Producing Scheduling that Causes Concurrent Programs to Fail

Yosi Ben-Asher
Computer Science Department,
University of Haifa
yosi@cs.haifa.ac.il

Eitan Farchi
IBM Haifa Research Laboratory
farchi@il.ibm.com

Yaniv Eytani
Computer Science Department,
University of Haifa
ieytani@cs.haifa.ac.il

Shmuel Ur
IBM Haifa Research Laboratory
ur@il.ibm.com

ABSTRACT
A noise maker is a tool that seeds a concurrent program with conditional synchronization primitives (such as yield()) for the purpose of increasing the likelihood that a bug manifest itself. This work explores the theory and practice of choosing where in the program to induce such thread switches at runtime. We introduce a novel fault model that classifies locations as “good”, “neutral”, or “bad,” based on the effect of a thread switch at the location. Using the model we explore the terms in which efficient search for real-life concurrent bugs can be carried out. We accordingly justify the use of probabilistic algorithms for this search and gain a deeper insight of the work done so far on noise-making. We validate our approach by experimenting with a set of programs taken from publicly available multi-threaded benchmark. Our empirical evidence demonstrates that real-life behavior is similar to one derived from the model.

D.2.5 Testing and Debugging: Concurrent programs.

1. INTRODUCTION
The increasing popularity of concurrent programming, for the Internet and on the server side, has brought the issue of concurrent defect analysis to the forefront. Concurrent defects such as unintentional race conditions or deadlocks are difficult and expensive to uncover, and such faults often escape to the field. Starting this year, all processors will have multiply cores and personal computers will have hyper-threaded processors. Programs that used to work well on single-threaded and single CPU core processors are now exhibiting problems. This means the testing of multi-threaded programs and the development of technology and tools to identify concurrent defects are more crucial than ever. As a result, major companies such as Intel and Microsoft have addressed this issue by providing appropriate testing tools.

There are a number of features that distinguish concurrent defect analysis from sequential testing. These differences are especially challenging because the set of possible interleavings is huge and it is not practical to try all of them. First, only a few of the interleavings actually produce concurrent faults; thus, the probability of producing a concurrent fault can be very low. Second, under the simple conditions of unit testing, the scheduler is deterministic; therefore, executing the same tests repeatedly may well produce the same set of interleavings. As a result, concurrent bugs often escape unnoticed and are found only in stress tests or by the customers. Furthermore, the tests that reveal faults are usually long and run under environmental conditions that are different than ones found at the testing stage. Consequently, they are not necessarily repeatable and when a fault is detected, extensive efforts must be invested in recreating the conditions under which it occurred. When these are finally recreated, the debugging itself may mask the bug (the observer effect). For example, adding debugging printing may change timing conditions and mask a concurrent bug.

A large amount of research is being carried out to improve the quality of multi-threaded software. Progress has already been made on many fronts. Work on race detection and atomicity is a primary effort that has been going on for a long time [19][21][1][12]. A different approach is taken by a set of tools called noise makers, which increase the likelihood of bugs discovery by inducing different timing scenarios through the addition of scheduling perturbations [23][2][7]. The noise makers themselves do not report results; rather, they strive to make the tests fail. Static analysis tools of various types [16] as well as formal analysis tools [24][17][5], are also being developed to detect faults in this domain. Other tools present specific and interesting views of the interleaving space to help analyze both coverage and performance [3][15].

This work explores the theory and practice of deciding where in the program to induce thread switches. Previous research in the area used a white box approach. In [23], static analysis was suggested for use in detecting the locations in which inserting
thread switches will help reveal bug patterns. In [7], noise-making decisions were made based on coverage information. Experiments carried out in [2] showed that applying scheduling noise to locations related to one variable at a time will improve the probability of finding bugs. The work in [23] [7] showed that performing context switches at random locations using a uniform probability (referred to as white noise), increases the likelihood that a bug will manifest during the runtime execution.

Conversely, in here a black box approach is taken to develop a theory for good, neutral, or bad program locations for thread switches (without analyzing the actual semantic role of these locations). This allows us to reason about concurrent bugs and provides a deeper insight of the work done so far. In addition, we demonstrate that there are testing scenarios where using a uniform probability for choosing the location to be seeded results in a very low probability of revealing bugs. Such scenarios are typical of bugs that only manifest in specific timing windows, where using a uniform probability will either not choose all good events or will be likely to choose some bad program locations. Thus, we motivate the use of a two-level scheme (presented in a limited form at [2]). This involves first selecting a subset of the program locations and then performing context switches with a high probability. We present experiments that validate our theory and show how it can be used to improve an existing testing tool [2].

The rest of the paper is organized as follows. Section 2 motivates the problem and its complexity and lists the papers contributions. Section 3 provides a practical definition and a metric for classifying locations as good, bad, and neutral, along with the understanding of why this approximation is useful. Section 4 explores the terms under which we can perform efficient search in the model and motivates its use in improving current testing tools. In Section 5, we discuss the experiments conducted to support our intuition and the mathematical model. In Section 6, we discuss related work. The final section presents our conclusions and provides details about future work.

2. MOTIVATION AND PROBLEM COMPLEXITY

Our methodology facilitates the use of a noise maker as a testing tool. A noise maker is random test generator that cause different interleavings to happen in runtime. It seeds the program with conditional scheduling primitives (such as yield()) that may cause context switches. A noise maker is aimed at increasing the likelihood of exercising an incorrect behavior related to a concurrent bug. In a typical user scenario for our tool, raceFinder [2], a given functional test t is run (without human intervention) against P, the program under test. This is done repeatedly. RaceFinder seeds critical events with synchronization primitives that may cause context switches. Each time the functional test t is run, raceFinder produces, as a result of context switches caused by the seeded synchronization primitives, a potentially different interleaving.

We begin with several examples that demonstrate the complexity of the problem and explain the motivation of using a heuristic approach. In the first example, we demonstrate that adding or removing context switches can significantly change the probability of bug manifestation. Consider the program in Figure 1 with three threads (T1, T2, and T3) and nine program locations. For the sake of simplicity, assume the scheduler always starts with T1 and upon hitting a context-switch or end-of-thread the scheduler continues on any of the remaining threads with equal probability. If there are no available threads, the scheduler continues executing the current thread. The decision trees for the example depict the choice made by the scheduler regarding which thread to advance to upon hitting a context switch or an end of thread.

When a thread switch is inserted after location T1.2 there are four possible interleavings, of which two reveal the bug (i.e., executing y=1/x while x=0) as shown in Figure 1. As all interleavings in this case have the same probability, the probability that the bug manifests is ½. If we insert an additional context switch after T2.1, we find there are six interleavings, of which only one reveals the bug (Figure 2). However, the probability of selecting a given interleaving is not uniform, since interleavings that contain more decision points have a lower probability of manifesting itself. Therefore, the probability of bug manifestation will actually be smaller here (i.e., 1/8). Figure 2 depicts the change in the interleaving space (scheduling decision tree) as a result of inserting an additional context switch at T2.1. Clearly, adding or removing the second context switch at T2.1 changes the probability of the bug manifestation.
although the end results are similar to having three threads. This example is similar to the one presented in Figure 1, except for having many locations in thread T2 that are considered irrelevant to the bug. For the bug to manifest itself, a thread switch must occur after location T1.2. In addition, a context switch must not occur at any of the points in thread T2 that are before T2.N; otherwise, the assignment of the value of zero to variable ‘x’ to will not precede the division of ‘x’ and will hence mask the bug. Consequently, if we select the seeding points using a uniform probability p, the probability that the bug will manifest is as follows: the probability p of choosing to perform a thread switch in location T1.2, multiplied by the probability \((1-p)^N\) that it will not choose to perform a thread switch in locations T2.1 ... T2.N. Hence, the probability of manifesting the bug is small for any uniform p.

![Figure 3](image)

The decision whether a given program location should be considered ‘good’ or ‘bad’ may well depend on previous or future decisions regarding the seeding of other program locations. Consider the example in Figure 4. In order for the bug to manifest itself in this example, a single thread switch (and no more than one) must occur before the assignment of variable ‘x’ to be zero occurs at T1. Clearly, the benefit of seeding T1.2 strongly depends on whether or not a context switch has been inserted after T1.1 Thus, we cannot absolutely classify location T2.2 as either good or bad without knowing the location of the other context switches (referred to as the ‘context’).

![Figure 4](image)

Furthermore, there exist worse scenarios where attributing a deterministic decision, such as always or always not performing a thread switch to a specific location, will mask the bug entirely. For example, consider the program in Figure 5. For the bug to manifest (i.e., for the program take a divide by zero exception) a thread switch must occur after the instruction while (i<10). However, the thread switch must occur only in the iteration when i=5, otherwise the bug will not manifest. In short, a deterministic classification of the program’s locations (such as T1.3) as either good or bad will not identify the bug in this program.

![Figure 5](image)

Thus, we consider it is too difficult to decide on-the-fly whether or not to make a context switch when a given program location is reached. In this work we address this problem by providing a model and a static classification of the program’s locations. The main contributions of this work are:

- Provide a formal definition and a new novel taxonomy that distinguish between three types of events: “good”, “bad” and “neutral”, with respect to whether forcing a context switch will help to reveal a bug.
- Observe that choosing locations to insert random context switches at a uniform probability is likely to include bad program locations. We introduce a two-phase scheme that involves first selecting a subset of the program locations and then performing context switches with a high probability. This is demonstrated as essential for masking out bad program locations.
- Develop a mathematical model for noise-making, including experimental evidence that the probability of applying scheduling noise behaves similarly to a convex function. This implies there are some locations with significantly higher probabilities of being good and bad than the rest of the locations.
- Explore the terms in which efficient search for real-life concurrent bugs could be carried out and justify the use of probabilistic algorithms for this search. Studying known concurrent bug taxonomies, we propose these are usually composed of a small number of good and bad locations.

3. FAULT MODEL

As our methodology facilitates the use of a noise maker we control the probability that a thread switch will occur when each event is executed [23]. Our goal is to choose the optimal subset of the program’s locations in which a context switch should be performed. By studying the taxonomy of concurrent bugs [11][18][14], we determine that a concurrent bug manifests when a few concurrent events (referred also as events [4]) occur in a specific order. For example, consider the case of data races. Savage [21] defines a data race as two accesses to a shared variable by different threads, at least one of which is a write, with no mechanism used to prevent simultaneous access. Hence, the manifestation of race related bug will depend usually on order of accessing this variable. We can thus identify a concurrent bug with that sequence of concurrent events. For such a sequence to manifest at runtime a context switch is highly desirable after or before some of these events for the bug to manifest. Ideally, no context switches should occur in other events. Since, whether a context switch is desirable or not may well depend on other decisions made.

As it is too difficult to decide on-the-fly whether or not to make a context switch when a given program location is reached, we suggest approximating the decision by providing a static classification for program locations. For this aim we divide the
program’s events into three categories:

- **Good events** – in which a context switch greatly increases the probability that a concurrent bug manifests.
- **Bad events** – in which a context switch generally decreases the probability that a concurrent bug manifests or completely masks the bug.
- **Neutral events** – in which a context switch does not greatly change the probability that a concurrent bug manifests.

Events can be naturally grouped using different levels of granularity. Such groups may be composed of a set of events that access a shared variable, events related to a given program location, or locations that share the same context (for simplicity sake, we intuitively referred only to program location as events in the previous sections). Thus, the intended meaning is that event could be of higher granularity and represent a group of concurrent events (e.g., related to shared variable or program location). We loosely assign a probability of whether an event of higher granularity is good, bad, or neutral, based on the probability that good, bad, or neutral concurrent events associated with it are executed. As demonstrated previously, it may be practically preferable to increase the probability of a context switch when an event is reached and not to always make a context switch.

As the classification of the program’s events is not known a-priori we need a method to do for determining for each event e whether it is good, bad, or neutral. A possible mechanism could be defined as follows: run the program many times and in every execution, set every event but e to be good or bad with equal probability. In first half of the executions we set e as good (e.g., perform a context switch in e with high probability) and in the second half of the executions we set e as bad (e.g., perform no context switch in e). If the probability of revealing a bug in the first half of the execution equals that in the second half of the execution, p is neutral; otherwise, p is either bad or good, based on which half manifests more bugs.

In addition to being impractical, due to the possibly high number of executions required, this method has a number of theoretical problems. The definition of e as good or bad is related to decisions made at other events. However, the former definition does not take into account what decisions were actually made, (i.e., the execution’s context) and it might not be reasonable to choose all other events to be good or bad with equal probability). Thus, a more rigorous definition is required. In the next subsection we detail our proposed metric for approximating the static classification of the program’s events, regardless of the execution’s context.

3.1 Static Classification

As explained earlier, the effect that a context switch at an event may have for manifesting a bug is relative to a specific execution. In this section, we propose a metric to statically approximate this effect at each event. The intended meaning is that performing (or not performing) a context switch at such an event will increase the likelihood of the bug manifesting itself regardless of the specific execution’s context. This is done by considering the effect a context switch may have over all possible contexts. We evaluate the classification of each of the program’s events as follows: At each event, we calculate the average probability that the bug will manifest itself over the introduction of context switches at all possible k other events, where bug taxonomies (and also [20][17]) shows we can choose a small k. An event is classified as good if the average probability of manifesting the bug is sufficiently high. Similarly, if the average probability is very small, the location will be classified as bad. If it is neither bad nor good, it is classified as neutral.

As an example, consider the program in Figure 1 and assume we intend to insert two context switches (possibly after each program location). Thus, there are six relevant events (e.g., program locations) that need to be classified $T1.1$, $T1.2$, $T2.1$, $T2.2$, $T3.1$, and $T3.2$. In order to classify a program’s locations we need to check every possible interleaving over all the possibilities of selecting the other location. For example, in order to classify $T2.2$ we need to cover all the interleavings when the second context switch is inserted at $T1.1$, $T1.2$, $T2.1$, $T3.1$, $T3.2$ and average the probabilities for bug manifestation. Figure 6 summarizes these probabilities and the resulting classifications.

The approximated classification in Figure 6 fit nicely with the intuitive one described in the introduction. Analyzing the average probability for each location we observe that a context switch should occur after checking that ‘x’ is not equal to zero and must not occur before the assignment of zero as the value of ‘x’. It is best that no context switch is performed, (but not absolutely necessary) at all other locations.

Table: Approximated Classification

<table>
<thead>
<tr>
<th>Program Location</th>
<th>Prob. over all contexts</th>
<th>Resulting Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T1.1$</td>
<td>2/40</td>
<td>Neutral</td>
</tr>
<tr>
<td>$T1.2$</td>
<td>12/40</td>
<td>Good</td>
</tr>
<tr>
<td>$T2.1$</td>
<td>0</td>
<td>Bad</td>
</tr>
<tr>
<td>$T2.2$</td>
<td>5/40</td>
<td>Neutral</td>
</tr>
<tr>
<td>$T3.1$</td>
<td>3/40</td>
<td>Neutral</td>
</tr>
<tr>
<td>$T3.2$</td>
<td>3/40</td>
<td>Neutral</td>
</tr>
</tbody>
</table>

Figure 6 - approximated classification

The classification is introduced here to motivate the creation of the model. Learning the classification at run-time could prove helpful for debugging purposes; In addition, the presence of a concurrent bug in the program can be intimately related also to the data state of the program, (as in figure 5, see also [12]). It may also be dependent on the input data. Hence a future work will generalize our model to consider such data dependencies. Both issues are beyond the scope of this work. However, we believe that focusing on purely race related bugs is already a very beneficial and practical issue. As this inherent scheduling nondeterminism continues to attract high research interest, such as work on data race detection (which, by definition, do not consider data influences [21]).

3.2 Analyzing the Model

In this section, we analyze the model introduced above. Our goal is to present a mathematical model to allow us to analyze the possible scheduling noise behaviors to latter on use this information to improve our testing tool. As explained above, a program under test P is viewed as a set of subsets of events $\{e_1, e_2, ..., e_n\}$. In what follows, if e could be the set of all events that
access a given shared variable or a set of events associated with the same program location. \(PB, PG, \) and \(PN \) are the probabilities of \(e \) being bad, good, or neutral respectively \((PB+PG+PN = 1)\).

The intended meaning is that, for a given execution, \(e \) will behave either as good, bad, or neutral in the above probability distribution. Thus, we choose a type for each element, and independently obtain a subset \(Q \) of \(P \)'s elements by choosing every element using a probability \(p \). Probability \(p \) models whether or not a context switch is forced when the program element is accessed. \(Q \) is "successful" if it contains no elements of type bad and all the elements of type good. Otherwise, \(Q \) is "unsuccessful". The model equates the probability of \(Q \) being successful with the probability of manifesting the bug. We consider two general variants of the model:

- **All elements have the same probability of being good, bad, or neutral.** Note that the same element can be bad in one execution of the program, good in another execution, and so forth.
- **Each element is either good, bad, or neutral, implying a fixed but unknown number of good/bad/neutral elements.**

For both cases, we need to solve a search problem where we have to uncover all good elements and no bad elements. This search uses one query to select a subset of the elements \(Q \), seeds them, and runs the seeded program. If a bug occurs, we have chosen all the good elements and none of the bad elements. If the query fails (i.e., no bug is detected), it is not possible to gain any information regarding the chosen elements in \(Q \) and another subset must be selected for the next query.

We first consider an average case analysis for the first variant of the model. Assume that an average, \(p^n \), number of elements are selected. For the selected \(p^n \) elements to be "successful" (i.e., contain all good elements and no bad elements) the following must be true: all the \(p^n \) elements should contain either good or neutral elements while the remaining \((n-p^n) \) elements should be either bad or neutral elements. Thus, the probability \(p(Q_{\text{successful}}) \) is given by:

\[
p(Q_{\text{successful}}) = (PG + PN)^{p^n} * (PB + PN)^{(n-p^n)}
\]

where \(n \) is the total number of elements.

Claim 1:
1. If \(PG > PB \), then it always pays to select all elements with \(p = 1 \).
2. If \(PG < PB \), then it always pays to select none of the elements using \(p = 0 \).
 - Note, if we choose no element, we can still "win", as there is a significant probability that all the \(n \) elements are significant.
3. If \(PG = PB \), assuming \(n \) is large, there exists an \(x \) such that \(x/n = PG=PB \). Thus, \((PG + PN)^{p^n} * (PB + PN)^{(n-p^n)} = (1 - (x/n)x)^n \to 1/e^x \)
 - If \(PG = PB < 1/n \) then it goes to infinite
 - If \(PG = PB = 1/n \) then the probability of success is \(1/e \sim 1/2 \)
 - If \(PG = PB > 1/n \) then goes quickly to zero

For the second model type, when we assume that each element is either good, bad, or neutral, Claim 2 holds as follows:

Assuming we have \(k \) good and \(r \) bad elements, the probability that \(Q \) is successful is given by:

\[
p(Q_{\text{successful}}) = p^k * (1-p)^r
\]

Note, this function obtains its maximum at:

\[
\frac{k}{k+r}
\]

In the general case where each element has a probability \((PB, PG, \) and \(PN))\), the following two distinct alternatives exist: either probabilities for each element are about the same, making it possible to analyze the case using the average probabilities \(PB, PG, \) and \(PN \). Otherwise, there are some elements with probabilities of \(PG/PB \), that are significantly higher than the rest of the elements. This case is analyzed in a similar manner to the second variant of the model. For the first alternative, Claim 1 holds, while for the second alternative Claim 2 is applicable.

Thus, we reduce the general case to one of the two above claims. If the first alternative holds, the bug could manifest in many cases without applying scheduling noise to the program’s execution, eliminating the need to insert such noise. If the second alternative holds, the model predicts that for a given concurrent program containing a concurrent bug, there exists a globally optimal probability for seeding noise in which the bugs are most likely to manifest and that the rate of finding these bugs goes down with an increase or decrease of that probability. Experiments described in a later section show that the probability applying noise on the tested programs tends to behave in a manner similar to that predicted by Claim 2.

4. EFFICIENT SEARCH

In this section, we reason about the terms under which concurrent bugs can efficiently be detected. Considering the huge interleavings space and the fact that noise makers have been shown to detect concurrent bugs, one could naturally argue this implies that an overwhelming portion of this space must manifest the bug. This, in turn, would imply that every method that exhaustively scans all possible interleavings is likely to quickly find bugs. However, this is known not to be the case. Using the fault model we introduce, we show that another possibility exists; if there are only a small number of elements that are classified as either good or bad, then the proportion of bug manifesting interleavings is still polynomial. However, we can provide an efficient search procedure to find a subset of program events that will constitute a successful query (i.e., will contains no bad events and all good events) by running the program a relatively small number of times. Performing an exhaustive search over all possible queries is not practical as it will be exponential to the program size. As explained above, we equate such a successful query with the bug manifesting itself.

We use a search method that for a given program with \(n \) events and a deterministic classification (as in the second variant of the model) produces a small group of subsets of events \(S_1, \ldots, S_l \) where \(1 < l < n \), such that one of them will surely reveal the bug. Afterwards, we show how this method can be extended using random technique to deal with a probabilistic classification (first and second variant of the model) in order to produce a small fixed number of subsets of program’s locations \(S_1, \ldots, S_l \) where \(l < n \) such that one of them will reveal the bug with a high probability. We formalize as follows: Assume there are \(n \) events \(E_1, \ldots, E_n \) in which each event is either good, bad or neutral. You are allowed to select a subset \(S_i \) of event (without knowing their
classification) and execute the program. If none of the events in \(S_i \) are bad and all good locations are in \(S_i \), you are done (the bug has manifested).

We demonstrate our approach using an example where \(n=16 \) and \(k=1 \). This scenario is depicted in figure 7. We create four subsets \(S_1, S_2, S_3, S_4 \) and their complements \(S_1^c, S_2^c, S_3^c, S_4^c \) such that they denote all the binary numbers \(0...15 \). Hence, at least one of the sets (for any arbitrary choice of one bad and one good event) will contain the good event and will not contain the bad event. This stems from the fact that if there exists a choice that does not separate between them then there is one number whose binary representation appears twice. In this example, we chose arbitrarily to mark \(l_1 \) as a “bad” and \(l_{11} \) as a “good”. Hence, the set \(S_1 \) will pass the test as it does not contain the bad location \(l_1 \), but does contain the good location \(l_{11} \).

![Figure 7](image1)

This can be generalized to any value of \(n \) and small \(k \) (for \(k=1 \) there are \(2^n \log(n) \) such of subsets, see [10] for details). We thus obtain Claim 3: For a small number of good and bad events (\(k \)), (\(k<n \), there are \(O(\log(n)) \)) subsets such that one of them separates the good events from the bad events.

Hence, we have a deterministic procedure with a logarithmic number of tests that detects any bug composed from a small number of events good and bad events. Note that the number of tests grows exponentially with the size of the bug. However, as explained earlier, this will not pose a problem to manifest the concurrent bugs we aim to uncover. It is possible to use a random procedure instead of using a deterministic one to select these subsets. For the previous example this can be achieved by choosing an element to belong to \(S_i \) with probability 0.5. Using this random method we will quickly choose a desirable subset. Hence, for a small number of subsets, selecting elements at random is as effective as the deterministic selection for the purpose of separating the good and bad elements (see [13]).

Using a random construction will practically be preferable due to having an in-complete knowledge about the program and also for implantation reasons. As the number of good and bad locations is not known a priori a successful query may be composed of more than one good or bad element. Thus, different number of good and bad elements will require a different deterministic construction for various scenarios. Furthermore, random selection is an effective solution to the variant of the model where elements are classified with a probability. This is since the classification of an event to be good or bad element could change between executions. For example, a neutral event in one execution may become bad in another and vice versa. In addition, a random seeding of program locations is more easily implemented than deterministic selection. This as a random algorithm is comprised of a series of random and independent decision whether to apply scheduling noise. Conversely, a deterministic algorithm will require accessing a knowledge base about the program to produce such decisions. Such access may also consume time and change the intended effect of the applied scheduling noise (such as adding a delay using a timed wait() primitive).

4.1 Improving Existing Tools

In this section we use the introduced model and search method to improve raceFinder [2], our previously develop noise maker. In addition, we discuss the possibility of using these methods in tools from other testing and verification domains. The model suggests that for a given scheduling heuristic [2] and a given program there is an optimal probability for choosing where to make noise. In addition, we consider the facts that studies of concurrent bug patterns [11][18][14], research on data races [21], atomicity [12] and recent research on context-bounded model checking [20][17] suggests that concurrent bugs are usually composed of a small number of good and bad events. Thus, we use the model to motivate the creation of new black box heuristics based on a two-level seeding technique. In the first level, each heuristic chooses a subset of program events. This is done by randomly choosing every variable or program location with a given probability. In the second level, scheduling noise is applied only to chosen subset of events. The first heuristic, referred to as ‘random noise’, takes advantage of the observation that an optimal probability exists. If we choose the probability randomly, we will eventually hit upon the optimal probability or come close to the optimal probability. As our model is continuous, we can assume that when we hit a near-optimal probability, the probability of revealing the bug will be nearly optimal. In addition, if we fix a required distance, \(d \), from the optimal probability, then \((1/(2^d))\log(1/(2^d)) \) runs will be required on average case to hit a probability that is close enough to the optimal probability.

In the second heuristic, referred to as ‘best noise’, we work with a formula based the second variant of the model. We assume the bug occurs when a sequence of concurrent events accesses a specific shared variable in a specific order. We thus assume that there is one good event, while the number of bad events is proportional to the program size \(n \), and this proportion is determined by a parameter \(c \). Thus, at each execution we choose each event with probability: \(\frac{1}{n+1} \), the optimal probability given by the model.

Our search method can be extended to work with tools from different testing domains. We motivate this idea by considering a possible use with context-bounded model checkers [20][17]. Such tools search for concurrent bugs by placing a limited number of context switches (\(k \)) over all possible locations of the program (\(n \)). When considering this method, in light of our introduced model, two obvious short comings come to mind: 1) assuming the existence of only good events may lead to a false sense of security. This is due to looking at shorter sequences than one that are required in order assuring the bug manifest or by
possibly not modeling the scheduler choices. This was demonstrated earlier, as a context switch may be only partially effective in manifesting a concurrent bug, 2) high computational complexity of calculating all possibilities to place the k context switches \(O(nk)\). As shown, there exists a deterministic construction that requires a substantially lower number of interleavings to be explored. This is done by placing a larger number of context switches (than the minimal number required for the bug to manifest) at locations that are pre-determined by this construction.

Using the probabilistic construction we can motivate random selection of where to place context switches for context-bounded model checking. However, we do not claim that our search methods should necessarily be applied as-is with other tools. For example, when working with a model checker it may not be desirable to place many context switches. Thus, a construction that favors smaller subsets having fewer contexts switches may be desirable. Moreover, applying our search method for verification purposes will require extending the classification to be deterministic (the second variant of the model). It is not clear to us yet, whether and how this could be done.

5. EXPERIMENTAL RESULTS

In this section, we aim to validate that the observed behavior of the noise probability acts in a manner similar to that predicted by our model. In addition, we compared the new heuristics with ones used in previous work [2][7][23]. In our experiments we used programs taken from the publicly available multi-thread benchmark [9]. Table 1 presents the names of the test programs, their size measured by lines of code, and their bug type. The programs were tested on a set of Pentium IV 1800 computers using the Java SDK standard edition, version 1.4.1_01 (results are similar to using older versions) and using windows operating systems (2000 & XP). In all experiment scheduling noise was applied using the yield() scheduling heuristic [2]. Using small programs in the experiments provided the advantage of making their behavior relatively easy to analyze. The larger programs used demonstrate the scalability of our approach. The Crawler algorithm is a real life race condition bug embedded in an IBM product [7]. The execution time of the different program ranges from a few seconds to a few minutes. Applying scheduling noise does not significantly prolong the execution time of the programs, except for the Shop program.

<table>
<thead>
<tr>
<th>Program name</th>
<th># LOC</th>
<th>Bug type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account</td>
<td>160</td>
<td>Weak reality</td>
</tr>
<tr>
<td>Max</td>
<td>220</td>
<td>Weak reality</td>
</tr>
<tr>
<td>Shop</td>
<td>320</td>
<td>Sleep + weak reality</td>
</tr>
<tr>
<td>Piper</td>
<td>280</td>
<td>Wait not in loop</td>
</tr>
<tr>
<td>Manager</td>
<td>520</td>
<td>Weak reality</td>
</tr>
<tr>
<td>Crawler</td>
<td>1200</td>
<td>Guarded if statement</td>
</tr>
<tr>
<td>XtangoAnimator</td>
<td>2088</td>
<td>Deadlock</td>
</tr>
<tr>
<td>Dictionary</td>
<td>706</td>
<td>Weak reality</td>
</tr>
</tbody>
</table>

5.1 Analyzing Noise Probability

In two following experiments, we examined how bug manifestation rate correlates with the different probabilities for choosing a subset of events to seed with scheduling noise. For each test program, we measured the number of times a concurrent bug manifested itself throughout 1000 runs for each chosen probability. We conducted two experiments by choosing two types for grouping events: 1) the set of events that access a single shared variable (variables), 2) the set of events that are related to a memory access at a given program location (program locations). To obtain a subset we chose each element with probability \(p\) going over all elements (either variables or program locations). In both graphs, the X-axis represents the probability \(p\) of choosing either a program location (Figure 8) or a shared variable (Figure 9) and the Y-axis represents the number of times the bug manifested. Results are shown for a subset of the programs.

![Program locations](Figure 8 - program locations)

![Shared variables](Figure 9 - shared variables)

5.2 Comparing Different Heuristics

In this experiment, we compared the following heuristics: 1) white noise, 2) the new black box heuristics and 3) focusing on a variable related to the concurrent bug (referred to as contention noise [2]). These heuristics were tested on a subset of the test programs described in table 1. Scheduling noise was applied
using the yield() scheduling heuristic. In order to evaluate the strength of the different heuristics, each program was run 500 times and we counted the number of times a bug has manifested. In the comparative graph (Figure 10), the Y-axis represents the total number of bugs found when each program was run and the X-axis summarizes the performance of each heuristic. The heuristics “Random” and “Best” were implemented as described in Section 4.1 (where “best” is executed with the c parameter chosen to be as high as possible). Figure 11 illustrates the effect that parameter c has on manifesting the bug, using the ‘best noise’ heuristic. The Y-axis represents the total number of bugs found when each program was run and the X-axis represents different values chose for the parameter c.

Figure 10 – different heuristics

![Graph showing different heuristics]

Figure 11 – parameter c

5.3 Results Analysis
We hypothesized that since bad locations exist, bug finding performance should not monotonically increase with the more locations selected, as it would with only good and neutrals. Thus, an optimal probability should exist and the number of bugs found will go down with an increase or decrease of probability. The results obtained by the both experiments as well as other experience gathered over the last three years [2][9] validate our predictions. The results demonstrate that a global optimal noise probability exists, and choosing other probabilities causes the bug to manifest less frequently. The frequency with which the bug manifests depends on the proximity of the chosen probability to the optimal probability. This behavior is similar to the one predicted by the second variant of the model (an event is either good, bad or neutral). Thus, this implies that some elements have significantly higher probabilities of being either more good or bad than the rest of the elements.

Furthermore, we hypothesized that the number of good locations is small and independent of the program size, and that the number of bad locations may increase with program size (as illustrated by the examples in the introduction). Thus, we predicted that the optimal probability, in accordance with our model’s formula, will decrease with the size of the program. The general trend in our experiments pointed to this behavior when we observed the optimal probability and the program’s size. We saw that choosing events at the granularity of program locations rather than at the variable level yields better results as more bugs were found using the optimal probability.

When comparing the results from the different heuristics, we observed that the “random” heuristic greatly increases the number of bugs found in comparison to white noise. When the ‘best noise’ heuristic was used with the correct value for the c parameter, it outperformed the random heuristic and outperformed white noise by almost an order of magnitude. As expected, focusing the noise on the variable related to the concurrent bug provides better results than the rest of the heuristics, as it is based on having a priori knowledge about the program. Thus, the new black box heuristics can be applied when contention information or other information about the program is not available or incorrect. In addition, we experimented with different values of c when using the ‘best noise’ heuristic and observed that the best value of c is close to 1. However, we believe that in order to achieve conclusive findings regarding this parameter we a larger experiment should be conducted.

6. RELATED WORK
A large amount of research is being carried out, both in academia and industry, to improve the quality of multi-threaded software. Progress has been made on many fronts and it now seems evident that a high quality solution must contain components from many domains [9]. Work on race detection and atomicity is a primary effort that has been going on for a long time [19]. Savage [21] defines a data race as two accesses to a shared variable by different threads, at least one of which is a write, with no mechanism used to prevent simultaneous access. As a result, different runs of the same program with the same input might change the sequence of the values a program variable had during the run. Atomicity [12] is a common higher-level correctness requirement that expresses non-interference between concurrently executed code blocks. A code block is atomic if every execution of the program is equivalent to an execution in which that code block is executed without being interleaved with actions of other threads. High level races [1] introduce a concept of view consistency and. A view is the entire set of shared variables accessed in a synchronized block. Thread t1 and thread
t2 are view consistent if the intersections of all views of t1 with the maximal view of t2 form a chain (with respect to the subset ordering µ), and vice versa. View consistency and atomicity are incomparable (neither implies the other) [23].

In many cases, the programmer is unaware of these possible faults (we term them race related), because most of the sequences of variable value changes produce correct program results. Race related bugs are also dependent on the scheduling algorithm and they might never appear on a specific system. Moreover, races might be intentional (benign) and it is very hard to diagnose them as such.

Other tools, used for replay and partial replay [4][7][22] are necessary for debugging and contain technology that is useful for testing. Static analysis tools of various types [16] as well as formal analysis tools [24] [17][5], are also being developed to detect faults in this domain. Static technologies are also being used to generate information that other technologies may find useful, such as a list of program statements from which there can be no thread switch [27] (single thread executing). Formal method such as model checking provides strong guarantees, as they explore all possible behaviors of a program. However, applying model checking is expensive and currently feasible only for programs with relatively small state spaces. Other tools exist that present specific and interesting views of the interleaving space to help analyze both coverage and performance [3] [15].

A different approach is taken by a set of tools called noise makers, which increase the likelihood of bugs discovery by inducing different timing scenarios through the addition of scheduling perturbations [23][2][7]. The noise makers themselves do not report results; rather, they strive to make the tests fail. The work in [23] [7] showed that performing context switches at random locations using a uniform probability (referred to as white noise), improves the likelihood that a bug will manifest. Furthermore, it was shown that when this method is applied correctly there exists a non-zero probability to reach any related bug in the program under test [23]. Previous research in the area generally used a white box approach. In [23], static analysis was suggested for use in detecting the locations in which to thread switches that will help reveal bug patterns. In [7], noise-making decisions were made based on coverage information. Experiments carried out in [2] showed that focusing one-at-a-time on the locations related to variables will improve the probability of finding bugs. In this work we take the next step to provide a deeper insight on the causes that produce a scheduling that make a multi-threaded fail. In addition, we take a black box approach when exploring where in the program to induce thread switches. We believe that future work of actually learning which are the “good” and which are the “bad” locations in the program will be very useful for debugging. A preliminary step in this direction was recently taken at [8]. This work builds on the ideas of this work and formulates noise-making as a search problem. It uses a genetic algorithm to iteratively find a small set of “good” program locations.

Our search method should naturally be compared to work on the delta debugging technique [25], which extrapolates between failing and successful test cases to and similar executions. The original delta-debugging work applied to test inputs only, but was later extended to minimize differences in thread interleavings [26]. Our method improves in regards to delta debugging in several ways. First, inducing different thread scheduling using delta debugging may require a replay mechanism which has inherent limitation. By taking a black box approach our method avoids it. Second, delta debugging assumes the existence of only good elements. This assumption may be sufficient for only debugging purposes where one can assume that a failing schedule may contain already only good and neutral elements. However, as demonstrated earlier, a context switch may alternate between being good, bad and neutral once other change to scheduling are made. Thus, we believe that our approach could be seen as a more general one.

7. CONCLUSIONS AND FUTURE WORK

This work explores the theory and practice of deciding where in the program to induce thread switches. Contrary to previous research in the area, we use a black box approach and develop a theory for good, neutral, or bad program locations for thread switches. We also demonstrate that there are testing scenarios where using a uniform probability for choosing the location to be seeded results in a very low probability of revealing bugs. This, we motivate the use of a two-level scheme of first selecting a subset of the program locations and then performing context switches. We present experiments that validate our theory and show how it can be used to improve our testing tool. This work presents the following novel contributions. We explore the terms in which efficient search for real-life concurrent bugs could be carried out. The presented methods, or similar alternatives, are likely to work only for bug patterns containing few good and bad locations. Our extensive experience with analyzing bugs, both in hardware and in software, shows us that most bugs fall into this category. We reason about the behavior of concurrent bugs to for a deeper insight of the work done so far. Furthermore, understanding the interactions between program elements that lead to concurrent bugs allows motivating the development of new techniques. For example, the insights presented in this work have already motivated formulating noise-making as a search problem [8] to allow the use of AI-based search methods to enhance noise-making process.

In future work we would like to use information about the program gathered at run-time to learn the classification of program locations. We believe that this will prove most helpful for debugging purposes as initial results have already indicated. Our developed model is the first step towards defining a new model composed of long scheduling elements (as opposed to context switch which are “short” scheduling elements). We believe this will further allow reducing the complexity of the search process and could also be applicable to the formal methods domain. Finally, we intend to extend this work to use the good and bad elements to model faulty behavior also in the realm of sequential programs.

8. ACKNOWLEDGMENTS

We would like to thank Tao Xie and Alan Hartman for their comments during the preparation of the paper. We thank the Caesarea Edmond Benjamin the Rothschild Foundation Institute
for Interdisciplinary Applications of Computer Science, at the University of Haifa for supporting this research.

9. REFERENCES

