed by the intermittent search strategy increases exponentially versus the number of dimensions, while the actual number of iterations used in the algorithm only increases slightly, seemingly weakly a low-order polynomial. This suggests that bat algorithm is very efficient and requires far fewer (and often many orders lower) number of iterations.
7 Business Optimization and Engineering Applications

7.1 Project Scheduling

In order to validate and test the proposed method, we use the resource-constrained project scheduling problems by Kolisch and Sprecher [19, 20]. The basic model consists of J activities/tasks, and some activities cannot start before all its predecessors h are completed. In addition, each activity $j = 1, 2, ..., J$ can be carried out, without interruption, in one of the M_j modes, and performing any activity j in any chosen mode m takes d_{jm} periods, which is supported by a set of renewable resource R and non-renewable resources N. The project’s makespan or upper bound is T, and the overall capacity of non-renewable resources is K^r_r where $r \in N$. For an activity j scheduled in mode m, it uses k^p_{jmr} units of renewable resources and k^v_{jmr} units of non-renewable resources in period $t = 1, 2, ..., T$.

Table 2: Kernel parameters used in SVM.

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Kernel parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>$C = 149.2, \sigma^2 = 67.9$</td>
</tr>
<tr>
<td>5000</td>
<td>$C = 127.9, \sigma^2 = 64.0$</td>
</tr>
</tbody>
</table>

Using the online benchmark library [20], we have solved this type of problem with $J = 30$ activities (the standard test set j30). The run time on a modern desktop computer is about 3.1 seconds for $N = 1000$ iterations to 17.2 seconds for $N = 5000$ iterations. We have run the simulations for 50 times so as to obtain meaningful statistics. The main results are analyzed in Table 3.

Table 3: Mean deviations from the optimal solution ($J=30$).

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$N = 1000$</th>
<th>$N = 5000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO</td>
<td>0.26</td>
<td>0.21</td>
</tr>
<tr>
<td>hybrid GA</td>
<td>0.27</td>
<td>0.06</td>
</tr>
<tr>
<td>Tabu search</td>
<td>0.46</td>
<td>0.16</td>
</tr>
<tr>
<td>Adapting GA</td>
<td>0.38</td>
<td>0.22</td>
</tr>
<tr>
<td>Current BA</td>
<td>0.29</td>
<td>0.049</td>
</tr>
</tbody>
</table>

7.2 Spring Design

In engineering optimization, a well-known design benchmark is the spring design problem with three design variables: the wire diameter w, the mean coil diameter d, and the length (or number of coils) L. For detailed description, please refer to earlier studies [11, 12]. This problem can be written compactly as

Minimise $f(x) = (L + 2)w^2d$,

subject to

$g_1(x) = 1 - \frac{d^3L}{\sqrt[3]{1755w}} \leq 0,$

$g_2(x) = 1 - \frac{140.45w}{d^2L} \leq 0,$

$g_3(x) = \frac{2(w+d)}{3} - 1 \leq 0,$

$g_4(x) = \frac{d(4d-w)}{w(12566d-w)} + \frac{1}{5108w^2} - 1 \leq 0,$

with the following limits

$0.05 \leq w \leq 2.0, \quad 0.25 \leq d \leq 1.3, \quad 2.0 \leq L \leq 15.0.$
Using bat algorithm, we have obtained
\[f^* = 0.012665 \quad \text{at} \quad (0.051690, 0.356750, 11.287126). \quad (24) \]

7.3 Welded Beam Design

The welded beam design is another well-known benchmark [33][11][12]. The problem has four design variables: the width \(w \) and length \(L \) of the welded area, the depth \(h \) and thickness \(d \) of the main beam. The objective is to minimise the overall fabrication cost, under the appropriate constraints of shear stress \(\tau \), bending stress \(\sigma \), buckling load \(P \) and maximum end deflection \(\delta \).

The problem can be written as

\[
\text{minimise} \quad f(x) = 1.10471w^2L + 0.04811hd(14.0 + L),
\]

subject to

\[
g_1(x) = w - h \leq 0,
\]

\[
g_2(x) = \delta(x) - 0.25 \leq 0,
\]

\[
g_3(x) = \tau(x) - 13,600 \leq 0,
\]

\[
g_4(x) = \sigma(x) - 30,000 \leq 0,
\]

\[
g_5(x) = 0.10471w^2 + 0.04811hd(14 + L) - 5.0 \leq 0,
\]

\[
g_6(x) = 0.125 - w \leq 0,
\]

\[
g_7(x) = 6000 - P(x) \leq 0,
\]

where

\[
\sigma(x) = \frac{504,000}{hd^2}, \quad Q = 6000(14 + \frac{L}{2}),
\]

\[
D = \frac{1}{2}\sqrt{L^2 + (w + d)^2}, \quad J = \sqrt{2}\ wL\left[\frac{L^2}{6} + \frac{(w+d)^2}{2}\right],
\]

\[
\delta = \frac{65.856}{30,000hd^2}, \quad \beta = \frac{QD}{J},
\]

\[
\alpha = \frac{6000}{\sqrt{2}wL}, \quad \tau(x) = \sqrt{\alpha^2 + \frac{\alpha\beta L}{D} + \beta^2},
\]

\[
P = 0.61423 \times 10^9 \frac{dh^2}{6} (1 - \frac{d\sqrt{30/48}}{2h}).
\]

The simple bounds for design variables are 0.1 \(\leq L, d \leq 10 \) and 0.1 \(\leq w, h \leq 2.0 \).

Using our bat algorithm, we have obtained

\[
x_* = (w, L, d, h)
\]

\[
= (0.20572963978, 3.47048866563, 9.03662391036, 0.20572963979), \quad (28)
\]

which gives the optimal solution

\[
f(x^*)_{\text{min}} = 1.724852308598. \quad (29)
\]

8 Conclusions

Nature-inspired metaheuristic algorithms have gained popularity, which is partly due to its ability of dealing with nonlinear global optimization problems. We have highlighted the importance of exploitation and exploration and their effect on the efficiency of an algorithm. Then, we use the intermittent search strategy theory as a preliminary basis for analyzing these key components and ways to find the possibly optimal settings for algorithm-dependent parameters.

In addition, we have used the bat algorithm to find this optimal balance, and confirmed that bat algorithm can indeed provide a good balance of exploitation and exploration. We have also shown...
that bat algorithm requires far fewer function evaluations. However, the huge differences between intermittent search theory and the behaviour of metaheuristics in practice also suggest there is still a huge gap between our understanding of algorithms and the actual behaviour of metaheuristics. It is highly desirable to carry out more research in this area.

References

