

Title	Nondestructive prediction method for yolk : albumen ratio in chicken eggs by computer image analysis
Author(s)	Kuchida, Keigo, Fukaya, Miho, Miyoshi, Syunzou, Suzuki, Mitsuyoshi, Tsuruta, Shogo, 口田, 圭吾, 三好, 俊三, 鈴木, 三義
Citation	POULTRY SCIENCE, 78(6): 909-913
Issue Date	1999-06
URL	http://ir.obihiro.ac.jp/dspace/handle/10322/1025
Rights	

- 1 NON-DESTRUCTIVE PREDICTION FOR YOLK-ALBUMEN RATIO
- 2
- 3 Non-Destructive Prediction Method for Yolk-Albumen Ratio
- 4 in Chicken Eggs by Computer Image Analysis
- 5
- 6 KEIGO KUCHIDA*, MIHO FUKAYA*, SHUNZO MIYOSHI*,
- 7 MITSUYOSHI SUZUKI* and SHOGO TSURUTA†
- 8
- 9 Scientific Section
- 10 Processing and Products
- 11
- 12 Corresponding author
- 13 KEIGO KUCHIDA
- 14 (Until January 13, 1999)
- 15 Animal Breeding, Animal Science, University of
- 16 Nebraska-Lincoln, Lincoln, NE 68583-0908
- 17 Tel:+1-402-472-4516 Fax:+1-402-472-6362
- 18 E-mail: kk40833@navix.net
- 19 (After January 14, 1999)
- 20 Obihiro University of Agriculture and Veterinary Medicine
- 21 Inada-cho Obihiro-shi, 080-8555, Japan
- 22 Tel: +81-155-49-5412 Fax: +81-155-49-5414
- 23 E-mail: kuchida@obihiro.ac.jp

- 2 *Department of Animal Production and Agricultural
- 3 Economics, Obihiro University of Agriculture and
- 4 Veterinary Medicine, Obihiro-shi 080-8555, Japan
- 5 †Department of Animal Science, University of
- 6 Nebraska-Lincoln, Lincoln, NE 68583-0908

7

- 8 †Present address; Department of Animal and Dairy Science,
- 9 University of Georgia, Athens, GA 30602

- 1 ABSTRACT The purpose of this study was to develop a
- 2 non-destructive prediction method for the yolk-albumen
- 3 ratio by computer image analysis for candling inspection.
- 4 Twenty-two to forty-nine eggs per line were randomly
- 5 sampled from 4 chicken lines. After weighing the eggs, the
- 6 eggs were illuminated by an overhead projector beam through
- 7 a small hole in dark room. Video images were taken of the
- 8 eggs at 4 directions, rotated each time by 90 degrees. The
- 9 eggs were broken for measuring egg traits including the
- 10 yolk-albumen ratio. The average value obtained from 4
- 11 directions was used for statistical analysis. The ratio of
- 12 the number of pixels of light and dark parts (light-dark
- 13 ratio), and the coefficients of variation (CV) of R, G, and
- 14 B components for the whole egg and for light and dark parts
- 15 of the egg were calculated and defined as image analysis
- 16 traits. Correlation coefficients between the yolk-albumen
- 17 ratio and CV of R and G components of the whole egg were
- 18 significant (0.42-0.79) in all the lines. The determination
- 19 coefficient of multiple regression of the yolk-albumen
- 20 ratio on the CV of R and G components of the whole egg and
- 21 the light-dark ratio was 0.83. Observed and predicted
- 22 yolk-albumen ratios were classified into 5 levels. The
- 23 ratio of zero difference between observed and predicted

- 1 values was 76.1%, and the percentage of 0 to ± 1 difference
- 2 between observed and predicted values was 100.0%. These
- 3 results indicated that the image analysis method could
- 4 accurately predict the yolk-albumen ratio without breaking
- 5 the egg.

- 7 (Key words: Yolk-albumen ratio, Computer image analysis,
- 8 Prediction method)

1 INTRODUCTION

2	Accurate prediction of the characteristics of egg
3	composition and egg quality for the food processor makes
4	use of the egg effectively. There is a business category
5	in which only yolk or albumen is used as an ingredient in
6	food processing such as mayonnaise factories. Production
7	cost might be decreased by predicting egg composition more
8	efficiently. Miyoshi and Mitsumoto (1994) pointed out the
9	importance of displaying egg quality for various uses of
10	the egg for food and as an ingredient in food processing.
11	If the yolk-albumen ratio, which represents egg quality,
12	could be predicted by a non-destructive method, then eggs
13	could be graded according to egg quality during the candling
14	process. This method would give additional value to eggs
15	used as ingredients in food processing. Voisey and Hamilton
16	(1976) used ultrasonic equipment to measure the eggshell
17	thickness and reported that the correlation coefficient
18	between observed and predicted values was 0.74. Pugh et al.
19	(1993) determined the embryological characteristics of the
20	vitellus and embryo by ultrasonic measurement, and they
21	reported that a small hole to pass a sound wave through the
22	eggshell was needed for ultrasonic measurement of the
23	vitellus. This report suggests that it is difficult to

- 1 predict egg components by ultrasonic measurement due to
- 2 absorption of the sound waves by the eggshell.
- 3 Sauter et al. (1953) found a high correlation between
- 4 the candling value of the egg, based on the U.S. grading
- 5 standard, and the egg color, yolk index and albumen score.
- 6 However, the liquidization of the albumen may have been a
- 7 factor contributing to the high correlation, because most
- 8 of the eggs used in their experiment were stored for a long
- 9 period of time (some more than 6 months). In a study which
- 10 used only fresh eggs, an obvious relationship was not seen
- 11 among these parameters (Stewart et al., 1932).
- 12 Computer image analysis is a suitable method for
- 13 measuring an object with a complex shape and for calculating
- 14 the strength of color. Newman (1984) and Kuchida et al.
- 15 (1991) reported that the chemical fat percentage in minced
- 16 meat could be predicted by computer image analysis.
- When a beam of light is projected onto an egg from the
- 18 sharp or dull end, the egg is separated into light and dark
- 19 parts. This suggests the possibility of predicting egg
- 20 quality by using the area ratio or the strength of color.
- 21 The purpose of this study was to develop a non-destructive
- 22 prediction method for the yolk-albumen ratio using image
- 23 analysis.

1 MATERIALS AND METHODS

- 2 The eggs used in this study were from four lines of White
- 3 Leghorn. The first two lines were selected for their high
- 4 and low yolk-albumen ratios (coded H-line and L-line,
- 5 respectively) for the purpose of changing egg composition
- 6 raised at the Animal Breeding laboratory, Obihiro
- 7 University of Agriculture and Veterinary Medicine in Japan
- 8 (Miyoshi and Mitsumoto, 1994; Miyoshi et al., 1996). The
- 9 remaining two lines were two commercial laying hen groups
- 10 (coded A-line and B-line), raised in Tokachi district,
- 11 Hokkaido in Japan. The age of the layers were 6-7 mo for
- 12 H- and L-line and 8-9 mo for A- and B-line.
- 13 Eggs were randomly sampled from hens of the 4 lines,
- 14 and egg composition was measured within 2 days after laying.
- 15 Forty-nine eggs each were collected from H- and L-line, and
- 16 22 eggs each from A- and B-line hens. The total number of
- 17 egg used in this study was 142. The eggs were kept in a
- 18 refrigerator at 4 degrees Celsius until measurement.
- 19 Non-destructive measurement was performed as follows.
- 20 A circular pipe made from vinyl chloride was placed on the
- 21 lens part of the overhead projector (OHP) and a rubber
- 22 stopper with a small hole (13mm in diameter) in it was set
- 23 on the circular pipe. The light source of the OHP is a 300-W

- 1 halogen lamp. The OHP was covered to prevent light from
- 2 leaking. An egg was placed on the small hole with the sharp
- 3 end down. The illuminated egg was photographed in a dark
- 4 room using a digital video camera (SONY:DCR-VX1000). The
- 5 image was read into the computer using a digital still image
- 6 capture board (SONY:DVBK-1000). The above equipment
- 7 allowed an image of 640×480 pixels to be read into the
- 8 computer without any degradation of picture quality. An
- 9 example of the image is shown in Fig. 1. The eggs were calmly
- 10 put 30 min before setting them on the irradiation stand.
- 11 The light and dark parts, shown in Figure 1 and observed
- 12 in all eggs, were separated by the discriminant analysis
- 13 method (Otsu, 1980). Each pixel has brightness information
- 14 of 256 levels for each of the red (R), green (G) and blue
- 15 (B) components. The parameters calculated in this study
- 16 were: (1) the pixel number of the whole egg, (2) the average
- 17 and standard deviation of each R, G and B component of the
- 18 whole egg, (3) the pixel number of the light part of the
- 19 egg, (4) the average and standard deviation of each R, G
- and B component of the light part of the egg, (5) the pixel
- 21 number of the dark part of the egg, and (6) the average and
- 22 standard deviation of each R, G and B component of the dark
- 23 part of the egg. The image analysis traits (described later)

- 1 were calculated using these values. The values were
- 2 calculated in four directions by rotating the egg on the
- 3 irradiation stand four times by 90 degrees each time in
- 4 order to eliminate the bias caused by direction of the egg
- 5 on the irradiation stand.
- 6 The light and dark parts of the egg shown in Fig. 1 might
- 7 indicate the albumen and the yolk, respectively. The
- 8 light-dark ratio was calculated by dividing the number of
- 9 pixels in the dark part by the number of pixels in the light
- 10 part of the egg. This coefficient was used to determine the
- 11 yolk-albumen ratio of the egg as a weight ratio. The
- 12 coefficients of variation (CV) of the R, G and B components
- 13 were calculated based on the average and the standard
- 14 deviation of each R, G and B component. By using this CV,
- 15 the bias of brightness information by the distance between
- 16 the camera and the egg could be eliminated to some degree.
- 17 The 10 image analysis traits were defined as the CV of R,
- 18 G and B components for the whole egg, for the light part
- 19 and for the dark part of the egg, and the light-dark ratio.
- The yolk-albumen ratio was estimated by the multiple
- 21 regression equation on ten independent variables of the
- 22 image analysis traits. To obtain accurate results, the data
- 23 set was halved and multiple regression equation was

- 1 estimated for only one half of the data set. The other half
- 2 of data set was used to predict the yolk-albumen ratio,
- 3 based on regression coefficients estimated from the first
- 4 half of the data set. The acceptance or rejection of
- 5 independent variables in the multiple regression equation
- 6 was performed by the Stepwise method of SAS (1985).
- 7 After measuring egg weight, egg length and egg width,
- 8 the eggs were broken and separated into the yolk and albumen.
- 9 The albumen was divided into thick albumen and thin albumen
- 10 by a sieve with a 2-mm lattice, and the weight of each type
- 11 of albumen was measured. The albumen weight was calculated
- 12 as the sum of the thick and thin albumen weights. The
- 13 yolk-albumen ratio was calculated by the following
- 14 equation:
- 15 Yolk-albumen ratio = Yolk weight / Albumen weight \times
- 16 100
- 17 The eggshell weight (containing eggshell membrane) was also
- 18 measured. The eggshell thickness was determined by
- 19 averaging values measured by a dial pipe gage at three
- 20 points on the equator surface of the egg.

22 RESULTS AND DISCUSSION

23 Means and standard deviations of egg weight, yolk

- 1 weight, albumen weight, eggshell weight, eggshell
- 2 thickness and yolk-albumen ratio for each line of hens are
- 3 shown in Table 1. The yolk-albumen ratios of eggs from the
- 4 commercial hens (A-line:37.0%, B-line:40.3%) used in this
- 5 study agree with the results by Miyoshi and Mitsumoto (1994).
- 6 The mean values of image analysis traits are shown in Table
- 7 2. The mean values of image analysis traits for the H-line
- 8 were significantly higher than those for other lines.
- 9 The video images of the eggs may have been influenced
- 10 by the eggshell thickness. The correlation coefficients
- 11 between the ten image analysis traits and eggshell
- 12 thickness were -0.19 to 0.03 for the H-line, -0.02 to 0.44
- 13 for the L-line, -0.22 to 0.24 for the A-line and -0.33 to
- 14 0.03 for the B-line. It was difficult to estimate eggshell
- 15 thickness by this method because the correlation
- 16 coefficient was relatively low and insignificant, except
- 17 for the L-line.
- 18 The correlation coefficients between the yolk-albumen
- 19 ratio and image analysis traits for each line are shown in
- 20 Table 3. The light-dark ratio, which is considered to be
- 21 equivalent to the yolk-albumen ratio, showed no significant
- 22 correlation with the yolk-albumen ratio in all 4 lines.
- 23 Therefore, it might be impossible to predict egg

- 1 composition using only the shadow on an illuminated egg.
- 2 However, significant correlation coefficients were found
- 3 between the yolk-albumen ratio and CV of the R and G
- 4 components for the whole egg in all lines, suggesting that
- 5 these traits may be used to predict the yolk-albumen ratio
- 6 without breaking eggs.
- 7 An egg illuminated by a beam from OHP appeared yellow.
- 8 The beam penetrated into the eggshell and the albumen from
- 9 a small hole in the rubber stopper and might have been
- 10 reflected by the yolk floating in the albumen. A small hole
- 11 was made in the eggshell, and internal egg content was
- 12 removed. Only the albumen was injected back into the egg,
- 13 and then the small hole was closed. This egg was called a
- 14 "yolk-removal egg" in this study. The irradiation and image
- 15 analysis procedures were repeated in the same manner as for
- 16 the normal eggs. The CV of the R, G and B components of the
- 17 whole egg in the case of "yolk-removal eggs" (n=12) were
- 18 7.2, 8.3 and 46.6%, respectively. Whereas, the
- 19 corresponding R, G and B values for the normal eggs in all
- 20 lines were 12.9 to19.9%, 17.9 to 32.9% and 22.0 to 43.8%,
- 21 respectively. The CV of the R and G components in the
- 22 "yolk-removal eggs" were lower than those in normal eggs,
- 23 indicating that there was a smaller variation in the

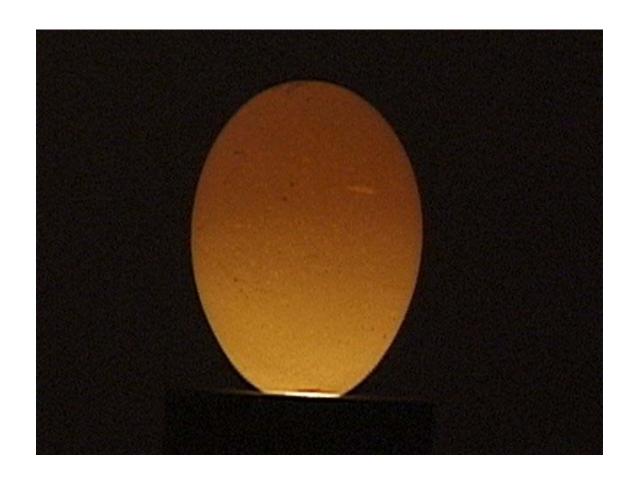
- 1 strength of color of "yolk-removal eggs". The higher
- 2 variation for normal eggs may be explained by the reflection
- 3 of the penetrating light at the yolk.
- 4 The data set was randomly divided into two halves, and
- 5 multiple regression of the yolk-albumen ratio on image
- 6 analysis traits was estimated using one of the data sets
- 7 (n=71). The independent variables for the equation selected
- $8\,$ by the Stepwise selection method were the CV of R and G
- 9 components for the whole egg and the light-dark ratio with
- 10 a determinant coefficient (R^2) of 0.83 (p<0.01). The
- 11 yolk-albumen ratio was predicted for the other part of the
- 12 data set (n=71) using the parameters estimated from the
- 13 first part of the data set. The relationship between
- 14 observed and predicted values of the yolk-albumen ratio is
- 15 shown in Fig. 2. A significant correlation coefficient
- 16 (r=0.85) was detected between observed and predicted
- 17 values.
- 18 The only one set of "light" was for penetrating in this
- 19 study. There might be more proper light sources such as
- 20 different light color, brightness, or the size of the hole
- 21 to penetrate the light beam.
- The observed and predicted values of the yolk-albumen
- 23 ratio were classified into 5 levels (level 1:less than 35%,

- 1 level 2:35-45%, level 3:45-55%, level 4:55-65% and level
- 2 5:more than 65%). The accuracy of the prediction was
- 3 examined by the degree of agreement with each score
- 4 determined by observed and predicted values. The
- 5 frequencies of the difference between those scores are
- 6 shown in Table 4. The ratio of zero difference between
- 7 levels of observed and predicted values was 76.1%, and the
- 8 percentage of 0 to ± 1 difference between observed and
- 9 predicted values was 100.0%. These results indicate that
- 10 classification of the yolk-albumen ratio (roughly in 5
- 11 levels in this study) by the non-destructive method is
- 12 feasible.
- 13 Hutchison et al. (1992) examined the inner structure
- 14 of the egg using magnetic resonance imaging (MRI) and
- 15 concluded that MRI could be used successfully in assessing
- 16 the microanatomy of eggs. However, the inspection of
- 17 yolk-albumen ratio for numerous eggs using MRI is
- 18 impractical, because the equipment is very expensive and
- 19 not in popular use yet.
- Hussein et al. (1993) pointed out that the difference
- 21 in the yolk-albumen ratio become increasingly important
- 22 because a demand for liquid eggs continues to increase every
- year. This study has shown that the yolk-albumen ratio could

- 1 be predicted by penetrating a beam of light into the egg
- 2 and calculating the strength of the color. Although there
- 3 were good agreement between image analysis and composition
- 4 determinations, the model might be strengthened by
- 5 including a term for eggshell texture. This should be
- 6 considered in future studies.

8 ACKNOWLEDGEMENTS

- 9 The authors extend their thanks to Dr. Kieu Minh Luc
- 10 for his critical review of the manuscript and to Mr.
- 11 Masahito Kikuchi for his excellent technical assistance.
- 12 We are also grateful to Dr. Mary Beck (University of
- 13 Nebraska-Lincoln, Lincoln, NE, 68583) for reviewing this
- 14 manuscript.


15

16 REFERENCES

- 17 Hutchison, M. J., A. Lirette, R. J. Etches, R. A. Towner,
- and E.G. Janzen, 1992. An assessment of egg yolk structure
- 19 using magnetic resonance imaging. Poultry
- 20 Sci.71:2117-2121.
- 21 Hussein, S. M., R. H. Harms, and D. M. Janky, 1993. Effect
- of age on the yolk to albumen ratio in chicken eggs. Poultry
- 23 Sci.72:594-597.

- 1 Kuchida, K., K. Suzuki, K. Yamaki, H. Shinohara, and T.
- 2 Yamagishi, 1991. Prediction for chemical component of pork
- 3 meat by personal computer color image analysis. Amin. Sci.
- 4 and Technol.(Jpn.). 62:477-479.
- 5 Miyoshi, S., M. Sato, M. Matsumura, K. M. Luc, K. Kuchida,
- 6 and T. Mitsumoto, 1996. The transition of egg components
- 7 by aging on egg-type chickens. Research Bulletin of
- 8 Obihiro University, Natural Science. 19:13-18.
- 9 Miyoshi, S., and T. Mitsumoto, 1994. Differences on the egg
- 10 composition and quality traits of some commercial strains.
- 11 Jpn. Poultry Sci. 31:287-299.
- 12 Newman, P. B., 1984. The use of video image analysis for
- 13 quantitative measurement of fatness in meat: Part 2
- 14 Comparison of VIA, visual assessment and chemical fat
- 15 estimation in a commercial environment. Meat
- 16 Sci.10:161-166.
- 17 Otsu, N., 1980. An automatic threshold selection method
- 18 based on discriminant and least squares criteria. The
- 19 transactions of the institute of Electronics and
- 20 Communication Engineers of Japan. J63-D:349-356.
- 21 Pugh, C.R., E. D. Peebles, N. P. Pugh, and M. A. Latour,
- 22 1993. Ultrasonography as a tool for monitoring in ovo
- 23 chicken development 1. Technique and morphological

- 1 findings. Poultry Sci. 72:2236-2246.
- 2 SAS Institute Inc., 1985. SAS User's guide: Statistics.
- 3 Ver.5 ed. 763-774. SAS Institute Inc. Cary, NC.
- 4 Sauter, E. A., J. V. Harns, W. J. Stadelman, and B. A.
- 5 Mclaren, 1953. Relationship of candled quality of eggs to
- 6 other quality measurements. Poultry Sci. 32:850-854.
- 7 Stewart, G.F., A. R. Gans, and P. F. Sharp, 1932. The
- 8 relation of yolk index to the interior quality by candling
- 9 and from the opened egg. U.S. Egg Poultry Mag. 38:35.
- 10 Voisey, P. W., and R. M. G. Hamilton, 1976. Ultrasonic
- 11 measurement of egg shell thickness. Poultry
- 12 Sci.55:1319-1324.

 $\begin{tabular}{ll} FIGURE~1~.~Example & of & illuminated & egg~. \end{tabular}$

1 Table 1. Means and standard deviations of egg component traits for each line of

2 hens

	Selecte	ed line	Commercial line		
	H-line		A-line	B-line	
n	49	49	22	22	
EW (g)	60.9 ± 3.0^{b}	$62.2 \pm 3.6 ^{ab}$	55.9 ± 2.9^{c}	62.9 ± 3.8^{a}	
YW (g)	19.1 ± 1.4^{a}	16.9 ± 1.4^{b}	13.1 ± 1.0^{d}	16.0 ± 1.2^{c}	
AW (g)	35.6 ± 2.5^{b}	39.0 ± 3.1^{a}	35.6 ± 1.9^{b}	39.7 ± 2.7^{a}	
SW (g)	6.31 ± 0.61^{b}	6.28 ± 0.80^{b}	7.14 ± 0.55^{a}	7.14 ± 0.44^{a}	
EST (mm)	0.322 ± 0.026 bc	0.310 ± 0.035^{c}	0.370 ± 0.034^{a}	0.336 ± 0.018^{b}	
YAR (%)	$53.8 \pm 5.6^{\mathrm{a}}$	43.6 ± 5.1^{b}	37.0 ± 2.6^{d}	40.3 ± 2.3^{c}	

- 3 EW: egg weight, YW: yolk weight, AW: albumen weight,
- 4 SW: shell weight, EST: eggshell thickness, YAR: yolk-albumen ratio
- 5 a,b,c,d: different superscript means significantly difference (p<0.05)
- 6 in each trait

1 Table 2. Means and standard deviations of image analysis traits for each line of hens

Image analysis	Selected line		Commercial line		
Traits	H-line	L-line	A-line	B-line	
N	49	49	22	22	
D-L ratio	111.8 ± 48.4^{a}	109.8 ± 41.3^{a}	64.6 ± 10.8^{b}	$75.0 \pm 13.7^{\rm b}$	
CV R(whole)	19.9 ± 3.2^{a}	15.7 ± 2.6^{b}	13.2 ± 1.3^{c}	12.9 ± 1.2^{c}	
CV G(whole)	32.9 ± 5.5^{a}	25.9 ± 4.8^{b}	17.9 ± 1.6^{c}	17.9 ± 1.5^{c}	
CV B(whole)	43.8 ± 10.7^{a}	37.8 ± 8.4^{b}	22.0 ± 1.2^{c}	22.6 ± 1.4^{c}	
CV R(light)	9.2 ± 1.9^{a}	7.1 ± 1.0^{b}	6.2 ± 0.4^{c}	6.3 ± 0.5^{c}	
CV G(light)	17.5 ± 3.6^{a}	13.8 ± 2.0^{b}	7.5 ± 0.7^{c}	7.8 ± 0.6^{c}	
CV B(light)	35.8 ± 7.8^{a}	30.8 ± 5.3^{b}	19.4 ± 1.6^{c}	18.9 ± 1.1^{c}	
CV R(dark)	9.9 ± 1.8^{a}	8.7 ± 1.2^{b}	9.6 ± 1.0^{a}	$8.9 \pm 0.7^{\rm b}$	
CV G(dark)	15.2 ± 2.5^{a}	13.3 ± 2.2^{b}	11.0 ± 1.3^{c}	10.1 ± 1.0^{c}	
CV B(dark)	34.0 ± 6.7^{a}	32.3 ± 5.9^{a}	21.6 ± 0.9^{b}	$20.8 \pm 0.7^{\rm b}$	

- 2 D-L ratio: ratio of numbers of pixel for Dark part and Light part of egg
- 3 CV R, G and B: coefficient of variance of R, G and B components
- 4 CV R, G and B (whole): CV of R, G and B components for whole egg.
- 5 CV R, G and B (light): CV of R, G and B components for light part of egg.
- 6 CV R, G and B (dark): CV of R, G and B components for dark part of egg.
- 7 a,b,c: different superscript means significantly difference (p<0.05)
- 8 in each trait

- 1 Table 3. Correlation coefficient between yolk-albumen ratio
- 2 and image analysis traits for each line of hens

Image analysis	Selected lines		Commercial line	
Traits	H-line	L-line	A-line	B-line
N	49	49	22	22
D-L ratio	0.25	0.17	-0.03	0.01
CV R(whole)	0.60**	0.79**	0.64**	0.49*
CV G(whole)	0.65**	0.63**	0.67**	0.42*
CV B(whole)	0.18	0.17	0.04	0.11
CV R(light)	0.21	0.45**	0.51*	0.21
CV G(light)	0.21	0.30*	0.70**	0.37
CV B(light)	-0.06	0.10	0.07	0.09
CV R(dark)	0.39**	0.76**	0.51*	0.41
CV G(dark)	0.48**	0.52**	0.62**	0.26
CV B(dark)	-0.17	-0.11	-0.29	-0.15

- 3 D-L ratio: ratio of numbers of pixels for dark part and light part of egg
- 4 CV R, G and B: coefficient of variance of R, G and B components
- 5 CV R, G and B (whole): CV of R, G and B components for whole egg.
- 6 CV R, G and B (light): CV of R, G and B components for light part of egg.
- 7 CV R, G and B (dark): CV of R, G and B components for dark part of egg.
- 8 *: p<0.05, **:p<0.01

- 1 Table 4. Differences between classified values (5 levels^a) based on observed
- 2 and predicted yolk-albumen ratio (number of eggs and percentage)

	Selected lines		Commercial lines		
Differenceb	H-line	L-line	A-strain	B-strain	Total
-2	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)
-1	10(20.4)	6(12.2)	0(0.0)	1(4.5)	17(12.0)
0	34(69.4)	37(75.5)	16(72.7)	21(95.5)	112(76.1)
+1	5(10.2)	6(12.2)	6(27.3)	0(0.0)	17(12.0)
+2	0(0.0)	0(0.0)	0(0.0)	0(0.0)	0(0.0)

- 3 a: Yolk-albumen ratio was classified into 5 levels (level 1:less than 35%,
- 4 level 2:35-45%, level 3:45-55%, level 4:55-65% and level 5:more than 65%).
- 5 b: Difference = (level of yolk-albumen ratio based on predicted value)
- 6 (level of yolk-albumen ratio based on observed value)