A base function for generating contour traversal paths in stereolithography apparatus applications

Shuo-Yan Chou a,*, Chang-Chien Chou a,b, Yu-Kumg Chen c

a Department of Industrial Management, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei City 106, Taiwan, ROC
b Department of Information Management, Lunghwa University of Science and Technology, No. 300, Sec. 1, Wanshou Rd., Guishan, Taoyuan County 333, Taiwan, ROC
c Department of Electronic Engineering, Huafan University, No. 1, Huafan Rd., Shihding Township, Taipei County 223, Taiwan, ROC

Abstract

The technique of layered manufacturing in rapid prototyping is to fabricate product prototype by scanning the cross-sectional contours of the product using a laser beam layer by layer. The outlines of geometrical objects on each layer are different, and each layer may contain several geometrical objects. In order to simplify the problem, each geometrical object on the same plane is approximating by its own minimum circumscribed circle. Therefore, the minimum traversal path of circles can be the based model of the minimum traversal path of scanning geometrical objects. Furthermore, the minimum traversal path of three circles is the degenerated case of the minimum traversal path of plural circles. And the problem of the minimum traversal path of three circles can be transferred to the problem of the minimum traversal path of one circle and two points in this paper. By using the concepts of reflection of light in physics and geometrical mathematics, the equation of the minimum traversal path of three circles is derived in this paper. This equation can be easily implemented in many areas of application, including robotic motion planning and path planning for submarine, ship, and airplane.

Keywords: Minimum traversal function; Stereolithography apparatus; Layered manufacturing; Path planning; Robotic motion planning; Analytic geometric function

1. Introduction

In order to provide fast and precise computation of the shortest path for the moving robot (Khatib, Craig, & Lozano-Perez, 1989; Nehmzow & Owen, 2000), circles are used to embrace obstacles in the robotic path planning. For example, there is an application on the mission planning software for the PHONIX autonomous underwater vehicle (AUV) (Brutzman, 1994; Leonhardt, 1999) of the US navy. It encloses the underwater obstacles by circles to avoid collisions that lead to the catastrophic loss of the vehicles. By using the tangents among circles, the PHONIX system derives the shortest path for the underwater vehicle rapidly as shown in Fig. 1. Quick deriving a precise shortest path is critical and crucial on the battlefield.

In the field of layered manufacturing (LM) of rapid prototyping, the well-known processes stereolithography apparatus (Jacobs, 1992) and laminated object manufacturing (LOM) (Chiu & Liao, 2003) fabricate the prototype of the product object with scanning the cross-sectional contours of the object layer by layer (Lan, Chou, Chen, & Gemmill, 1997). In order to minimize the total time for completing the fabrication, the minimization of the processing time for each scanning layer is thus essential. For each scanning layer, a laser beam scans along the contours in the layer to solidify the cross-section of the object. The path planning (Murty, 1995) for the scanning on each layer is therefore a traversal optimization problem with respect to the geometric entities in a two dimensional plane (Majhi, Janardan, Smid, & Gupta, 1999; Wah, Murty, Joneja, &
Fig. 2 illustrates the concepts of a LM example in rapid prototyping.

Since the shapes of objects on each scanning plane are different, it is very difficult to figure out the minimum traversal path among these objects. By using some smallest circumscribed circles to approximate these objects, the problem can be simplified as finding the minimum traversal path between circles (Tang & Pang, 2003). Therefore, finding the minimum traversal path between circles can be used in the path planning of LM. Finding the minimum traversal path of three circles is the fundamental case of finding the minimum traversal path of plural circles. The problem resolved in this paper is therefore can be defined as follows. Given three disjoint circles, find the path that traverses all three circles in a predefined sequence for which the sum of the circumferences of the three circles and the two connecting links is a minimum.

Fig. 3 shows three circles C_1, C_2, and C_3 with their centers O_1, O_2, O_3, and radii r_1, r_2, r_3, respectively. The starting point is at point P_1. Traverse the circumference of C_1 and then return back to the point P_1. Traverse the link P_1P_2 and then arrive the point P_2 on C_2. Traverse the circumference of C_2 and then return back to the point P_2. Then traverse across the link P_2P_3 to reach the point P_3 on C_3. Finally, traverse the circumference of C_3 and come back to the end point P_3 to finish up this traverse. To get the minimum length of this traversal path is the goal of this paper.

In this paper, the problem of the minimum traversal path of three circles can be further degenerated to the problem of the minimum traversal path of two points and one circle. With applying the light reflection (or refraction) phenomenon and geometrical mathematics, the minimum traversal function can be derived accordingly.

The fashion of using circles approximating objects is not only applying in the robotic motion planning (de Berg, van Kreveld, Overmars, & Schwarzkopf, 2004), the robotic arms’ rotation (O’Rourke, 1997), but also welcome in using disks to calculate the connectivity of objects (Guibas, Hershberger, Suri, & Zhang, 2001) of kinetic data structure.
in computational geometry. There are many studies concerning the connectivity of the static stationary disks (Preparata \& Shamos, 1985), such as the base stations of mobile phone communication. Also there are many complex studies in computing the connectivity of moving disks (Johnson, 1994; Toh, 1996), such as the Ad-Hoc mobile network. Due to the characteristics of radio wave, the communication of geodesy and the satellite constellation (Wood, 2001) are usually representing the radio coverage by disks, too. Besides, there are many related researches, such as circle packing (Graham, Lagarias, Mallows, Wilks, \& Yan, 2005) and the problem of circle visibility (Kaiser, 2002) that makes planning the shortest path which walks through circles and can be seen by one of the circles in anytime. Versatile studies have shown the convenience and practicability of the fashion of taking circles representing objects.

The rest of this paper is organized as follows. The problem transformation that converts three circles problem into a two points and one circle problem is given in the next section. The derivation of minimum traversal function is then presented in Section 3. The proposed algorithm of the problem rotation is presented in Section 4. Concluding remarks and potential applications are provided in Section 5.

2. Problem transformation

In this paper, we use E_{i}^{0} to represent the problem of finding the minimum traversal path for x distinct points and y disjoint circles in a two dimensional plane. The goal of the proposed paper is to find the minimum traversal function of three disjoint circles C_{1}, C_{2}, and C_{3}. This problem is thus to be represented as E_{i}^{0}, i.e., finding the minimum traversal path for 0 distinct points and 3 disjoint circles in a two dimensional plane. The path of E_{i}^{0} is an open route, i.e., the starting point of the traverse needs not to be coincided with the end point of the traverse.

Under such E_{i}^{0} condition, we denote the length of the minimum traversal path by L_{i}^{0}. The function $\text{dist}(UV)$ represents the distance between point U and point V. And the function $\text{cirf}(C)$ represents the length of the circumference of circle C. Thus, we can write

$$L_{i}^{0} = \min \{ \text{dist}(P_{1}P_{2}) + \text{dist}(P_{2}P_{3}) + \text{cirf}(C_{1}) + \text{cirf}(C_{2}) + \text{cirf}(C_{3}) \}$$

(1)

where P_{1}, P_{2}, and P_{3} locate on the circumference of C_{1}, C_{2}, and C_{3} respectively. Since the radii of the given three circles are constants, this property is to provide the following lemma.

Lemma 1. Given three disjoint circles C_{1}, C_{2}, and C_{3} in the two dimensional plane. The problem E_{i}^{3} can be reduced to the problem E_{i}^{2} for one circle C_{2} with two points O_{1} and O_{3} by adding a constant value.

Proof. Since the radii of the given three circles are constants, the traverses of the circumferences of these circles are also constants. Eq. (1) can be rewritten as

$$L_{i}^{0} = \min \{ \text{dist}(P_{1}P_{2}) + \text{dist}(P_{2}P_{3}) + \text{cirf}(C_{2}) + \text{cirf}(C_{1}) + \text{cirf}(C_{3}) \}$$

(2)

With adding and subtracting the two lengths of radii r_{1} and r_{3} into Eq. (2), we have

$$L_{i}^{0} = \min \{ \text{dist}(P_{1}P_{2}) + \text{dist}(P_{2}P_{3}) + \text{cirf}(C_{2}) + \text{cirf}(C_{1}) + \text{cirf}(C_{3}) - \text{dist}(O_{1}P_{1}) - \text{dist}(O_{3}P_{3}) \}$$

(3)

where $\text{dist}(O_{1}P_{1})$ and $\text{dist}(O_{3}P_{3})$ are the length of r_{1} and r_{3}, respectively. Since a line with minimum path from a point to a circle must pass through the center of the circle, the three points P_{2}, P_{1}, and O_{1} are collinear and the three points P_{2}, P_{3}, and O_{3} are also collinear, too. The Eq. (3) can be rewritten as

$$L_{i}^{0} = \min \{ \text{dist}(O_{1}P_{2}) + \text{dist}(O_{2}P_{3}) + \text{cirf}(C_{2}) + \text{cirf}(C_{1}) + \text{cirf}(C_{3}) - \text{dist}(O_{1}P_{1}) - \text{dist}(O_{3}P_{3}) \}$$

(4)

Observing that the value of $\text{cirf}(C_{1}) + \text{cirf}(C_{3}) - \text{dist}(O_{1}P_{1}) - \text{dist}(O_{3}P_{3})$ in equation is constant, we set a constant variable K to substitute it and then have

$$L_{i}^{0} = \min \{ \text{dist}(O_{1}P_{2}) + \text{dist}(O_{2}P_{3}) + \text{cirf}(C_{2}) \} + K$$

Since the term $\min \{ \text{dist}(O_{1}P_{2}) + \text{dist}(O_{2}P_{3}) + \text{cirf}(C_{2}) \}$ is the E_{i}^{2} problem for one circle C_{2} with two points O_{1} and O_{3}, the problem E_{i}^{3} can be reduced to the problem E_{i}^{2} by adding a constant value. This constant value is the sum of the two circumferential lengths of circles C_{1} and C_{3}, and is subtracted by the lengths of the two radii r_{1} and r_{3}.

Since the term $\text{cirf}(C_{2})$ in $\min \{ \text{dist}(O_{1}P_{2}) + \text{dist}(O_{2}P_{3}) + \text{cirf}(C_{2}) \}$ is constant, the minimum traversal length L_{i}^{0} of E_{i}^{3} can be simplified as

$$L_{i}^{0} = \min \{ \text{dist}(O_{1}P_{2}) + \text{dist}(O_{2}P_{3}) \} + \text{cirf}(C_{2})$$

fig. 3. Traversal path of three circles.
length equal to 2 and two points A and B with their coordinates (−3, 4) and (4, 5), respectively. Observing that the shape of the discrete curve is approximately sinusoidal curve as shown in Fig. 6. The E_1^2 example in Fig. 6 contains one circle C with its radius length equal to 2 and two points A and B with their coordinates $(-3, -1)$ and $(4, -1)$, respectively. Since the points A and B are fixed and the variable point P lies on the circumference of circle C, the periods of Figs. 5 and 6 are 2π and 4π. Although there is one minimum value in Fig. 5 when θ is equal to $\pi/2$, there are two minimum values appeared in Fig. 6 with θ equal to 1.4π and 1.9π. Therefore, the derived solution for E_1^2 problem is not unique.

3. Derivation of equations

There are many approaches to pursue the extreme values. The best-known approach is using the first-order derivative for function $\ell(\theta)$ with respect to θ to be equal to zero. With applying the non-linear programming or numerical analysis methods, we also can find the extreme value or approximate extreme values. However, the general
root function of the E^2_1 problem cannot be solved by using all of these methods. In this paper, we propose a simpler method which combines the law of light reflection in physics and geometrical mathematics to find the optimal value of P which results in the minimum traversal path of the E^2_1 problem. Let the refractive index of the medium with the incident ray be n_1 and that of the medium with the refractive ray be n_2. Fig. 7 illustrates the refraction of light between these two different mediums. The angles that the incident and refracted rays made with the line N normal to the interface between the media are β_1 and β_2, respectively. Then

$$n_1 \sin \beta_1 = n_2 \sin \beta_2.$$

This result, found by Willebrord Snell, is known as Snell’s law (Azadeh & Casperson, 1997; Dijksterhuis, 2004). If the mediums of the both sides are identical, i.e., $n_1 = n_2$, the incident angle β_1 is then equal to the refractive angle β_2.

Reflection is a special case of refraction. Fig. 8 shows an example of light reflection. The direction of dotted line β to the interface between the media are β_1 and that of the medium with the refractive ray β_2. Let β_1 denote the incident angle and β_2 denote the reflection angle. According to the Snell’s law, we also have the equation $n_1 \sin \beta_1 = n_2 \sin \beta_2$ for the reflection. Since the light emission and reflection are at the same side, the mediums of both light directions are the same, i.e., $n_1 = n_2$. We get $\beta_1 = \beta_2$.

Based on the theory of Fermat’s Principle (Giannoni, Masiello, & Piccione, 2002), light traverses along the least time path. The light quickest traversal path from point A, via plane M, and to point B is the set of line segments \overline{AP} and \overline{PB} with $\beta_1 = \beta_2$. Since the mediums of both sides are the same, the speed of light is constant and the light quickest traversal path is equal to the minimum traversal path. We then have

Lemma 2. With the incident angle β_1 equal to the reflection angle β_2, the length of traversal path along the line segments \overline{AP} and \overline{PB} is the shortest path.

Proof. In Fig. 9, the point A^* is the mirrored point of A against M. Point D is the intersection of lines $\overline{AA^*}$ and M. Line $\overline{AA^*}$ is then perpendicular to M. Then the length of \overline{AD} is equal to the length of $\overline{A^*D}$. Since the length of line segment \overline{AP} is equal to that of the line segment $\overline{A^*P}$, the angle β_4 is equal to the angle β_5. When the incident angle β_1 is equal to the reflective angle β_2, the angle β_3 is equal to the angle β_5. Therefore, the angle β_4 is equal to the angle β_1, i.e., the three points A^*, P, and B are collinear.

Assume there exists another point p excluding P on M, it results in the shorter path than P. Since the length of the line segment \overline{Ap} is equal to that of the line segment $\overline{A^*p}$. The length of the path from A via p to B is equal to the length of the path from A^* via p to B. According to the theory of trigonometric inequality, the length of the path from A^* via p to B is greater than the length of the path from A via P to B. It contradicts the assumption. Therefore, the length of the path from A via P to B is the shortest when the incident angle β_1 equal to the reflection angle β_2. \qed

Fig. 7. The refraction of light between different mediums.

Fig. 8. Example of the light reflection.

Fig. 9. Geometrical analysis of the light reflection.
By applying the principle of light reflection to the E_1^2 problem, M is the tangent line to circle C at point P. Fig. 10, shows the relationship of the light reflection and the E_1^2 problem. In order to simplify derivation of solutions, let the center of circle C be coincided with the origin. The traversal path can be found by any given point P on circle C. Hence, the minimum traversal path can be derived from these traversal paths. Let (x_A, y_A) be the coordinates of point A^*.

Since P is a tangent point for line M to circle C, the line segment OP is perpendicular to M. Since the point A^* is the mirrored point of A against M, the line AA^* is perpendicular to M, too. The slope of line AA^* is equal to the slope of line segment OP, that is,

$$\frac{y_A - y_A^*}{x_A - x_A^*} = \frac{y_P}{x_P}.$$

Both lengths of the line segments AP and A^*P are equal, we have

$$\sqrt{(x_P - x_A)^2 + (y_P - y_A)^2} = \sqrt{(x_P - x_A^*)^2 + (y_P - y_A^*)^2}.$$

(7)

By solving the simultaneous Eqs. (7) and (8), the coordinate of A^* is gained, that is,

$$x_A^* = \frac{x_A y_P^2 + 2xy_A y_P - x_A y_P^2}{x_P^2 + y_P^2},$$

$$y_A^* = \frac{y_P^2 + 2xy_A y_P - y_A y_P^2}{x_P^2 + y_P^2}.$$

(9)

Since points A^*, P, and B are collinear, the slopes of line segments AP and PB are collinear, that is,

$$\frac{y_P - y_A}{x_P - x_A} = \frac{y_B - y_A}{x_B - x_A}.$$

(10)

If we introduce the polar coordinates

$$x_P = r \cos \theta,$$

$$y_P = r \sin \theta,$$

and rearrange terms, then equation becomes

$$r^3 \sin \theta - y_A r^2 \sin^2 \theta - 2x_A r^2 \cos \theta \sin \theta + y_A r^2 \cos^2 \theta = r \sin \theta - y_B,$$

$$r \cos \theta - x_B.$$

(11)

Substituting the expression

$$\sin^2 \theta = 1 - \cos^2 \theta$$

into equation, we have

$$r^3 \sin \theta - 2x_A r^2 \cos \theta \sin \theta + 2y_A r^2 \cos^2 \theta - y_A r^2 \cos^2 \theta = r \sin \theta - y_B,$$

$$r \cos \theta - x_B.$$

(12)

The variable $\sin \theta$ can be replaced by variable $\cos \theta$ with $\sin \theta = \pm \sqrt{1 - \cos^2 \theta}$.

Since we can derive the same result with using $\sin \theta = \sqrt{1 - \cos^2 \theta}$ or $\sin \theta = -\sqrt{1 - \cos^2 \theta}$ to substitute into Eq. (11), we use the expression

$$\sin \theta = \sqrt{1 - \cos^2 \theta}$$

here for the derivation. We obtain

$$r \sqrt{1 - \cos^2 \theta} - 2x_A r^2 \cos \theta \sqrt{1 - \cos^2 \theta} + 2y_A r^2 \cos^2 \theta = r \cos \theta - x_B.$$

By separating variables of $\cos \theta$ and $\sqrt{1 - \cos^2 \theta}$ and squaring, we obtain

$$4(x_A x_B^2 + x_A^2 y_B^2 + x_A^2 y_A^2 + y_A^2 y_B^2) \cos^4 \theta - 4r(x_A^2 x_B + x_A x_B^2 + x_A y_B^2 + x_A y_B^2) \cos^3 \theta + (r^2 x_A^2 + 2r x_A x_B + x_A^2 y_B^2 + x_A^2 y_A^2 + r^2 y_A^2 - 4x_A y_A y_B) + 2r^2 y_A y_B + 7y_A^2 - 4r^2 y_A y_B) \cos^2 \theta + 2r^2 y_A y_B + 7y_A^2 - 4r^2 y_A y_B) \cos \theta + 2(2x_A x_B + x_A^2 y_B - x_A y_B - x_A y_A) \times \cos \theta + (x_A^2 y_B^2 + 2x_A x_B y_A y_B + x_A y_A^2 - r^2 y_A - 2r^2 x_A x_B - 1) = 0.$$

To evaluate the polynomial of degree 4 for variable $\cos \theta$, we generalize the four solutions as follows:
\[
\cos \theta = \begin{cases}
\frac{1}{2} k - n - \frac{1}{2} \sqrt{q - p} \\
\frac{1}{2} k - n + \frac{1}{2} \sqrt{q - p} \\
\frac{1}{2} k + n - \frac{1}{2} \sqrt{q + p} \\
\frac{1}{2} k + n + \frac{1}{2} \sqrt{q + p}.
\end{cases}
\]

where \(k, n, p, q\) are as follows:

\[\begin{align*}
k &= r(ax_g + bx_d) \\
n &= \frac{1}{2} \sqrt{\frac{l}{j} + \frac{1}{2} \left(\frac{g}{h} + h \right)} \\
p &= \frac{m}{8a^2b^2n} \\
q &= l - \frac{1}{2} \left(\frac{g}{h} + h \right),
\end{align*}\]

where \(a, b, c, d, e, f, g, h, j, l, m\) are

\[\begin{align*}
a &= x_g^2 + y_g^2 \\
b &= x_g^2 + y_g^2 \\
c &= 2r^2 x_s x_g + r^2 y_g^2 + x_g^2 (r^2 - 4y_g^2) + 2r^2 y_s y_g + r^2 y_g^2 \\
d &= 2x_g x_s + x_s y_g (y_s - y_g) + x_s (2x_g - y_g (y_s - y_g)) \\
e &= x_g^2 (r^2 + y_g^2) - 2x_g y_s (r^2 - y_s y_g) + x_s^2 (-r^2 + y_g^2) \\
f &= 36r^2 (6e(ax_g + bx_d)^2 + cd(ax_g + bx_d) + 6ab^2) \\
g &= c^2 + 48abe + 24r^2 d(ax_g + bx_d) \\
h &= \frac{1}{2} \sqrt{2c^3 - 288abce + 2f + \sqrt{4g^2 + 4(c^3 - 144abce + f)^2}} \\
j &= \frac{1}{2} \sqrt{2c^3 - 288abce + 2f + \sqrt{4g^2 + 4(c^3 - 144abce + f)^2}} \\
l &= \frac{1}{2} \sqrt{2c^3 - 288abce + 2f + \sqrt{4g^2 + 4(c^3 - 144abce + f)^2}} \\
m &= r^2 (ax_g + bx_d)^3 - abc(ax_g + bx_d) - 4a^2b^2d).
\]

From Eq. (12), the solutions of angle \(\theta\) can be derived as follows

\[
\theta = \begin{cases}
-\cos^{-1}\left(\frac{1}{2} k - n - \frac{1}{2} \sqrt{q - p} \right) \\
-\cos^{-1}\left(\frac{1}{2} k - n + \frac{1}{2} \sqrt{q - p} \right) \\
-\cos^{-1}\left(\frac{1}{2} k + n - \frac{1}{2} \sqrt{q + p} \right) \\
-\cos^{-1}\left(\frac{1}{2} k + n + \frac{1}{2} \sqrt{q + p} \right).
\end{cases}
\]

(13)

Let \(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \) and \(\theta_8\) be the eight solutions of angle \(\theta\). With combination of Eqs. (13) and (15), we have

\[
\theta = \begin{cases}
\theta_1 &= -\cos^{-1}\left(\frac{1}{2} k - n - \frac{1}{2} \sqrt{q - p} \right) \\
\theta_2 &= \cos^{-1}\left(\frac{1}{2} k - n - \frac{1}{2} \sqrt{q - p} \right) \\
\theta_3 &= -\cos^{-1}\left(\frac{1}{2} k - n + \frac{1}{2} \sqrt{q - p} \right) \\
\theta_4 &= \cos^{-1}\left(\frac{1}{2} k - n + \frac{1}{2} \sqrt{q - p} \right) \\
\theta_5 &= \cos^{-1}\left(\frac{1}{2} k + n - \frac{1}{2} \sqrt{q + p} \right) \\
\theta_6 &= -\cos^{-1}\left(\frac{1}{2} k + n - \frac{1}{2} \sqrt{q + p} \right) \\
\theta_7 &= -\cos^{-1}\left(\frac{1}{2} k + n + \frac{1}{2} \sqrt{q + p} \right) \\
\theta_8 &= \cos^{-1}\left(\frac{1}{2} k + n + \frac{1}{2} \sqrt{q + p} \right).
\end{cases}
\]

(15)

(16)

From Eq. (16), the resolved eight angles can derive the corresponding locations of eight points \(P_1, P_2, P_3, P_4, P_5, P_6, P_7\), and \(P_8\) on the circle \(C\) with their coordinates \((x_{P_1}, y_{P_1}), (x_{P_2}, y_{P_2}), (x_{P_3}, y_{P_3}), (x_{P_4}, y_{P_4}), (x_{P_5}, y_{P_5}), (x_{P_6}, y_{P_6}), (x_{P_7}, y_{P_7})\), and \((x_{P_8}, y_{P_8})\), respectively. Substituting the resolved eight angles into the polar coordinates of \(P\) in Eq. (10), we obtain their eight coordinates, that is,

\[
P_1: \quad \begin{align*}
x_{P_1} &= r \left(\frac{1}{2} k - n - \frac{1}{2} \sqrt{q - p} \right) \\
y_{P_1} &= -r \sqrt{1 - \left(\frac{1}{2} k - n - \frac{1}{2} \sqrt{q - p} \right)^2} \\
x_{P_2} &= r \left(\frac{1}{2} k - n - \frac{1}{2} \sqrt{q - p} \right) \\
y_{P_2} &= r \sqrt{1 - \left(\frac{1}{2} k - n - \frac{1}{2} \sqrt{q - p} \right)^2} \\
x_{P_3} &= r \left(\frac{1}{2} k - n + \frac{1}{2} \sqrt{q - p} \right) \\
y_{P_3} &= r \sqrt{1 - \left(\frac{1}{2} k - n + \frac{1}{2} \sqrt{q - p} \right)^2} \\
x_{P_4} &= r \left(\frac{1}{2} k - n + \frac{1}{2} \sqrt{q - p} \right) \\
y_{P_4} &= r \sqrt{1 - \left(\frac{1}{2} k - n + \frac{1}{2} \sqrt{q - p} \right)^2} \\
x_{P_5} &= r \left(\frac{1}{2} k + n - \frac{1}{2} \sqrt{q + p} \right) \\
y_{P_5} &= -r \sqrt{1 - \left(\frac{1}{2} k + n - \frac{1}{2} \sqrt{q + p} \right)^2} \\
x_{P_6} &= r \left(\frac{1}{2} k + n - \frac{1}{2} \sqrt{q + p} \right) \\
y_{P_6} &= r \sqrt{1 - \left(\frac{1}{2} k + n - \frac{1}{2} \sqrt{q + p} \right)^2} \\
x_{P_7} &= r \left(\frac{1}{2} k + n + \frac{1}{2} \sqrt{q + p} \right) \\
y_{P_7} &= -r \sqrt{1 - \left(\frac{1}{2} k + n + \frac{1}{2} \sqrt{q + p} \right)^2} \\
x_{P_8} &= r \left(\frac{1}{2} k + n + \frac{1}{2} \sqrt{q + p} \right) \\
y_{P_8} &= r \sqrt{1 - \left(\frac{1}{2} k + n + \frac{1}{2} \sqrt{q + p} \right)^2}.
\end{align*}
\]

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

Eqs. (17) and (18) show that there exists reflection between points \(P_1\) and \(P_2\) about the \(x\) axis, that is, \(x\) values are kept and \(y\) values are flipped. The pairs of points \(P_3\) and \(P_4\), \(P_5\) and \(P_6\), \(P_7\) and \(P_8\) also have the reflection relationships.
Substituting the eight solutions of angle θ into Eq. (6) yields the eight lengths. With finding the shortest length of these eight lengths, we can get the solution of this problem. From Eq. (4), the minimum traversal length L can be rewritten as

$$L = \min\{\ell(\theta_1), \ell(\theta_2), \ell(\theta_3), \ell(\theta_4), \ell(\theta_5), \ell(\theta_6), \ell(\theta_7), \ell(\theta_8)\}. \tag{25}$$

Fig. 11 shows the eight solutions for an E_1^2 problem with $x_A = -2.5$, $y_A = 2$, $x_B = 1.5$, $y_B = 2.5$, $r = 1$. The optimal point which results in the shortest length is the solution point P_4 with the coordinate $(-0.16,0.99)$. The minimum traversal length L, showed by the thicker line segment, is 4.8.

4. Algorithm of the problem rotation

In order to simplify the E_1^2 problem, the problem can be restricted in the first quadrant or the first and the second quadrants with a two-dimensional rotation of the E_1^2 problem. There are two points A and B in the E_1^2 problem, and each point can lie in any quadrant of the two-dimensional plane. The number of different combinations of quadrants of points A and B lay, with repetitions of quadrant, is $4^2 = 16$. Since the points A and B are exchangeable, without repetitions of quadrant, the number of different combinations can be reduced to 10. Moreover, there are two combinations, namely, I and II quadrants, I and II quadrants, which need not make rotation. Then, there are 8 different combinations left needed to be rotated. Consider an E_1^2 problem rotated to the first quadrant or the first and the second quadrants by an angle. Since a convention about the direction of rotation must be adopted, assume that counterclockwise (CCW) rotations are positive and clockwise (CW) are negative. Let θ_A and θ_B be the angles, CCW, from positive x axis to the vectors \overrightarrow{OA} and \overrightarrow{OB}, respectively. Let x be the angle from the vector \overrightarrow{OB} to the vector \overrightarrow{OA}. Table 1 lists the eight different combinations that need to be rotated.

Less formally, we can summarize the descriptions of Table 1 as the E_1^2 rotation algorithm.

Algorithm. Rotation (E_1^2)

Input. An E_1^2 consists of two distinct points A and B and one circle C.

Output. A new E_1^2 with two points A and B lied in I and I or I and II quadrants.

1. If B lies in II quadrant and A lies in II or III quadrant then Rotate E_1^2 by an angle $-\pi/2$.
2. If B lies in IV quadrant and A lies in I or IV quadrant then Rotate E_1^2 by an angle $\pi/2$.
3. If both of A and B lie in III quadrant then Rotate E_1^2 by an angle $-$.pi.
4. If B lies in III quadrant and A lies in IV quadrant then Rotate E_1^2 by an angle pi.
5. If B lies in I quadrant and A lies in III quadrant then if $x < \pi$
6. then Rotate E_1^2 by an angle $-\theta_B$.
7. else Rotate E_1^2 by an angle $2\pi - \theta_A$ and exchange A and B.
8. If B lies in II quadrant and A lies in IV quadrant then if $x < \pi$
9. then Rotate E_1^2 by an angle $-\theta_B$.
10. else Rotate E_1^2 by an angle $2\pi - \theta_A$ and exchange A and B.
11. Stop.

Fig. 12 shows the two possible E_1^2 problems with $r = 1$ after using the proposed E_1^2 rotation algorithm, and their eight solutions. Their minimum traversal paths are represented by the thicker paths. The first possible case, as shown in Fig. 12a, is that two points A (0.5, 2) and B (2.5, 2.5) lie in the first quadrant. Fig. 12b shows the other possible case whose two points A (-1.5, 2) and B (2.2, 2.5) lie in the second and first quadrants, respectively.
5. Conclusions

In this paper, the minimum traversal path of three circles is defined as an E_0^3 problem, and is transformed into the E_2^1 problem. With applying the law of light reflection and geometrical mathematics, the eight roots of solution function of the minimum traversal path of three circles is derived. Using the proposed algorithm of the problem rotation, the problem can be transformed to the problem in first quadrant or in the first and the second quadrants. This solution can be quick effectively implemented in solving a variety of engineering applications, such as layered manufacturing, robotic motion planning, and path planning. There are several possible extensions of this work. For instance, the problem of finding the minimum traversal path of more than three circles is still essentially open. By taking advantage of this minimum traversal function of three circles, we are now exploring the traversal path problem of n circles. Moreover, finding the minimum traversal path of geometrical object with polygonal shapes is also interesting to us.

References

International Phoenix Conference on Computers and Communications (pp. 480–486).
