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1.Introduction 
The primary objective of this paper, which is an 

extended version of the work presented in [1] is to 

determine the feasibility of exploiting spectral 

features in classification for automatic food 

recognition and quality/nutrition evaluation systems. 

Food intake is one of the necessary factors of human 

health, which means a human body should get 

enough nutrient and vitamins through one’s daily diet 

in order to stay healthy. Nowadays people are more 

concerned about what they eat and how that affects 

their lifestyle. Furthermore, current eating behaviors 

and range of nutrition consumption has changed.  
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A tremendous amount of scientific research is 

published every year to show direct relationship 

between diet quality and many diseases such as type2 

diabetes or/and different types of cancers. 
 

Manual assessment of dietary intake methods and 

tools are not precise enough to have accurate 

nutritional measurements. Besides, there should be a 

nutrition specialist to analyze these measurements. 

The problem is exacerbated for hospitalized patients 

who must be screened for nutrition and dietary 

assessment on admission and discharging to and from 

the hospital. The assessment then can be used 

regularly thereafter for the patient’s care and 

treatment. Therefore, various automatic dietary 

assessment techniques have been developed in the 

past decade. They significant focus on development 

in mobile devices and applications [2−12]. In most 

dietary assessment plans, users self-report food 

Research Article 

Abstract  
In the past decade, dietary assessment has been one of the most popular topics of research in the food industry, which has 

resulted in developing several automatic or semi-automatic dietary assessment systems using visible spectrum images for 

food recognition. However, the main shortcoming of visible spectrum image-based systems is its inability to differentiate 

foods of similar color. Researchers have added additional features such as shape, size and texture to the color model to 

improve the overall accuracy. However, the shape and size features are rendered inefficient when recognizing food in the 

mixed or cooked form. The aim of this research is to show the capability of hyperspectral bands for accurate food 

recognition based on individual spectral bands. In this work we use a hyperspectral imaging system of 240 spectral bands 

with the wavelength range between 400 nm to 900 nm. The ReliefF and PCA methods select/extract less, but the most 

informative features which are important to learn Logistic Regression and Support Vector Machine (SVM) as binary and 

multiple classifiers, respectively. A total of 20 different food samples in various forms (uncut and cut), shapes, and sizes 

were used in this study. The prediction results indicate that the hyperspectral images have the advantages of being able to 

recognize different food items from a mixed form with similar color and similar food types with different colors. In our 

experiments the highest classification accuracy of 0.6874 with 20 different food samples is produced by SVM multi-

classification of ReliefF data with the top 110 hyperspectral features. We are able to obtain approximately 0.90 accuracy, 

using binary classification on a specific subset of food samples.  
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consumed and portion-size from a database to the 

nutritional assessment system. The user can also take 

pictures of his/her own eating plate which can be 

used as a reference for the portion size. Also, the 

leftover amount of food can be documented. 

  

Use of image processing and machine learning has 

greatly aided the process of automatic dietary 

assessment. Using machine learning, the food is 

classified based on the color features of objects 

[13−17]. 

 

However, identification of some food with visible 

colors such as black olive and black bean are 

impossible. To tackle this issue, some systems 

consider other features such as shape and texture in 

addition to color [18−20]. Classification accuracy has 

been improved by applying powerful texture and 

feature representations. However, researchers have to 

select a balance between quality and quantity of 

representation, and efficiency. The texture quality 

can easily be affected by changes in illumination, 

rotation, scale, blur, noise, etc. Efficiency related 

challenges include potentially large number of 

texture categories and their high dimension. Due to 

the large inhomogeneities of food materials there are 

many features to be considered, including shape 

invariant features such as area, length, width, aspect 

ratio, and perimeter.  

 

The advantage of using hyperspectral imaging (HSI) 

systems rather than other conventional digital 

imaging devices (visible spectrum) is that it acquires 

spectral response of hundreds of different spectral 

bands at each spatial location instead of having 

grayscale or three-color intensities values. 

Combining optical imaging and hyperspectral 

technology provides concurrent spatial and 3D 

spectral data as shown in Figure 1. 

 

Spectral reflectance is the amount of reflectance from 

an object which is measured as a function of 

wavelength and shows how much energy a surface 

reflects at a specific wavelength. Thus, more 

information is made available about objects being 

analyzed that can be used to uniquely recognize 

them. Hyperspectral data analysis is becoming 

increasingly a popular tool in food industry and 

agriculture [21]. It has been also used in a wide 

variety of applications ranging from food quality 

[22], food safety [23], and precision agriculture [24, 

25]. 

 

Classification using hyperspectral cube data has been 

studied extensively, but there are still some major 

problems such as "curse of dimensionality", and 

limited number of training samples yet to be 

efficiently solved. Data transformation methods such 

as PCA is one of pre-processing steps to deal with 

high dimensionality of features [26]. Band selection 

is another important pre-processing technique which 

selects a subset of bands with a low correlation and 

representative information [27−30]. Some issues that 

come with high dimensional data occur during 

analyzing or visualizing the data, and some appear at 

the stage of training machine learning models. The 

“curse of dimensionality” is a general term that refers 

to a set of challenges that arise when working with 

high-dimensional data. Additionally, there is a 

problem known as Hughes phenomenon, as the 

number of features increases, the classifier’s 

performance increases until the optimal number of 

features is reached. Adding more features to the 

training set will then degrade the classifier’s 

performance. 

 

In [31], Support vector machine (SVM) was used for 

classification of hyperspectral data.  In addition to 

showing low sensitivity against “curse of 

dimensionality”, SVM hardly suffers from Hughes 

phenomenon [32]. Since SVM-based classifiers are 

able to get higher classification accuracy, they have 

been the state-of-the-art method for hyperspectral 

data analysis for a long time.  

 

In this paper, we have made two major improvements 

of our previous work [1]. First, we have extended our 

datasets to cover more types of foods with similar 

color as well as the same food types of different 

colors. Second, to obtain better classification 

accuracy, we apply PCA and ReliefF for feature 

selection and extraction methods to narrow down the 

feature space and determine which features are 

essential.  The first research effort aimed at showing 

the potential of hyperspectral imaging for dietary 

assessment studies. The SVM classification is 

utilized for multi-classification task. We also use 

multiple logistic regression analyzer as a binary 

classifier to differentiate between specific class of 

foods such as beans, noodles, olives, and rice. 

 

The rest of this paper is organized into 5 sections. 

Section 2 present the literature on food recognition 

systems using optical as well as hyperspectral 

images. Section 3 introduces the dimension 

reduction, classification methods, and Image and 

Data Acquisition and Pre-processing. In Section 4, 
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experimental results of the use of Support Vector 

Machines (SVMs) and Logistic Regression 

classification are demonstrated on original datasets, 

PCA features, and ReliefF data.  In section 5, we 

discuss the advantage and disadvantage of using 

hyperspectral techniques. The conclusion section 

summarizes the results of this paper. 

 

 

 
Figure 1 a) Hyperspectral data cube, b) boiled egg cut image, c) spectral reflectance curves of two pixels obtained 

from white and yolk of an egg 

 

2.Literature review 
The treatment of many diseases including heart 

problems and diabetes type 2 can be efficiently 

implemented if there is a monitoring system for 

individual’s food consumption in place. Automatic 

processing is a preferred option whether it has to be 

done in a medical facility or at home.  Collecting 

images of food is a universal method available for 

both professionals and individuals, therefore the 

popularity of using image processing/recognition 

method to infer about the amount and the nutritional 

contents of the consumed food.  On the other hand, it 

is challenging to perform measurement accurately in 

real life experiments.  There is ongoing research 

work on complex food categorization that includes 

food classification and measurements.  Here, we 

focus on the analysis of the work done in 

classification of the food using a) optical images and; 

b) hyperspectral data.  

 

2.1Overview on ingredient recognition task 

Table 1 summarized the main characteristics of 

recent researches in ingredient recognition which use 

three-component color space such as RGB as well as 

have pretty similar ingredient dataset comparing to 

ours. Along with providing the recognition results in 

different evaluation scores, unequalized number of 

food categories and different type of ingredients, 

makes the comparison across the following studies 

very difficult. Furthermore, the published 

investigations for the recognition of similar food 

types using hyperspectral technology are summarized 

in Table 2. Section 3.2 contains the definition of all 

used evaluation metrics. 
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Table 1 Brief description of the related work using three component color images 

Ref.  
Dataset  

(Food types/# of images) 

Method 

(Classifier/Features) 
Evaluation metrics 

[33] 150 food types/ 500 images 
Multi-SVM (feature selector: Ada boost) /LAB 

color space texture 

Accuracy: 90% (for 6 different food 

types in a plate) 

[34] 209 food type/ 11,704 images 

The Canberra distance to determine the similarity 

between feature vectors/ RGB color space, 

texture, edge orientation.      

Mean average precision: nearly 100% 

in 5 major food classification (breads, 

cereal, fruits, vegetables, fast food) 

[35] 12 food types/ 1,636 images 
Multi-SVM; features in RGB color space, texture, 

geometry (seize, shape). 
Accuracy: 85% 

[36] 25 food types/ 545 images 
Minimum distance classifiers/ SIFT, Gabor 

texture. 

Accuracy: 60.7% 

 

[37] 12 food types  
Class rankers, Borda count for combining outputs 

from multiple feature matchers/RGB color, SURF. 

Precision: 86% 

Recall: 83% 

 

[38] 
100 food types/15,000 images 

30 fruit types/ 40,000 images 

Convolutional Neural Networks (CNN) / Gray 

and RGB color. 

Accuracy: 60.9% for 100 food 

categories; 

80.8% for 30 food categories 

[39] 
30 food types/ 10,000 images 

 
Deep Learning Neural Network  

Accuracy: 99% 

 

[40] 55 food types/ 12,262 images 
Multi-kernel SVM/ SIFT, RGB color, texture, 

shape 
Accuracy: 90% 

[41] 

 257 ingredient labels in 172 

Chinese food/ 110,241 images 

with the average of 3 

ingredients per image 

Multi- task DCNN, Fine-grained classifiers Accuracy: 71% for 275 food categories 

[42] 10 food types/5,822 images CNN 
Accuracy: 94% 

 

[43] 
73 food types/3,616 food 

instances 

CNN; Gabor filters; HSV color 

 

Accuracy: 79% 

 

[44] 101 food types /90,840 images CNN Accuracy: 40.44% 

[45] 164 food types/ 9,254 images Contextual Relation networks (CR-Nets) 
Precision: 87% 

Recall: 89.12% 

[46] 80 types/ 12,083 images 

Spatial Regularization Network (SRN) 

 

 

 

 

Macro Precision: 73.7% 

Micro Precision: 77.3 % 

Macro Recall: 70.7 % 

Micro Recall: 74.7 % 

Macro-F1: 72% 

Micro- F1: 76.0% 

[47] 
353 ingredient labels in 172 

types/ 110,241 images 

Attention Fusion Network (AFN) and & the 

double-flow feature extraction network 

Macro-F1: 58.80% 

Micro-F1: 74.10% 

Accuracy: 34.29% 

[48] 

CineseFoodNet: 172 

ingredient labels; VIREO 

Food 172: 353 ingredient 

labels/ 185,628 images in total 

Multi-Task Deep Learning Networks 

 

 

 

 

 

CineseFoodNet: top-1 accuracy: 

65.58±0.23 

CineseFoodNet: top-5 accuracy: 

90.41±0.11 

VIREO FOOD-172: top-1 accuracy: 

 91.08 ± 0.21. 

VIREO FOOD-172: top-5 accuracy:  

98.86 ±0.14 

[49] 10 types/1,250 images 
Deep Learning (FCN, Segnet, Enet, 

DeepLapV3+Mask RCNN) 

Best result by FCN:  

Precision: 79% 

Recall: 81%  

Specificity: 99% 

[50]  
406 ingredient labels in 251 

food types/169,673 images 

Deep CNN (DCNN) 

 

      Macro-F1: 61.74 % 

      Micro F1: 75.77 %  
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Table 2 Brief description of the related work using Hyperspectral images 

Ref.  
Dataset  

(Food types/# of samples) 

Spectral 

Range 

(nm) 

Method 

(Classifier/Feature Extractor) 
Evaluation Metrics 

[51] 
3 different types of pork /  

75 samples 
900-1700  creation of score images /PCA  Accuracy: 96% 

[52] 

2 different types of cooked 

beef /  

475 samples 

922-1739  Linear Discriminant Analysis (LDA) /PCA  Accuracy: 75.4% 

[53] 
4 different types of rice / 

 360 samples 
400 - 1000  SVM  Accuracy: 90.2% 

[53] 

5 different types of Chinese 

tea leaves /  

20 samples 

400 - 800  Artificial Neural Networks (ANN) / PCA  Accuracy: 91.44% 

[54] 
3 different types of rice / 

1,152 samples 
400 - 1000 

 Back Propagation Neural Networks (BPNN)/ 

PCA 
 Accuracy: 94.45% 

[55] 

13 muscles types of standard 

loin and leg chops/140 

samples 

672 - 958  3D CNN  Accuracy: 95.81% 

[56] 
 4 different types of rice / 

5,226 samples 

380 - 1030 

874 - 1734 
 CNN 

 (380 - 1030) Accuracy: 

80.9% 

 (874 - 1734) Accuracy: 

87% 

[57] 
 3 different types of soybean/ 

165 samples 
400 - 1000 

 Extreme Learning Machine (ELM)/  

 information measure of the FRS theory/IM-

FRS 

 Accuracy: 98.42% 

[58] 
 13 different classes of fruits-    

vegetables/ 2,700 samples 
470 - 430  ImageNet pre-trained CNN  Accuracy: 92.23% 

[59] 

 17 different types of maize 

seed/ 

 1,632 samples 

400 - 1000 

 Least Square Support Vector Machine (LS-

SVM)/ 

 Multi-Linear Discriminant Analysis (MLDA) 

 Accuracy: 99.13% 

[60] 
 3 different types of Bacon/ 

 5,000 samples 
400 - 1000  SVM/ CNN  Accuracy: 99.2% 

[61] 
10 different types of rice/ 

4,320 samples 
400 - 1000 

 Principal Component Analysis Network 

(PCANet) 
 Accuracy: 98.57% 

[62] 
 90 different types of rice / 

 8,640 samples 
1000 - 1700  Random Forest (RF)/ LDA   F1- Score: 78.27% 

[63] 

 3 different types of maize 

seed/ 

 4,800 samples 

874 - 1734  Long Short-Term Memory (LSTM)  Accuracy: 90.11% 

[64] 
 11 different types of lettuce/ 

1,614 samples 
350 - 1000  LDA / STEPWISE  Accuracy: 81.04 % 

  

2.2The impact of hyperspectral imagery on food 

recognition 

Hyperspectral images have the ability to distinguish 

the same ingredient with different type of cooking, 

texture, shape and size even color as well different 

food type with very similar color.  Moreover, the 

number of images that need to train a classification 

model to achieve high recognition rate is significantly 

lower compared to other recognition system with 

similar results. Therefore, using hyperspectral 

capabilities, makes the data-acquisition and data 

preparation steps extremely beneficial in terms of 

time and cost. 

 

3.Methods 
3.1Data dimension reduction 

Food classification is a complex process which 

requires consideration of many factors such as 

selecting/extracting an optimal subset of features, 

producing an efficient learning model, and accuracy 

assessment. All these factors directly affect the 

quality of the food classification result. This section 
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focuses on the data preprocessing step, which 

involves a brief explanation of ReliefF and PCA. 

 

The capability and performance of a hyperspectral 

imaging system is based on the spectral resolution of 

the camera. Since we use a line scan spectral imager, 

the spectral resolution is the spectral width that can 

be achieved in one horizontal scan. Comparing to 

multispectral images, hyperspectral images can have 

a nearly contiguous bands with much narrower 

spectral width. Although hyperspectral images bring 

new capabilities, they suffer issues related to “curse 

of dimensionality”. Therefore, some preprocessing 

steps such as optimal feature extraction or selection 

must be considered. The feature extractor transforms 

the original features into a reduced feature space by 

maximizing the variance of projected data then 

choosing the features that are significant. The feature 

selection methods determine a subset of non-

redundant relevant features while preserving crucial 

information. 

 

In this paper, discriminating capabilities of both PCA 

as feature extractor, and ReliefF as feature selector 

are exploited which, in turn is expected to improve 

the classification performance. Experiments have 

been conducted with four datasets: original 

hyperspectral, RGB dataset, selected PCA bands, and 

ReliefF data. The results are evaluated and compared. 
3.1.1Principal component analysis 

In the spectral dimension of hyperspectral data, 

neighboring spectral bands are highly correlated. The 

main purpose of applying PCA to hyperspectral data 

is to capitalize on this correlation and obtain the 

optimum linear combination of the original bands 

with a maximum variation of the projected data. A 

brief discussion of using PCA for hyperspectral data 

can be found in [26]. 

 

Consider a hyperspectral data cube X with P and K as 

spatial dimensions and N is the number of spectral 

bands (Figure 2). 

 

X consists of M pixel vectors, Xi, which are N 

dimensional vectors (M refers to the number of pixels 

in an image and equals to P × K.  In other words, all 

elements of Xi, have the same spatial locations but in 

different spectral bands.    ,          - 
 . 

The covariance matrix is computed by equation (1): 

   ( )   
 

 
∑ (    ̅)(    ̅)

  
    (1)                                                           

were,  ̅ is the mean vector of all pixel vectors, 

calculated as   ̅  
 

 
∑   
 
   . After the decomposition 

based on eigen-values of the covariance matrix, 

which takes the form of: 

   ( )          (2)                                                                                                                              

Where D = diag (          ) and A are the 

diagonal and the orthonormal matrices composed the 

eigenvalues            of the Cov(X), and the 

corresponding N dimension eigenvectors,    (  
       ), respectively. The linear transformation is 

defined by:      
   (         ), where    are 

the PCA- transformed bands of original pixel vectors 

(  ). Let the eigenvalues and their corresponding 

eigenvectors be sorted in decreasing order, then 

              . The first K (usually K << N) 

can be eased to get the original data approximately as 

follows: 
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     (3) 

The property of   , the transformed PCA bands, is 

that the highest variance is in the first few bands, 

meaning that they contain the major information of 

the original hyperspectral data. This property leads to 

reducing the original dataset to the most informative 

and noise free. 

 

 
Figure 2 a) Hypercube X, b) Pixel Vector Xi 
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3.1.2ReliefF 

Feature selection is a method of selecting of a small 

subset of features that are necessary and sufficient to 

describe the object. There are usually realized in two 

steps a) generating of feature subsets, and b) 

evaluating them.  ReliefF, a filter ranker, is a nearest 

neighbor feature selection that defines ranks of 

features based on their relevance to specific task 

performance such as classification accuracy. 

 

ReliefF [65] is an extension of an algorithm called 

Relief [66] that was an efficient method to estimate 

the quality and relevance of all attributes. Comparing 

to the original Relief, ReliefF has got the ability to 

deal with noisy and incomplete data, can be used in 

multi-classification problems, and can estimate the 

conditional probabilities more reliably without 

increasing the complexity. The conditional 

probability that two values should be the same or 

different, approximated with relative frequencies 

from the dataset and it can be calculated if one or 

both features are missing. 

 

The key idea of Relief as a robust filter ranker 

method was to estimate attributes based on how well 

their values distinguish among the samples that were 

near to each other. To achieve this Relief searches for 

its two nearest neighbors: nearest hit (one from the 

same class) and nearest miss (the other from a 

different class). Relief also randomly selects n 

training instances, where n is defined by the user. 

Compared with many heuristic measures, the main 

advantage of Relief algorithm is that it does not make 

assumption of conditional independency of the 

attributes (upon the target variable) for estimating the 

quality of them that results in the efficiency and 

awareness of the contextual information. This leads 

to its ability to correctly estimate the quality of 

attributes with strong dependencies among them. 

However, their incapability to find the optimal 

number of selected features is one of their main 

disadvantages. As a simple solution it can be done 

manually by increasing the number of selected 

features from the top of the rank list, then classifying 

data based on the current feature set. Then, one with 

the highest classification accuracy is optimal. The 

whole algorithm and the extended version of Relief 

can be explained with the following pseudo-code: 

 

Algorithm 1: Basic Relief 

(only for binary classification) 

Result: weight vector for attributers (W) 

Initialize all elements in W to zero. 

for every training instance Ri (1     m) do 

       Find nearest hits H and miss M; 

       for every attribute (feature) A (1 ≤ A ≤ F) do  

 , -   , -  
    (      )

 
 
    (      )

 
  

       end 

end 

 

where     (       )   
|      (     )       (    )|

   ( )     ( )
  , Ii 

and Ij are different training samples. 

 

Updating attribute weights is based on a simple idea 

that if Ri and H that are instances of the same class 

have a large different value means that attribute 

separates two instances with the same class is not 

desirable. Then, its weight should be reduced in 

contrast if the Ri and M (instances of different 

classes) have a large different value, the attribute 

which separates them is desirable and hence its 

weight should be increased. 

 

Algorithm 2:  Relief- Extension (ReliefF)  

Result: weight vector for attributers (W) 

Initialize all elements in W to zero. 

for every training instance Ri (1     m) do 

       Select K nearest hits Hj. 

       for every class C, C ≠ Class (Ri) do 

              find K nearest misses Mj(C): 

 for every attribute (feature) A(1 ≤ A ≤ F) do  

         , -   , -  ∑
    (       )

   

 
    

                              ∑
    (|

 ( )

(   .     (  )/
∑     (       ( )
 
   |*

          (  )
  

               end 

         end 

end 

 

where P(C) is the prior probability of class C. 

 

At first, ReliefF randomly selects a training instance 

Ri similar to basic Relief algorithm, but the way of 

searching for K nearest hits (the same class) and K 

nearest misses (for each of the other class) is 

different. Finally, after updating the weight of each 

attribute, the average of contribution of all hits and 

all misses is computed. 

  

The basic difference of two above algorithms is in 

selecting K hits and K misses in the ReliefF, which 

brings greater robustness to the system when noise is 

concerned. 

 

Previous studies have indicated that the correctness 

of ReliefF rank estimation increases when K, the 

number of nearest neighbors increases. If the features 
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are conditionally dependent, then the increasing rate 

is not monotonic, but it reaches a peak and then drop 

off as K increases. It is essential to know that every 

specific dataset has a different optimal value for K. 

 

3.2Classification models 
3.2.1Support vector machine multi-classification 

Support Vector Machines (SVM), a supervised 

machine learning model was originally designed to 

do binary classification by con-structing a hyperplane 

in an n-dimensional space that separates the data 

points to their potential classes having the maximum 

distance to the hyperplane. Among all data points, 

those with the minimum distance to the hyperplane 

are called Support Vectors, which have higher 

influence on the exact position of the hyperplane than 

of other points. In this paper, SVM implementation 

from scikit-learn library was used. Selecting the most 

appropriate kernel function is essential due to its 

significant effect on the performance of SVM. Linear 

kernel and Radial basis function (RBF) are widely 

used. The RBF defined by the following formula and 

has the ability to deal with nonlinear data efficiently 

by mapping data points to a higher dimension spaces 

that enables them to be linearly separated. 

 (   ́)      (  ‖   ́‖ )  (4) 

 
3.2.2Logistic regression 

Logistic regression, one of the most popular machine 

learning models is a special regression problem with 

discrete output which models the conditional 

probability   (  |  ) in binary classification. It is 

formulated as follows [67]: 

   .
  (  |  )

    (  |  )
/     (5) 

Then 

 (    | )  
 

      (      )
   (6) 

The maximum likelihood estimation of W is 

obtaining by: 

         ∑ *     (     (      ))+
 
     (7)                

 

Adding the regularization parameter λ, usually 

improves the numerical stability and the solution also 

will be biased by improving the generalization 

performance of the model.         

           ( )    ( )  (8)   

 

In the other words, regularization can be seen as a 

penalty against complexity.  Increasing its strength, 

large weight coefficients will be penalized which 

means regularization prevents overfitting by reducing 

the flexibility of the model. There are two popular 

types of regularization that prevent overfitting by 

shrinking the coefficients(W) a) Lasso Regularization 

(L1), and b) Ridge Regularization (L2). L1 shrinks 

some coefficients to zero, while L2 shrinks all by the 

same proportions without eliminating any of them. 

 

3.3Evaluation metrics for binary classification 

Binary classification metric is a number that 

measures the performance of a binary classifier such 

as Logistic Regression and typically is presented with 

a value between 0 and 1.  Score of 1 usually reserved 

for the perfect model. There are different metrics, 

that selection of each is based on the problem solved. 

In this work, four performance metrics are used: 
3.3.1Accuracy 

It measures how many samples (both positive and 

negative) are classified correctly. 
                                      

                       
  (9)  

3.3.2positive predictive value (precision) 

It measures how many samples predicted as positive 

are really positive. Taking bean classification 

problem, it means what is the ratio of samples 

correctly classified as a bean. 
             

                              
    (10) 

 
3.3.3True positive rate (Recall or sensitivity) 

It measures how many samples out of all positive 

samples are classified as positive. For example, how 

many beans samples are recalled from all bean’s 

samples. 
             

                              
     (11) 

 
3.3.4True negative rate (Specificity) 

It measures how many samples out of all negative 

samples are classified as negative. For example, how 

many non-beans samples are recalled from all non-

bean’s samples. 
             

                              
    (12) 

 
3.3.5F1 Score 

F1 is the weighted average of precision and recall.   

In the case of imbalanced dataset, the F1 score is 

usually more useful than accuracy. 
                      

                  
                                           (13) 

 
3.3.6Micro and macro averaging scores  

All above scores are usually used in binary 

classification problems. They can be computed for 

multi-classification problems too: First, they are 

calculated on each individual class and then be 

averaged over all classes (macro-averaging). There is 

also another way to compute them: in the case of 

having m categories and n test instances, they are 
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computed globally over all the m × n binary decisions 

(micro-averaging). The micro-averaged scores tend 

to be influenced by the classifier’s performance on 

common categories, while the macro-averaged scores 

are more dominated by the performance on rare 

categories. By using both kinds of score, the more 

informative comparison can be provided [68]. 
3.3.7AUC- ROC curve 

Area under the Curve (AUC) represents degree or 

measure of separability by using area under Receiver 

Operating Characteristics (ROC), which is a 

probability curve. It indicates if the binary classifier 

is capable of distinguishing between two classes. 

Higher the AUC, better the classifier at 

distinguishing between beans and no beans sample. 

The ROC curve is plotted with True Positive Rate on 

the y-axis and against the False Positive Rate on the 

x-axis. 

 

3.4Image acquisition and pre-processing 

A Resonon Pika II hyperspectral camera is used to 

acquire both RGB image and the hyperspectral 

response data in the spectral range of 400-900 nm, 

with a band width of 2.1nm covering the visible/near 

infrared regions (Figure 3). 

 

Resonon Pika II is a line-scan imager that collects 

data, one vertical line at a time.  To create a two-

dimensional image, multiple lines are assembled 

from lines to form a complete image, as illustrated in 

Figure 4. Collection from vertical lines in 2D that 

forms an image in a single spatial band and each 

pixel in different spectral bands is a spectral 

signature. 

 

Figure 5 shows the spectral signatures of various 

food samples. The collection of all 1D signatures 

from the spatial XY planes makes a 3D hyperspectral 

cube. Pika II hyperspectral imager used in our work 
produces, 200 × 640 × 3 color image and hence 200 × 

640 ×240 point spectral cube. 

 

 

 
Figure 3 Left: Pika II hyperspectral imaging camera, right: covered spectral range by it 

 

 
Figure 4 Scanning line by line from left to right 
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Figure 5 Reflectance spectrum of all different food used in this work, top: 3 type of bean, 3 type of noodle, 2 type of 

olive and 2 type of rice, bottom: avocado, broccoli, carrot, corn, egg (yolk and white), lettuce, parsley, potato, 

spinach and tomato 

 
3.4.1Hyperspectral camera calibration 

Prior to analyzing data, the data needs to be 

calibrated.  The dark current characteristics of the 

hyperspectral camera array detectors known to 

produce a non-uniform response.  The average dark 

current noise is measured by blocking the light 

entering the camera, collecting the response, and 

averaging.  Also, to remove the reference reflectance 

spectrum, a white target was placed in front of 

camera. The calibration is carried by calculating 
    by equation (14). It normalizes the radiance 

spectrum and results in the reflectance that excludes 

spectral non-uniformity of the illumination device 

and subtracts the dark current. 

       (     )  ́    
       

       
  (14) 

where      and  ́   are pixels at position (i,j) at all 

wavelengths λ in the original image (I) and 

normalized image respectively,      is the pixel value 

in the dark reference image, and     is the pixel in the 

white reference image. 
3.4.2Image segmentation 

The purpose of image segmentation is to extract an 

object from the background in 2D and then extract 

the respective spectral information. Segmentation is 

performed on the RGB image that produces a 

boundary around the objects.  Based on the spectral 

values inside the boundary, hyperspectral cube data is 

extracted for processing. Figure 6 explains the data 

extraction. 
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Figure 6 a: Original RGB image, b: Binary image, c: RGB image after applying binary mask, d: Hyperspectral 

image after applying binary mask (band = 100) 

 
3.4.3Convert 3D data cube to 2D matrix 

Only spectral features are used for classification. For 

computations, the 3D hyperspectral data cubes are 

represented by 2D matrices with height × width 

corresponding to the number of rows, and λ, the 

number of spectral bands columns in the new matrix.  

After constructing new matrix, rows with all zero 

elements are removed. 
3.4.4Normalization 

If the range of data values varies widely, it may cause 

the independent variable with larger scale being 

arbitrarily weighted more heavily by the learning 

model.  To avoid this issue, data and features are 

normalized. Here, a standard scalar normalization is 

used to rescale the distribution of values with zero 

mean and standard deviation equal to one, 

respectively. 

 

3.5Data description  
3.5.1Food samples 

RGB and hyperspectral images have been acquired 

from twenty different fruits, vegetables, and seeds.  

Table 3 shows a complete list of experimental 

samples used in this study.  RGB as well as 

hyperspectral images/data are obtained for each food 

type to create training dataset. For the test dataset, 

RGB image and hyperspectral image of completely 

different sample but of the same type of food was 

captured. 

 

 

Table 3 Food names, type of food processing and parts used in experiments 

No. Name Type (Processing) Parts 

1 avocado raw cut, no pit 

2 black bean simmered whole grain 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

black olive 

broccoli 

brown bean 

brown rice 

carrot 

corn 

egg 

egg noodle 

green olive 

lettuce 

parsley 

potato 

rice noodle 

raw 

steamed 

simmered 

simmered 

steamed 

canned 

simmered 

boiled 

raw 

raw 

raw 

simmered 

boiled 

whole, no pit 

head & stalk, sep. 

whole grain 

whole grain 

whole 

whole 

white & yolk, sep. 

bowl 

whole w/ pit 

leaves 

leave w/ short stem whole or peeled 

bowl 

leaves 
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No. Name Type (Processing) Parts 

16 

17 

18 

19 

20 

spinach 

tomato 

wheat noodle 

white bean 

white rice 

raw 

raw 

boiled 

simmered 

simmered 

cut 

bowl 

whole grain 

whole grain 

whole grain 

 
3.5.2Data acquisition 

We have setup an imaging system for the food 

evaluation with the hyperspectral Pika II. The system 

consists of three symmetric light sources, objective 

lenses, and an imaging camera mounted on a stand 

(see, Figure 7).  Food samples are placed on a linear 

translation stage constructed to move under the 

camera that allows the capture of hyperspectral data 

cube of the food sample. 

 

The most common light source used in such systems 

are halogen lamps. Use of LED as lighting source 

was also studied. LED emits light in a narrow range 

of wavelength. However, based on the study in [69], 

beyond 750 nm (NIR), the LED spectrum is noisy as 

demonstrated in Figure 8.  Therefore, we have used 

incandescent light which brings in the benefit of 

capturing near infrared information into the current 

experiment. 

 

 
Figure 7 Hyperspectral imaging system 

 

 
Figure 8 Hyperspectral signature of an apple under two different illumination conditions, blue: LED, red: 

incandescent 
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3.5.3Training sample preparation 

Training data samples are collected with twenty 

individual food items shown in Figure 9. After 

completing the scan of food samples, the region of 

interests (ROIs) is defined on the reference image for 

computing the average color and the spectral 

response.  ROI of 8×8-pixel block is considered in 

this study.  There are total of 20 matrices of 1000x 

240 and 1000 x 3 of hyperspectral and RGB training 

dataset, respectively. That means every food item has 

1000data points in each of hyperspectral and RGB 

training data sets. 

 
3.5.4Test sample preparation 

A meal plate was assembled by combining different 

food samples to collect test dataset (Figure 10). 

N=1000, testing samples for each food item was 

extracted to create the test dataset. 

 

3.6Data visualization 

Data visualization is an important step in analyzing 

the data.  It provides important insights about the 

subject under study and plays an essential role in 

model building, evaluation, and testing.   t-

Distributed Stochastic Neighbour Embedding (t-

SNE) is a probabilistic technique suitable for 

visualization of high-dimensional datasets. It creates 

a reduced feature space where similar samples are 

represented by nearby points while dissimilar ones 

are modelled by distant points with high probability. 

The t-SNE defines a similar distribution for the 

points in the low-dimensional embedding and 

minimizes the Kullback–Leibler divergence between 

the two distributions with respect to the location of 

the points. Figure 11 shows t-SNE plots for both 

hyperspectral and RGB data sets. It can be seen that 

classes that are not separated on RGB images are 

separated in hyperspectral data. This is particularly 

seen in foods with similar colors such as black beans 

and black olives (black arrows → black circles) as 

well as for lettuce and spinach (green arrows → 

green circles). 

 

 

 
Figure 9 Training samples images 

 

 
Figure 10 Test samples images 
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Figure 11 t-SNE plot, top: RGB, bottom: Hyperspectral 

 

4.Results 
In this section, we summarize the performance of 

Logistic Regression and SVM as binary and multi-

classifiers on RGB and hyperspectral datasets of 20 

different foods. Figure 12 shows the workflow 

diagram of the proposed method. The first stage in 

the diagram, (# 1), is related to hyperspectral and 

RGB data collection, and preparation steps. The pre-

processing block (# 2) includes ReliefF and PCA 

feature selection, and extraction.  To evaluate the 

effectiveness of the hyperspectral data for food 

recognition in dietary assessment systems, 

experiments have been done in two separate phases:  

a) multi-classification, and b) binary classification (# 

3). By using SVM in the first stage, we differentiate 

the test instance. In the next step, using linear 

regression, we obtain a hierarchical classifier wherein 

each end node corresponds to a food group as shown 

in Figure 12 (# 3).  

 

Results of ReliefF for rank estimation, ReliefF is 

invoked with different K’s to find the peak 

monotonic increase before it starts dropping off. 

When applied to hyperspectral datasets it yields 

results demonstrated in Figure 13. 

 

Figure 14, shows the accuracy of SVM multi-

classification with respect to the size of the feature 

subset for different values of K. The formation 

process of feature subsets starts with ten top features, 

followed by additions of the next ten into the 

previous subset until the entire set of features is 

included. The SVM classification scores for training 

and testing datasets are plot separately. 
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The average relative weight of each feature, i.e., 

spectral band for values of K between 300 and 400 is 

shown in Figure 15. Spectral bands with the higher 

weights, that is high rank features, having relative 

weights higher than 0.8 are colored in dark green. As 

the feature’s relative weight decreases, the green 

color, gradually be-come lighter and turns to yellow, 

then orange and finally bright and dark red, where the 

less important features with relative weight is less 

than 0.2. 

 

Figure 16 shows the mean and the standard deviation 

of ReliefF testing score of different feature subsets 

for the same K values as in Figure 15. 

 

 

 
Figure 12 Food Classification Flow, 1) Data Collection, 2) Feature Extraction/Selection, 3) Classification 
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Figure 13 Classification accuracy for different value of K, top: training set, bottom: test set 

 

 
Figure 14 Classification accuracy for different value of K, top: training set, bottom: test set 
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Figure 15 Average relative weights of spectral features for different value of K (between 300 to 400) 

 

 
Figure 16 Mean and standard deviation of testing score for different ReliefF feature subsets 

 

4.1Principal component analysis 

In Figure 17, we demonstrate that the first three 

components account for over 95% of the variance 

which means that by using the first few components, 

most of the essential characteristics of the data can be 

recovered. 

 

Table 4 and Figure 18 show the performance of SVM 

multi-classifications with radial-basis function and 

hyperparameters, γ = 0.001 and C=1000 on the PCA 

transformed data. The percentage of pixels that were 

correctly classified relative to the total number of 

pixels in training dataset, testing dataset, and total 

running time in seconds is presented in Table 4. From 
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the results, with the first 9 components the highest 

classification score for the testing dataset is 0.61248 

with 0.97975 being the score for the training set. 

 

 

 
Figure 17 Cumulative variance of the first 10 PCA components 

 

Table 4 Food names, type of food processing and parts used in experiments 

No. of PCs Training Score Testing Score Total time 

1 – 5 0.962 0.552 41.105 

1 – 10 0.980 0.607 34.279 

1 – 15 0.983 0.559 36.027 

1 – 20 0.987 0.604 37.970 

1 – 30 0.991 0.608 40.343 

1 - 40 0.992 0.610 45.746 

1 – 50 0.993 0.610 50.590 

1 - 100  0.993 0.610 103.362 

1 - 150 0.993  0.610 103.362 

1 - 200 0.993 0.610 130.588 

1– 240 (all) 0.993 0.610 156.060 

 

 
Figure 18 Effect of the number of PCA components on: classification score, bottom: total running time (bottom) 
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4.2Support vector machine multi-classification  

In this experiment, a grid-search procedure is applied 

on the training dataset to select the optimal kernel 

function as well as optimal hyperparameters values 

for soft margin constant (C) and γ values. A smaller 

value of C ignores points close to the boundary and 

increases the margin where γ >0 is a parameter that 

controls the width of RBF kernel function [70]. The 

SVM multi-classification is applied to hyperspectral 

and RGB as well as the ReliefF and PCA 

dimensionally reduced datasets using 10-fold cross 

validation. The overall classification accuracy values 

are tabulated in Table 5 and corresponding confusion 

matrix are presented in Figure 19. Number of 

samples in validation set and testing set are 2000 and 

200,000, respectively. It can be seen that the 

classification accuracy for 14 foods (out of 20) are 

improved in ReliefF reduced dataset over others.  

Comparing the other 6 foods in all datasets, Potato, 

Rice Noodle, and Spinach (14, 15, and 16) do not 

achieve the desired results. RGB model performance 

is the lowest in recognizing foods with very similar 

color such as Black Bean and Black Olive (2 and 3). 

However, its ability to recognize Rice Noodle (15) is 

the best (50%,) comparing with other models. PCA, 

having the least number of features (less than 4% of 

all features) is the second-best model with nearly 

similar results as ReliefF. From the results, it has 

been found that the ReliefF which retains less than 

half of the features yields results better than RGB, 

PCA, and hyperspectral in terms of classification 

accuracy. However, PCA with only 9 features out of 

240 is reasonable when more complex classifier is 

used to boost the accuracy (> 90%). 

 

 

 
Figure 19 Confusion Matrix, top left: original hyperspectral, top right: RGB, bottom left: PCA, bottom right: 

ReliefF 
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Table 5 Multi-Classification Accuracy on RGB, hyperspectral, PCA reduced and ReliefF reduced datasets 

Datasets Model Spec. Total FTRs Validation Acc. Testing Acc. 

RGB rbf, C=1000, γ =100 3 0.8513 0.3141 

PCA rbf, C=1000, γ =0.001 9 0.9713 0.6140 

ReliefF linear, C=1000 110 0.9966 0.6874 

Hyperspectral linear ,C=100 240 0.9948 0.5850 

 

4.3Logistic regression binary classification 
4.3.1Bean   

Bean classification is the first level of the hierarchical 

binary classification in this work that separate bean 

samples (black, brown, and white bean) from others.  

Among 20,000 training samples, 3000are beans that 

creates an imbalanced binary classification problem. 

To deal with unbalanced datasets, the inverse of label 

distribution is assigned as a weight to samples which 

means bean class, will have weight of 17 and non-

bean class will use weight of 3. So, the penalty of 

wrong prediction of minority class (bean class) would 

be 
  

 
 times more severe than wrong prediction of 

majority class (non-bean class). 

 

The Logic Regression classifier is performed on 

RGB, original hyperspectral as well as PCA and 

ReliefF reduced datasets. Since logistic regression in 

sklearn library is used as binary classifier. There are 

five algorithms that can be selected for optimizations, 

which are liblinear, newton-cg, sag, saga, and lbfgs.  

Hyperparameters such as type of regulation method, 

and C, inverse of λ (regularization strength) 

variations should also be considered.  Again, like the 

previous section, a grid search approach is used to 

search for optimal hyperparameters. Validation set 

results obtained from the ten-fold cross-validation 

procedure by considering 40% of training samples 

which are 8000 while there are 200,000 testing 

samples. The results are reported in Figures 20 and 

Tables 6, and Table 7. 

 

One important reason that bean classification does 

not have high scores is due to the fact that black bean 

and white bean samples have very similar color as 

some other samples such as black olive, white-rice, 

and egg whites. 
4.3.2Noodle                                                            

After separating bean samples, the rest are classified 

based on be-longing to the Noodle group. (1 vs. 0). 

There are three noodle types: egg, rice, and wheat.  

Each has 1000 samples in training dataset. Similar 

experiments have been done and the results are 

provided in Figure 21 and Tables 8 & 9 with 6800 

and 170,000 samples in validation and testing 

datasets, respectively. Similar reason for nearly low 

scores of noodle classification especially on RGB 

dataset is due to color similarity between noodle 

samples and other samples such as rice noodle with 

potato or brown rice. 

 

 

 

Table 6 Bean classification accuracy on different datasets 

Datasets Model Spec. Total FTR Validation Acc. Testing Acc. 

RGB liblinear, C = 1,  λ = L2  3 0.6665 0.5860 

PCA  lbfgs, C = 0.01,  λ = L2 9 0.9436 0.8102 

ReliefF liblinear, C = 10, λ = L2 110 0.9937 0.8818 

Hyperspectral liblinear, C = 10, λ = L2 240 0.9959 0.8953 

 

Table 7 Evaluation metrics of bean classification on different datasets 

Datasets Precision Recall F1- score AUC-ROC 

RGB 0.26 0.96 0.41 0.74 

PCA 0.43 0.82 0.56 0.81 

ReliefF 0.57 0.92 0.70 0.90 

Hyperspectral 0.60 0.94 0.73 0.91 

 

Table 8 Noodle classification accuracy on different datasets 

Datasets Model Spec. Total FTR Validation Acc. Testing Acc. 

RGB liblinear, C = 1, λ = L2 3 0.6531 0.5303 

PCA lbfgs, C = 0.01, λ = L2 9 0.7951 0.6168 

ReliefF liblinear, C = 10, λ = L2 110 0.9155 0.7164 

Hyperspectral liblinear, C = 10, λ = L2 240 0.9554 0.7212 
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Table 9 Evaluation metrics of noodle classification on different datasets 

Datasets Precision Recall F1- core AUC-ROC 

RGB 0.26 0.90 0.40 0.67 

PCA 0.23 0.52 0.32 0.58 

ReliefF 0.35 0.72 0.47 0.72 

Hyperspectral 0.35 0.69 0.47 0.71 

 

 
Figure 20 ROC curve of bean classification, top left: RGB, top right: PCA, bottom left: ReliefF, bottom right: 

original hyper spectral 

 

Figure 21 ROC curve of noodle classification, top left: RGB, top right: PCA, bottom left: ReliefF, bottom right: 

original hyperspectral 
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4.3.3Olive                                                                          

The third step in the binary classification workflow is 

separating the olive samples (green and black) from 

the datasets. After removing the bean and noodle 

samples, there are 14000 training samples out of 

which 2000 of them are olive. The results are shown 

in Figure 22 and Tables 10 and Table 11. The 

number of samples for validation and testing sets are 

5600 and 140,000. Green and black samples do not 

have high color similarity in the remaining training 

dataset samples, so the performance of logistic 

regression on all four datasets is the highest 

compared with two previous results. 

 

 

Table 10 Olive classification accuracy on different datasets 

Datasets Model Spec. Total FTR Validation Acc. Testing Acc. 

RGB liblinear, C = 1, λ = L2 3 0.6968 0.6347 

PCA lbfgs, C = 0.01, λ = L2 9 0.9261 0.9747 

ReliefF liblinear, C = 10, λ = L2 110 0.9824 0.9850 

Hyperspectral liblinear, C = 10,λ = L2 240 0.9843 0.9898 

 

Table 11 Evaluation metrics of olive classification on different datasets 

Datasets Precision Recall F1- score AUC-ROC 

RGB 0.27 0.91 0.42 0.75 

PCA 0.88 0.96 0.92 0.97 

ReliefF 0.92 0.98 0.95 0.98 

Hyperspectral 0.95 0.99 0.97 0.99 

 

 
Figure 22 ROC curve of olive classification, top left: RGB, top right: PCA, bottom left: ReliefF, bottom right: 

original hyperspectral 
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4.3.4Rice                                                                           

The last part of the hierarchical binary classification 

is on rice samples separation from others (10 

different food samples) in the current datasets. Only 

brown rice has nearly similar color as potato. Figure 

23 and Tables 12 and 13 show the rice classification 

results. There are 4800 samples in validation and 

testing set has 120,000 samples. Logistic Regression 

has the best results on hyperspectral and the worst on 

RGB datasets. The ReliefF reduced dataset provides 

the closer result to hyperspectral dataset and even 

better for noodle classification while having less than 

half of all features. 

 

 

Table 12 Rice classification accuracy on different datasets 

Datasets Model Spec. Total FTR Validation Acc. Testing Acc. 

RGB liblinear, C = 1, λ = L2 3 0.9044 0.7907 

PCA lbfgs, C = 0.01, λ = L2 9 0.9774 0.8354 

ReliefF liblinear, C = 10, λ = L2 110 0.9994 0.8507 

Hyperspectral liblinear, C = 10, λ = L2 240 0.9998 0.9081 

 

Table 13 Evaluation metrics of olive classification on different datasets 

Datasets Precision Recall F1- score AUC-ROC 

RGB 0.44 0.92 0.60 0.84 

PCA 0.50 0.86 0.64 0.85 

ReliefF 0.53 0.85 0.66 0.85 

Hyperspectral 0.66 0.92 0.77 0.91 

 

 

Figure 23 ROC curve of rice classification, top left: RGB, top right: PCA, bottom left: ReliefF, bottom right: 

original hyperspectral 
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5.Discussion 
Rapid, objective, and non-destructive ingredients 

recognition is important for precise nutrition 

assessments especially for hospitalized patients. The 

traditional techniques are, however, inaccurate, 

destructive, and time-consuming which make them 

unsuitable for automatic nutrition assessment 

systems. The optical food image recognition 

techniques are currently among the most common 

methods in which food images are used to 

automatically (or semi- automatically) determine the 

type and the quantity of ingredients, then the 

nutritional values of the food can be computed. These 

approaches are widely used in mobile applications. 

Although the conventional color images are used in 

most automatic nutritional assessment systems, 

utilizing only color information will result in the 

lower accuracy of ingredient recognition. This 

problem can be even exacerbated if there are same 

ingredient type samples with different cooking ways 

(different complex food may have the same 

ingredients), or different food types with nearly 

similar color. Thus, other features such as texture, 

shape, and size are required to improve the system 

performance. 

In recent years, hyperspectral imaging (HSI), also 

known as chemical imaging, has shown to be an 

innovative and promising techniques for precise 

assessment of food.  HSI techniques combine 

traditional optical spectroscopy and image processing 

methods into one system to obtain the spatial and 

spectral information simultaneously. 

 

5.1Hyperspectral imaging advantages 

Hyperspectral imaging techniques enable the 

development of a whole range of narrowband indices 

that are used for the determination of various 

characteristics. When analyzing food samples, those 

indices allow the retrieval of specific information, 

such as fat and water content in meat products, which 

is very difficult, even impossible, to achieve in 

experiments using conventional color images 

including RGB images. Furthermore, they have 

potential to increase the accuracy of food recognition 

techniques without having a large database of food 

images, especially in classifying different food 

samples with very similar color or similar food types 

with different colors. 

 

5.2Hyperspectral imaging limitations 

While in general the hyperspectral technology 

performs very well in many food processing systems, 

it does have some limitations. First, it is a costly 

technology, and cannot be used by individuals at 

home, but can be used at the food laboratories and 

medical facilities. Second, the amount of data is too 

large which increases the complexity and the 

processing time as well as causes “Curse of 

dimensionality." Finally, the spatial resolution is too 

low and in the case of requiring high resolution 

images for specific algorithms such as edge 

detectors, it is preferred to use conventional color or 

gray scale images. 

 

6.Conclusion and future work 
In this paper, RGB and hyperspectral features of 20 

different types of food are used for food recognition. 

PCA and ReliefF algorithms are applied on 

hyperspectral datasets to obtain the determine lesser 

but most useful features. Two different classification 

models, SVM multi-classifier and Logistic 

Regression binary classifier are employed on all four 

mentioned datasets to provide an explicit comparison 

between different datasets. Among all, ReliefF with 

the top110 features has the best results in SVM and 

logistic regression respectively. Although PCA 

delivers good results comparing to RGB, ReliefF, and 

hyperspectral, it does not have satisfactory results in 

hierarchical binary classification. RGB data with only 

three-color features shows it’s not suitable for 

recognition of food with similar color.  We reviewed 

some previous studies of similar work in the 

introduction section. Most of the methods use RGB 

data for food recognition. Very few works on using 

HSI for food recognition have been reported. Of the 

research using HSI for food recognition, we find that 

the dataset is either proprietary or contains a small set 

of food types or a specific food type. To the best of 

our knowledge this work is only work that deals with 

comprehensive and mixed food types. Hence, 

comparison to other methods or works is not 

possible. The results of our research are comparable 

to the accuracies of other research work in RGB 

dataset.  Though some RGB systems can achieve 

higher accuracies on average using deep learning 

methods on large database. Our methods have the 

potential to attain higher performances on a larger 

dataset using deep learning. Future work will be to 

improve the results by exploring deep learning as 

well as provide more samples for each food type.  
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