
Title WAVNet: Wide-Area Network virtualization technique for
Virtual Private Cloud

Author(s) Xu, Z; Di, S; Zhang, W; Cheng, L; Wang, CL

Citation
The 40th International Conference on Parallel Processing
(ICPP-2011), Taipei City, Taiwan, 13-16 September
2011. In Proceedings of the 40th ICPP, 2011, p. 285-294

Issue Date 2011

URL http://hdl.handle.net/10722/152016

Rights Proceedings of the International Conference on Parallel
Processing. Copyright © IEEE, Computer Society.

WAVNet: Wide-Area Network Virtualization Technique for Virtual Private Cloud

Zheming Xu, Sheng Di, Weida Zhang, Luwei Cheng, Cho-Li Wang

Department of Computer Science

The University of Hong Kong

Pokfulam Road, Hong Kong

{zmxu, sdi, wdzhang, lwcheng, clwang}@cs.hku.hk

Abstract—A Virtual Private Cloud (VPC) is a secure col-
lection of computing, storage and network resources spanning
multiple sites over Wide Area Network (WAN). With VPC,
computation and services are no longer restricted to a fixed
site but can be relocated dynamically across geographical sites
to improve manageability, performance and fault tolerance. We
propose WAVNet, a layer 2 virtual private network (VPN) which
supports virtual machine live migration over WAN to realize
mobility of execution environment across multiple security
domains. WAVNet adopts a UDP hole punching technique
to achieve direct network connection between two Internet
hosts without special router configuration. We evaluate our
design in an emulated WAN with 64 hosts and also in a real
WAN environment with 10 machines located at seven different
sites across the Asia-Pacific region. The experimental results
show that WAVNet not only achieves close-to-native host-to-
host network bandwidth and latency, but also guarantees more
effective VM live migration than existing solutions.

I. INTRODUCTION

Cloud computing offers a new resource-sharing paradigm,

namely Infrastructure as a Service (IaaS), which provides a

level of abstraction and isolation over underlying physical

resources. By multiplexing shared physical resources using

virtualization technology, services encapsulated in virtual

machines (VMs) can be delivered to end users on demand.

With the increasing number of mobile applications deployed

in various mobile terminals, the concept of cloud com-

puting moves towards dynamic cloud service provisioning

[1]. Cloud services are better off able to be autonomously

migrated to those sites with more adequate resources, instead

of competing for centralized resources at data centers. The

new wave of such cloud paradigm has been witnessed by

the recent cloud storage service providers such as Wuala [2]

and Abacast [3], which leverage peer-to-peer (P2P) structure

to provide online storage services or form content delivery

network (CDN) by harnessing unused storage resource of

desktop computers. Some projects (e.g. Clouds@home [4])

also aim to provide guaranteed computation power using

Internet-connected volunteer resources. The expanding use

of cloud services over Wide Area Network (WAN) makes

the design of cloud platforms go towards a more flexible and

distributed infrastructure with higher elasticity and mobility.

Connecting volunteer resources together to serve as a unified

computing infrastructure poses new challenges to network

infrastructure as in reality, 60%∼80% hosts on the Internet

are actually behind NAT/firewalls [5].

We propose WAVNet (short for Wide-Area Virtualized

Network), a layer-2 network virtualization solution for dy-

namic construction of virtual private Cloud over a WAN

environment. We leverage VM live migration technology

[6] to realize such elastic Cloud Computing paradigm by

dynamically connecting idle desktop computers behind the

NAT/firewalls on the Internet. With WAVNet, each user can

acquire a set of qualified hosts to run his/her tasks con-

currently. New virtual machines can be instantiated locally

and elastically scale-out by live VM migration to utilize

remote computing resources as if they were in a secure and

familiar local computing environment. WAVNet addresses

the following problems:

• Seamless network connection. The wide deployment of

NAT builds a barrier to dynamic construction of virtual

private Cloud over a WAN environment as the hosts

behind a NAT/firewall are only authorized to initiate

outgoing traffic through a limited number of ports

(UDP/TCP) but not authorized to receive incoming

TCP or UDP traffic initiated by a foreign host. How to

support transparent bi-directional network connectivity

between any two computers (hosts or VMs) residing

behind different NAT/firewalls and support live VM

migration is an challenging issue.

• Close-to-native transmission performance. As the vir-

tual network exists as an additional layer atop the native

network, the overhead of processing redundant packet

headers should be minimized.

• Dynamic resource discovery protocol. We target at

users who want multiple non-dedicated computing

resources to complete computation-intensive jobs,

e.g. Bag-of-Task (BoT) applications and web based

applications. We need a dynamic resource discovery

protocol that is able to instantly locate idle hosts to run

user tasks, while satisfying their specific computing

requirements.

Various existing works have explored the area of virtual

networking in pushing virtualization technology over WAN,

2011 International Conference on Parallel Processing

0190-3918/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPP.2011.90

285

yet none of them are suitable for the large-scale private

cloud system. Traditional VPN [7], for example, adds a

virtual IP layer on top of the physical IP layer, yet it

requires a centralized server to forward network traffic, thus

cannot scale to a large number of volunteer hosts. In [8],

“socket remapping” was adopted as an optimized way of

running MPI on virtual machines distributed on the Internet.

Smartsocket [9] provides application libraries to traverse

NAT/firewalls to achieve universal connectivity. However,

these solutions are strictly bundled with specific applica-

tions and require re-implementation of every program that

wants bi-directional connectivity. On the other hand, overlay

networks [10], [11], [12], [13], [14] have been studied

for years to achieve universal connectivity while appearing

transparent to applications running on top. Whereas, these

solutions either suffer from limited scalability [13], [15], or

rely on special configurations on routers or gateways [11],

introducing additional administrative burdens. In compari-

son, WAVNet adopts an additional light-weight virtual IP

layer on top of IPv4 stack to build a virtual communication

channel that can penetrate various NAT/firewalls, including

Full Cone NAT, Restricted Cone NAT, and Restricted Port

Cone NAT. Moreover, WAVNet also takes into account

the locality issue to further optimize the resource grouping

effect.

The rest of the paper is organized as follows. In Section

II, we present our core design on network virtualization,

a.k.a. WAVNet. We mainly consider our contributions on the

performance-oriented design of WAVNet architecture (Sec-

tion II.A) in practice and a set of carefully devised strategies

for improving the virtual network efficiency (Section II.B

∼ II.D). We describe the experimental configurations and

analyze the performance statistics in Section III. The related

works are discussed in Section IV. We conclude our work

and point out future directions in Section V.

II. WAVNET

WAVNet provides a link-layer virtual networking in-

frastructure for constructing a private cloud over a WAN

environment. In order to minimize the cost/overhead of

maintaining idle connections between such NATed hosts, we

adopt a two-layer architecture to organize all the hosts.

As shown in Figure 1, any physical host (e.g. desktop

PC with a private IP address behind NAT) could join the

WAVNet by sending a joining message to at least one

rendezvous server with a public IP address. The rendezvous

server will record the new host’s NAT server IP address and

port number. The connection between the host and its ren-

dezvous server needs to be maintained since the rendezvous

server has to notify new connection requests to this host

from time to time. All of rendezvous servers are organized

by Content Addressable Network (CAN) [16]1, and each

1Due to the P2P structure of the rendezvous layer, we call a rendezvous
server node and a desktop computer host, respectively, in following text.

���

����	
������

��	�
�

�����	������

�����������������

�	�������
�	��

�	�������� �	��������!

�	��������"

#��$������

%��&��'�����

%	��
�
����
�	��

���������������

�(�����

)

)

)*+

)*,

Figure 1. Conceptual view of WAVNet

of them serves as a self-managed peer node/proxy with

resource lookup services and network distance detecting

services. The rendezvous server could be cluster’s frontend

gatekeeper host with a public IP address. If the joining host

has no knowledge about its NAT server IP address, it could

connect to some designated rendezvous servers on Internet

for joining WAVNet. Each rendezvous server periodically

communicates with others over CAN overlay to share the

state information of resource hosts (i.e. desktop hosts).

Any user could raise a resource query from his/her

own desktop PC through its rendezvous server.Whenever

some resource hosts are found by routing query message

among the rendezvous servers, direct connections (arrows in

Figure 1) between involved desktop computers or VMs are

established via WAVNet’s connection setup procedures. This

process connects the resources as if they were connected to

the same Ethernet switch. By explicitly bridging to the hosts’

WAVNet interfaces, VMs are also plugged into the same

link-layer virtual network (virtual LANs in Figure 1). In this

way, provisioning of a virtual private cloud can be carried

out by either requesting instantiation of VM on remote

resources, or migrating customized VMs to remote idle

hosts. These VMs can be accessed by unmodified remote

control interfaces such as remote shell.
In a dynamic virtual network environment, resources

may join and leave. This requires the underlying network

infrastructure to adapt to a frequently-changing working

environment. By leveraging WAVNet as the virtual net-

working infrastructure, VMs over the same virtual LAN

could be migrated freely across different security domains

without interrupting the task execution states and network

connection.

A. System Modules

Figure 2 illustrates the system modules of WAVNet.

Communication between hosts is categorized into two types:

(1) overlay messages between itself and rendezvous servers

286

������
��	�
�����	���

��� ��� ��� ���

�	�����
������&

%��	
�-��'.
������
�
��
����

����	
��������&%��	
�

!*%��� *������
�
���&�'

���/��	�
�
��
&�������0���

����	
��������&%��	
�

!*%���

���/��	�
�

�	�����
������&

%��	
�-��'.
������
�
��
����

��
&�������0���

 *������
�
���&�'

Figure 2. Overview of WAVNet architecture

and (2) data transmitted over direct host-to-host connection.

The former type of communication usually takes place

during host join/leave, resource lookup and so on, while

the latter happens when network applications perform data

transmission. Application data is captured by the user-

level Virtual Network Device (tap), and handed to Packet

Assembler (PA). PA is used to categorize communication

packets and encapsulate them with proper identifiers. The

Wide-Area Virtual Switch (WAV-Switch) functions like an

Ethernet switch: it inspects the hardware address of com-

munication packets and determines the connection over

which the packets will be sent. The difference of WAV-

Switch from an ordinary hardware switch is that WAV-

Switch works for WAN network while a hardware switch

only functions in LAN. After the destination connection is

settled down, the packets are multiplexed over the underlying

physical network device. Resource lookup module is in

charge of the overlay message communication and the basic

connection maintenance (to be discussed in next section)

with its rendezvous server. Although a DHT overlay is used

for resource lookup, the actual data transmission between

any desktop hosts after the connection is established does

not involve the DHT overlay. Such a design avoids the

additional DHT-layer header and processing overhead during

data transmission.

B. Direct Host-to-host Connection

Direct host-to-host connection contains two key oper-

ations: connection establishment and connection mainte-

nance. As described previously, prevalent NAT deployments

prevent Internet hosts from establishing bi-directional con-

nections. Since NAT is not standardized, different Internet

service providers could adopt different policies of port

mapping. We leverage STUN protocol to provide a way of

querying the public IP address and port information of a

NATed host since STUN can detect different types of NAT:

Full Cone NAT, Restricted Cone NAT, Restricted Port Cone

NAT or Symmetric NAT. With STUN, WAVNet driver could

determine if the host is suitable for UDP hole punching or

not. UDP hole punching enables two hosts to set up a direct

peer-to-peer UDP session with the help of a well-known

rendezvous server, even if the hosts are both behind NATs.

In WAVNet, all host-to-host connections are built based on

the combination of STUN protocol and UDP hole punching

techniques. Such techniques could traverse most of real-life

NATs [14].

���

����	
������ ��	�
� �����	�����������������������

#��$������

%��&��'�����

���������������
�

1

�

�!

)

)

#

0
0!

0"

2

#����
�	������'

���	���
	���������	�	��
��

! �����������������

" ������������������
����	�!������� �

2 ����"���#��	�������������

��� #���!
��#��

(����3�����	�3����#�� %	��
�
�����	
��	��

!
"

Figure 3. Host-to-host connection setup

Different from traditional UDP hole punching, the UDP

hole punching in WAVNet is integrated as part of the

resource query layer (CAN overlay) designed for users to

locate most suitable resources in the virtual private cloud.

Resource queries are routed through rendezvous servers, and

the result is returned to the requester. The host’s connection

information, including its rendezvous server’s IP address and

a 2-tuple {NAT server IP: NAT server port} detected when

penetrating its NAT, is encapsulated in the query result.

We give an example with 2-dimensional CAN space in

Figure 3 to illustrate the connection setup procedure. In this

example, suppose node C maintains the resource information

about host b1 because b1’s state (a multi-dimensional vector)

is right overlapped with node C’s zone range. First, the

requester host a1 makes use of its rendezvous server node

A to get the host b1’s information, including the resource

state and the connection information, through CAN overlay

(step 1). Then, two rendezvous servers (A and B) will

communicate with each other to notify the two hosts a1
and b1 the mutual connection information (step 2 and step

3). Finally, host a1 and b1 build direction connection using

hole punching (step 4).

UDP hole punching adopted by WAVNet avoids any

special configurations on routers or gateways. This makes

the whole process of connection setup quite easy. Suppose

user wants host a1 to connect b1, he/she first downloads

the WAVNet driver, which is already configured with well-

known rendezvous server(s). WAVNet will automatically

communicate with the rendezvous server(s) to help the user

find b1 according to user’s description. After a1 gets the pub-

lic information of b1, the WAVNet driver will automatically

connect the hosts through UDP hole punching.

After the connection setup, the two hosts are connected

287

���

���

�(���

��'
������
���4

���

�(���

��'
������
���4

$%�!!!��&���
��'���������!

(%!��&����!�
	��)	��
��!*����!�
��������

�
�������#	�
 #
!#���������+�	&

,%���	���!���� ����)
�+�#����+�	�!�
 ��

���#������+���#

-%!��&��	�������
)	�����	���

���+�	&*�.�	�����
�����'���������!

/%�!!	����
!��&���)	����!

Figure 4. Direct host-to-host tunneling in WAVNet

as if to an Ethernet switch. Therefore, protocols such as

DHCP can be applied without any modification. Moreover,

application data transmission between the connected hosts

will not go through the CAN overlay, which considerably

saves packet header overhead as well as protocol processing

time. Detailed traveling path for each application packet is

shown in Figure 4: once host-to-host direct connection is

established, applications communicate through the virtual

network device (tap). Packets injected to the virtual network

device on the sending end will be captured and tunneled

through the physical network, and transmitted to the re-

ceiving end of the connection, where the original packet

is extracted and injected to the virtual network device. The

communication does not rely on intermediate CAN-overlay

nodes for routing.

One remaining issue is that connections between NATed

hosts must be deliberately kept alive, otherwise the connec-

tion will be lost because NAT can only maintain the con-

nection state for a limited period of time. Thus, periodical

exchange of messages over established connections must be

scheduled such that NAT can re-count the timeout of the

existing connections. However, periodical exchange of ping

messages incurs bandwidth and processing overhead [17].

Therefore, we provide a lightweight CONNECT PULSE

message, which minimizes the overhead by containing only

a header with two bytes. During the exchange of such

messages, NATs along the connection path get notified that

there is still traffic going through the opened port, thus

keeping the port always active.

C. Live VM Migration over WAN

Current Virtual Machine Monitors (VMM) support live

migration within LAN by adopting the bridging mode for

VM networking since NAT and Router modes do not main-

tain network connections. In the bridging mode implemented

by Xen [18], virtual machines have front-end network drivers

that interface with users and back-end drivers in the driver

domain (Domain-0). To make virtual machines stay on the

same link layer as other hosts in LAN, a software bridge

is created, with virtual machines’ back-end drivers and

physical host’s external network devices as software ports.

The key to supporting seamless live migration lies in the link

layer network. When live migration finishes and the virtual

machine is brought up on the destination host, the VMM will

inject an unsolicited ARP broadcast into the software bridge

on behalf of the virtual machine. All physical hosts and vir-

tual machines in the same LAN will receive the ARP frame

and update the location of the migrated virtual machine in

the local cache. Since applications are usually based on IP

protocol, the update of link-layer address does not disrupt the

consistency of connection. The ongoing IP packets will be

sent to the new location of the virtual machine. Nevertheless,

such a seamless live migration cannot be applied to WAN

because of the connectivity problem caused by NATs.

���
����

���
����

����	
����
�����	
���������������

������

���
�	
������������
�������
�

����

�����

���
����

���
����

����	
����
�����	
���������������

���
�	
������������
�������
�

����

�����

���

������ ������ ������

Figure 5. WAN based Live migration support by WAVNet

Figure 5 demonstrates the approach adopted in WAVNet

to enable seamless VM live migration over WAN. Suppose

host 1 and host 2 are connected across WAN according to

the procedures shown in previous section. Therefore link-

layer connection is established between these two hosts.

A dedicated virtual network bridge is created with the tap
device as the external port. Link layer frames injected by

virtual machines and VMM will be extracted by WAVNet

and tunneled to the other end. When VM live migration

is performed, the ARP broadcast will be forwarded by

WAVNet to all connected hosts. Existing open connections to

the migrated virtual machine will not be disrupted and ongo-

ing data stream will not be confused with the location change

of the virtual machine. This is fundamentally different from

the solutions that are built upon layer-3 overlays and resorted

to DHT updates by broadcasting the information. Such

approach may lead to much longer downtime time of the

migrating virtual machine perceived by other hosts.

D. Host Selection for Virtual Cluster

Using the CAN protocol, each host could locate a set

of other resource hosts quickly, by taking multiple attributes

into account , such as available CPU and memory. For some

Bag-of-Task applications which are bandwidth or latency

sensitive (e.g. MPI tasks and FTP/SCP services), the group

of hosts selected need to communicate with each other

with high connection quality. By using a distance locator
deployed in each rendezvous server, we could dynamically

locate a set of mutually near hosts in WAVNet to construct

288

a virtual cluster according to users’ demand (e.g. number of

hosts they need).

By analyzing the mutual connection latency among the

WAN hosts, we devise an approximation optimal algo-

rithm performed at distance locators for host selection. We

model the grouping problem as a combinatorial optimization

problem: given N candidate hosts, we construct an N×N
matrix, whose elements are the mutual network latency.

The objective is to find a group of k hosts such that the

average network latency among these hosts is minimized

(i.e. Formula (1), where Π refers to the candidate resource

set).

L(Π) =

∑
x,y∈Π latency(x, y)

C2
|Π|

(1)

Although the grouping problem mentioned above is not

NP-complete because we could verify all the solutions

(a.k.a. brute-force method) in Ck
N steps, the time complexity

(O(Nk)) looking for the optimal solution is still too high to

be tolerable in practice. Hence, we design a novel approx-

imation algorithm of grouping hosts in vicinity to optimize

the constructed virtual cluster’s execution efficiency.

Our model assume the WAN network latency conforms

to symmetric property and transitive property with high

probability, as illustrated in Formula (2) and Formula (3),

where � means that the former host pings the latter host

with low latency. Such properties were also observed on

hosts connected in Planetlab [19].

Host A � Host B ⇒ Host B � Host A (2)

HostA�HostB,HostB�HostC ⇒ HostA�HostC (3)

Our algorithm is performed on each distance locator co-

located with the rendezvous server. The algorithm consists

of two parts. The first part is to maintain a latency matrix

by pefiodically communicating with neighbors. Each row in

this matrix is always sorted in an increasing order. Upon

receiving a request, only the second part (a.k.a. grouping

algorithm) would be triggered to generate the group of

Internet-connected hosts with optimized mutual communi-

cation status on WAN. Obviously, the response time of any

request is only related to the complexity of the grouping

algorithm (i.e. second part). Suppose there are N candidate

hosts aggregated on the rendevous server and k hosts or

VMs are to be selected for user task’s consumption. Based

on the latency matrix with sorted connection elements on

each row, the grouping algorithm will group the first k+1

elements (namely k+1-group) at each row, and create k
different combinations using any k elements (namely k-

group) from the k+1 elements. And then, the algorithm will

check all the k·N candidate solutions and filter those with at

least one unreasonable or over-large connection. Finally, the

best k-group from the remaining choices with the minimal

average latency will be selected. It is easy to see that the

time complexity of the grouping algorithm is O(N ·k), which

is far less than that of brute-force method (O(Nk)).

III. EXPERIMENTS AND EVALUATIONS

We evaluate the performance of WAVNet under two

different environments: (1) a real WAN environment with

machines located at seven different geographical sites as

shown in Table I, each machine running Xen 3.1 and Linux

2.6 operating system. The 3rd column shows the ping latency

from HKU to each site. It should be noted that KVM virtual

machines are used in two sites to validate the generality

of our solution. One rendezvous server with public IP

addresses is configured at Hong Kong. (2) an emulated WAN

environment with up to 64 machines connected by four fast

Ethernet switches. Eight machines are equipped with 32GB

memory and two quad-core 2.6GHz E5540 Xeon CPU. The

rest are commodity PCs, each with one 2.2GHz Pentium

4 CPU and 2GB memory. The NAT/firewalls on gateway

PCs is configured by adding rules in iptables nat table. We

use Linux traffic controller (tc) to shape network bandwidth

for simulating different network conditions. We show that

WAVNet is not only able to support VM live migration over

WAN effectively, but also deliver advantageous performance

over IPOP [10] in various conditions. We also evaluate

the performance of the proposed locality-sensitive grouping

strategy over Planetlab [19].
Table I

HOST CONFIGURATION IN A REAL WAN ENVIRONMENT

Sites Machine Info. Lat. (ms)
Providence University Intel Core 2 Quad Q6600

30.2
(PU), Taiwan 2.40GHz (4085MB)

Academia Sinica Intel Xeon E5520 2.27GHz
24.8

(Sinica), Taiwan (KVM with 2 cores, 8183MB)

Advanced Industrial Sci. Intel Core 2 Duo E6300
75.8

and Tech. (AIST), Japan 1.86GHz (3191MB)

San Diego Supercomputer Intel Xeon 3.20GHz
271.2

Center (SDSC), USA (KVM with 4 cores, 16383MB)

Intel Core 2 Duo T7250

0.5
The University of Hong 3.20GHz (1526MB)

Kong (HKU), HK and Intel Pentium 4
2.80GHz (1526MB)

Home PC connected by pub- Intel Pentium 4 2.80GHz
4.4

-lic network (OffCam), HK (1279MB)

Shenzhen Inst. of Advanced Intel Pentium 4 2.80GHz
74.2

Tech. (SIAT), China (1279MB)

A. Link Throughput and Latency

We first compare latency measurements of WAVNet with

IPOP in the real WAN environment, with respect to the

physical network. The latency measurement was done by

performing ICMP echo test, each lasting 10 minutes to en-

sure the accuracy of the evaluation. The result is summarized

in Table II. Due to the long distance connection, the packet

handling overheads were amortized by the long network

latency. So both WAVNet and IPOP achieve performance

equally well and are close to the physical network.

We use ttcp to measure the bandwidth of network con-

nections under IPOP and WAVNet over WAN (HKU-SIAT).

In Figure 6, it is observed that both WAVNet and IPOP

289

Table II
NETWORK LATENCY TEST BY ICMP REQUEST/RESPONSE

Sites Mean Round-Trip Time (msec)
Physical WAVNet IPOP

HKU-SIAT 74.244 74.207 74.596

HKU-PU 30.233 30.753 31.187

SIAT-PU 219.427 219.783 220.533

achieves 57% to 85% of the physical network bandwidth, yet

in almost all cases WAVNet outperforms IPOP. This reflects

that WAVNet imposes less overhead in handling the packets

than IPOP.

 0

 500

 1000

 1500

 2000

 2500

 3000

64MB 128MB 256MB

T
ra

n
s
fe

r
R

a
te

(K
B

p
s
)

Transfer Size (buf size=16384B)

TTCP Benchmarking over WAN (HKU-SIAT)

Physical
WAVNet
IPOP

Figure 6. TTCP bandwidth benchmark

We further evaluate the bandwidth performance of end-to-

end connection built on WAVNet virtual network, under the

emulated WAN environment. Netperf TCP STREAM test

is performed to generate network traffic, with duration of

360 seconds. The average statistic of 10 tests leads to the

final result. As shown in Figure 7, in all cases, WAVNet

has near-to-native performance. This confirms that the pro-

cessing overhead of WAVNet is small. We also evaluate the

performance of IPOP under the same network conditions.

When the network is highly congested (e.g. WAN bandwidth

is small), IPOP performs slightly worse than WAVNet. When

the underlying network is less congested, IPOP shows a

deficient performance, which is less than 20% of the native

performance. This reveals that WAVNet can better utilize the

available physical bandwidth, particularly when the network

capacity of WAN/MAN is large.

 0

 0.5

 1

6.25 12.5 25 50 100

R
e
la

ti
v
e
 B

a
n
d
w

id
th

WAN bandwidth (Mbps)

Physical
WAVNet

IPOP

Figure 7. Bandwidth utilization under different network conditions

B. Scalability of Virtual Networking

WAVNet requires periodical exchange of messages over

established connections to maintain the connection state,

which may affect the scalability of virtual networking. For

instance, in the case of 64-host cluster, every node has

to establish 63 direct host-to-host connections with other

hosts. In the experiment, we setup virtual clusters connected

through WAVNet with 8, 16, 24, 32, 48, 64 hosts. We select

one node in the virtual cluster and use Netperf to measure

the host-to-host network bandwidth from this node to the rest

of nodes and calculate the average bandwidth. We analyze

the overheads of host-to-host connections in maintaining

such virtual cluster in WAVNet by measuring the Netperf

performance under different virtual cluster sizes.

We set the period of message exchange for keeping

connections alive to be 5 seconds, which is short enough

in comparison with NAT’s timeout (usually a couple of

minutes). Figure 8 shows that in a virtual cluster consisting

of 64 hosts, bandwidth performance for each host is not

degraded compared with those with smaller number of hosts

(e.g. 8 hosts). On the other hand, IPOP suffers a notably

degraded performance as the number of hosts increases,

due to the extra overheads occurred in data transmission

over multiple intermediate routing hosts based on its rigid

routing algorithm. With increasing number of WAN hosts,

the number of intermediate routing hosts is expected to

increase under IPOP, which leads to a decreasing perfor-

mance. The physical topology would also severely affect

the performance in IPOP. WAVNet bypasses overlay routing

while performing data transmission. Netperf performance

under WAVNet is relatively more consistent even the cluster

size increases.

 0

 20

 40

 60

 80

 100

 8 16 24 32 48 64

N
e

tw
o

rk
 B

a
n

d
w

id
th

 o
f

P
h

y
s
ic

a
l
H

o
s
t

(M
b

p
s
)

Number of nodes in virtual clusters

Physical
WAVNet

Figure 8. The Netperf performance while scaling virtual cluster size

C. VM Live Migration over WAN

We evaluate live VM migration over the emulated WAN

and the real WAN environment based on the Netperf

TCP STREAM tests. We demonstrate that WAVNet could

perform seamless VM live migration with persistent network

connectivity. We use the Netperf TCP STREAM tests to

poll the TCP transmission performance, which is reported

every 500ms. The virtual machine is installed with CentOS.

VM migration is triggered manually, sometime after polling

process starts.

We first report the network bandwidth of the VM during

live migration under the emulated WAN environment. Each

290

 0

 20

 40

 60

 80

 100

 0 40 80 120 160 200 240 280 320

N
e

tw
o

rk
 B

a
n
d

w
id

th
 o

f
V

M
 (

M
b

p
s
)

Time (sec)

LAN
WAVNet

IPOP

Figure 9. VM Network Bandwidth Test During Live Migration

VM is configured with a memory size of 256MB. Figure 9

compares the measured performance under IPOP, WAVNet,

and native network (denoted as “LAN”). VM migration takes

around 20 seconds under LAN and Netperf reports about

95% of native bandwidth. IPOP achieves less than 10%

of the native bandwidth, while VM migration takes around

130 seconds. After the VM is migrated, the Netperf test

is even stalled in IPOP, because IPOP is not aware of the

move of the VM, and continues routing the packets to the

source host. WAVNet can achieve around 60% of the native

network bandwidth, meanwhile the migration takes less than

30 seconds and the Netperf session could continue after

the live migration finishes. We also use tcpdump to capture

the link-layer ARP broadcast that is dispatched when live

migration finishes. tcpdump actively listens to the network

interface for ARP frames that pass by. In LAN, when live

migration of VM is finished, an ARP frame is captured by

tcpdump and the content is printed. When we use WAVNet

and let tcpdump listen to the tap device, a similar ARP

frame is also captured, reflecting that WAVNet could tunnel

the link-layer frames in supporting VM migration over the

emulated WAN.

To evaluate the effectiveness and performance of VM

live migration across a real WAN environment, we use

rendezvous server layer to establish the connection among

hosts from different geographical sites, including Hong

Kong, mainland China, Taiwan, Japan and United States. It

should be noted that the rendezvous server does not involve

in the host-to-host communication after the connection is

established, as explained in Section II.

Firstly, we evaluate how VM migration can improve the

access locality by migrating http server for better request

throughput and shorter http connection time. We set up

an http server on a VM with 128MB memory located in

SIAT, one http client in HKU1 and another http client

in Sinica. The VM in SIAT will be migrated to another

host in HKU (denoted as HKU2). In client side we use

ApacheBench (AB), a web site stress test benchmark, to

measure the request connection time and throughput for

the underlying WAVNet network before/after VM migration.

Table III shows the http connection time results obtained

from HKU1 client and Sinica client, and Table IV shows

Table III
HTTP CONNECTION TIME BEFORE/AFTER VM MIGRATION

Client and VM Location Ping Lat. Conn. Time (msec)
(msec) Min Mean Max

Sinica to VM@SIAT (before migr.) 100.3 99 107 148

Sinica to VM@HKU2 (after migr.) 24.8 25 33 67

HKU1 to VM@SIAT (before migr.) 74.2 76 80 90

HKU1 to VM@HKU2 (after migr.) 0.5 0 7 16

Table IV
HTTP THROUGHPUT BEFORE/AFTER VM MIGRATION

Client and VM Location WAVNet bw AB Thp. (# req. /sec)
(Mbps) 1K 8K 64K

Sinica to VM@SIAT (before migr.) 18.05 432.9 215.1 45.7

Sinica to VM@HKU2 (after migr.) 21.69 583.3 332.3 53.9

HKU1 to VM@SIAT (before migr.) 18.6 473.1 288.9 56.9

HKU1 to VM@HKU2 (after migr.) 79.15 775.5 461.8 128.2

http request throughput with different requested file sizes. In

Sinica client, the network latency to VM in SIAT is around

100ms with Netperf TCP throughput of 18.05Mbits/sec,

while after VM is migrated to HKU2 over WAVNet, network

latency to VM is 24.8ms and the Netperf TCP throughput

reports 21.69Mbits/sec. Similarly in HKU1 client, after

VM migration the network latency to VM improves from

74.2ms to 0.5ms, and Netperf TCP throughput improves

from 18.6Mbits/sec to 79.15Mbits/sec. Since the underlying

network condition is much better after VM migration, the

http connection time and http throughput are both improved.

This reflects that better user experience is achieved, as http

server can be migrated to a nearby host to provide more

responsive service.

We further analyze the VM down time, ICMP packet

loss, and provide a micro-view on ping latency and HTTP

throughput during VM live migration. The purpose is to re-

port the service quality and availability during the period of

VM live migration. As shown in Figure 10, we individually

migrate the VM from OffCam, AIST and SIAT to a host

in HKU. During VM live migration, we run ApacheBench

on another host in HKU to request for a 1KB file from

the VM, with concurrency set at 50 for illustration purpose.

Meanwhile, we use ping to measure the network latency

and reflect packet loss during VM live migration. In Figure

10 (a)-(c), time zero represents the moment that VM live

migration is triggered. The duration of VM down time is

shown as the short interval between two vertical dashed

lines. For example in Figure 10(a), the ping test is started

30 seconds before VM live migration is triggered and the

client starts sending http requests 10 seconds before that.

It can be seen that after we start sending http requests,

ping test reports higher RTT due to heavy network traffic

generated by http requests. When VM migration is triggered,

HTTP throughput drops from 600 requests/sec to nearly 300

requests/sec, meanwhile ping test also suffers packet loss.

Once the VM migration is finished and relocated in HKU

which is very near to the testing clients, significant improve-

ments can be observed that the throughput increases to over

1500 requests/sec and ping latency decreases to less than

15ms. Similar phenomena can be found in Figure 10(b) and

291

 0

 20

 40

 60

 80

 100

 120

 140

 160

-20 0 20 40 60 80 100 120
 0

 500

 1000

 1500

 2000

 2500
IC

M
P

 R
T

T
 (

m
s
)

A
B

 T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

Time (s)

Ping RTT
AB Thp.

(a) AIST-HKU, VM down time is 2.1s.

 0 50 100 150
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0

 500

 1000

 1500

 2000

 2500

IC
M

P
 R

T
T

 (
m

s
)

A
B

 T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

Time (s)

Ping RTT
AB Thp.

(b) SIAT-HKU, VM down time is 1.0s.

-30 -20 -10 0 10 20 30 40 50 60
 0

 20

 40

 60

 80

 100

 120

 140

 160

 0

 500

 1000

 1500

 2000

 2500

IC
M

P
 R

T
T

 (
m

s
)

A
B

 T
h

ro
u

g
h

p
u

t
(r

e
q

/s
e

c
)

Time (s)

Ping RTT
AB Thp.

(c) OffCam-HKU, VM down time is 0.6s.

Figure 10. ICMP RTT and HTTP throughput during VM live migration (× represents ICMP packet loss)

Table V
TIME OF VM LIVE MIGRATION AMONG DIFFERENT SITES

Sites RTT (ms) WAVNet bw Time taken (s)
(Mbps) 128M 512M

OffCam-HKU 4.4 86.39 16 120

Sinica-HKU 24.8 42.93 92.5 202.5

AIST-HKU 75.8 55.1 107.5 208

SIAT-HKU 74.2 18.6 130 377.5

SDSC-HKU 217.2 27.17 310.5 1023

(c). As OffCam-HKU has a much higher network bandwidth,

the heavy data traffic passing through the software bridge

might interfere ping tests and result in higher jitter.

We also evaluate the migration time of VM with different

memory sizes under different network conditions in Table V.

We test the VM memory size of 128MB and 512MB, and

individually migrate the VM from OffCam, Sinica, AIST,

SIAT and SDSC to HKU. The testing results show that under

the same physical network, bigger VM memory size results

in longer migration time as more data is needed to transmit.

Also, the network with low latency and high bandwidth can

benefit VM migration time in various aspects. For instance,

the VM migration time of AIST-HKU is three to five times

faster than that of SDSC-HKU. We also found that under the

same network condition, VM migration time is not always

proportional to the VM memory size, as Xen adopts pre-

copy strategy to transmit dirty memory pages in several

rounds[6]. The first round Xen transmits all the pages to

destination host. However, as the VM at the source node is

still alive and might continuously update its memory pages,

in each round afterwards, Xen transmits the pages updated

in previous round. The larger the network latency is, the

longer each round takes. Thus, more dirty pages are likely

to be generated, and more data volume will be migrated in

each round.

We evaluate the performance benefit that VM live migra-

tion brings to parallel applications over WAN. We implement

the MPI program of heat distribution problem [20], and

set up the experiment environment as follows: four virtual

machines are connected through WAVNet to run MPI heat

distribution test, with three of them located in HKU and

one located in SIAT. We then measure different problem

sizes of 64×64, 128×128 and 256×256 respectively, where

m × m refers to a square with m2 uniformly distributed

sensor points. Figure 11 shows that without VM migration,

the MPI tasks for problem size 64×64, 128×128, 256×256

last for 397s, 1214s and 3798s apiece. Comparably in the

second test, we migrate the VM in SIAT to one host in HKU

after the program starts. Results show that the MPI tasks

with VM migration last for 121s, 179s and 365s respectively,

which are 30.5%, 14.7% and 4.7% of the time without VM

migration. This is because the VMs are closer to each other

after the VM migration, while without VM migration, the

communication between SIAT and HKU is the bottleneck.

Lastly, the execution of MPI application is not disrupted

during the migration process, which also proves WAVNet’s

ability to support seamless VM live migration with persistent

network connectivity.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

64x64 128x128 256x256M
P

I
h
e
a
t-

d
is

tr
ib

u
ti
o
n
 e

x
e
c
u
ti
o
n
 t
im

e

 w
it
h
/w

it
h
o
u
t
V

M
 m

ig
ra

ti
o
n
(s

e
c
)

heat-distribution problem size

w/o VM migration
with VM migration
VM migration time

Figure 11. MPICH heat distribution test

D. Locality-sensitive Grouping Strategy on Planetlab

We evaluate our locality-sensitive grouping strategy over

Planetlab among 400 randomly selected hosts around the

world, using NAS MPI parallel benchmark [21]. Among

the 400 hosts, there should be P 2
400=159600 bidirectional

connections. Based on the symmetrical property of network

latency (Formula (2)), we used about half number of the

connections (80000 connections) to observe the network

status. Figure 12 (a) and (b) show the network latency

distributions within 10 seconds and 1 second respectively.

Figure 13 shows the average latency (i.e. L(Π) calculated

by our grouping algorithm (Formula (1)), as well as the

lowerbound and upperbound of the latency range, where the

292

 0

 2000

 4000

 6000

 8000

 10000

 0 10000 20000 30000 40000 50000 60000

N
e
tw

o
rk

 L
a
te

n
c
y
 (

m
s
)

Host Pairs

(a) Network latency within 10 sec

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10000 20000 30000 40000 50000 60000

N
e
tw

o
rk

 L
a
te

n
c
y
 (

m
s
)

Host Pairs

(b) Network latency within 1 sec

Figure 12. Network latency reported on Planetlab (400 hosts)

number of hosts involved are 2∼75. In our test, when the

number of hosts of virtual cluster is individually set to be 8,

16, 32 and 64, the average latency is only 1.3ms, 15.4ms,

26.1ms and 54.1ms respectively, with the upperbound la-

tency be 1.9, 25.4, 44.8 and 67.3. The results confirm

the effectiveness of our designed locality-sensitive strategy

especially compared to the original distribution (Figure 12).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70A
v
e

ra
g

e
 &

 M
a

x
im

u
m

 L
a

te
n

c
y
 (

m
s
)

Number of hosts constructed in a virtual cluster

 Avg Latency

Max Latency

Figure 13. Average and Maximum Latency within Virtual Cluster

We choose an embarrassing parallel (EP) case and a non-

embarrassing parallel (NP) case in NAS benchmark library

and test them on a small virtual cluster. The NP case is

solved using Fast Fourier transform (FFT) program. Figure

14 shows the experimental results using 4 hosts and 8

hosts. In the comparative case, 4 or 8 hosts are randomly

chosen from 64 hosts pre-selected by our locality-sensitive

grouping method, in order to guarantee that the selected

hosts still have reasonable inter-connectability between each

other. As seen from the two figures, the locality-sensitive

method could effectively improve the communication quality

of virtual cluster constructed on WAVNet, particularly for

non-embarrassing parallel (NP) case because FFT highly

relies on the inter-host communication.

IV. RELATED WORK

Overlay network [10], [11], [12], [13], [14], [22] is the

main track of existing network virtulization research, which

aims to achieve universal connectivity meanwhile appear

transparent to the applications running above. VOILIN

[13], [15] proposes “vSwitch” and “vRouter” as virtual

networking infrastructure to simulate physical networking

devices, but all network traffic must go through the virtual

network devices, which limits its scalability. VNET [12],

 0

 50

 100

 150

 200

EP(A) EP(B)

T
im

e
 (

s
)

Benchmark Case

Random Virtual Cluster
Locality-sensitive Virtual Cluster

(a) EP with 4 hosts

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

FT(A) FT(B)

T
im

e
 (

s
)

Benchmark Case

Random Virtual Cluster
Locality-sensitive Virtual Cluster

(b) FFT with 4 hosts

 0

 50

 100

 150

 200

EP(A) EP(B)

T
im

e
 (

s
)

Benchmark Case

Random Virtual Cluster
Locality-sensitive Virtual Cluster

(c) EP with 8 hosts

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

FT(A) FT(B)

T
im

e
 (

s
)

Benchmark Case

Random Virtual Cluster
Locality-sensitive Virtual Cluster

(d) FFT with 8 hosts

Figure 14. Locality-sensitive Method vs. Random Selection Method

[23] is a layer-2 solution for tunneling Ethernet frames,

yet it requires fixed public servers to act as proxies to

tunnel network traffic for end hosts and cannot group hosts

for users to optimize the intro-group communication. ViNe

[11] provides a dynamic routing infrastructure to allow

connectivity and isolate virtual clusters over multiple sites,

yet requires routers and gateways to be specially configured,

which potentially involves additional administrative effort

every time when new sites join. Some other solutions, like

CloudNet [24], make use of VPLS [25] technology and

provide bi-directional network connectivity among Internet

hosts, but alo require every router to be specially configured

to form a giant “Internet switch”, introducing non-ignorable

burdens to users.

The most similar work to WAVNet is perhaps IPOP [17],

which also makes use of NAT hole punching techniques

and a user-level virtual network device to build overlay

networks. Although this solution is self-configured and

scalable to certain extent, it does not address the following

issues: 1) Processing overhead of each packet through the

additional P2P routing layer severely degrades the network

performance. Such performance might offset the advantages

that virtual networks bring, making it more difficult to

be accepted. 2) It confines the number of direct host-to-

host connections each peer is able to maintain. While in

reality, users tend to run parallel programs that rely on mul-

tiple high-performing direct connections for inter-process

communications. 3) Whenever virtual machines migrate,

the IPOP program needs to be killed and restarted at the

destination (for interface/hybrid mode) or all other relevant

peers in the P2P overlay needs to be informed of the updated

location of the migrating VM (for router mode), which

interrupts all connections that the VM maintains prior to

migration. This is undesirable in situations when VMs are

likely to re-locate during the execution of parallel tasks,

293

for load-balance or fault-tolerance purposes. 4) In terms of

resource discovery, P2P overlay of IPOP is not aware of

physical resource availability of peers except for aimlessly

checking the existence of IP addresses, which is neither

meaningful nor efficient from a user’s point of view.

V. CONCLUSION

In this paper, we present a performance-oriented network

virtualization model, WAVNet, which can well adapt to

dynamic provisioning of IaaS over the large-scale wide-area

network. WAVNet provides a link-layer virtual network that

tunnels application packets for any Internet-connected hosts

even behind NAT/firewalls. Direct host-to-host connection

among resources discovered over rendezvous layer (CAN

overlay) allows users to utilize the available physical band-

width with minimal cost. On top of WAVNet, users can

also build their own virtual clusters that could expand or

shrink in number of available resources. Seamless WAN-

based VM live migration, a key technology supporting fault

tolerance and load balance for large-scale cloud system,

is implemented in our WAVNet. Our experiments show

that WAVNet delivers advantageous performance over the

previous solutions, not only about the VM live migration

but also on various practical applications. Experiments reveal

that parallel computation (such as MPI programs) can not

only be executed in a local-area network, but also be trans-

parently/conveniently carried out over wide-area network

efficiently using our designed WAVNet.

ACKNOWLEDGMENTS

This research is supported by a Hong Kong RGC grant

HKU 7179/09E and a HKU Basic Research grant (Grant

No. 10401460), and also in part by a Hong Kong UGC

Special Equipment Grant (SEG HKU09). Special thanks also

to SIAT, AIST, SDSC, Sinica and PU, for their kind help in

providing machines.

REFERENCES

[1] R. K. K. Ma, K. T. Lam, C.-L. Wang, and C. Zhang, “A
stack-on-demand execution model for elastic computing,” in
Proc. 39th Int. Conf. Parallel Processing, 2010, pp. 208–217.

[2] Wuala: http://www.wuala.com/.

[3] Abacast: http://www.abacast.com/.

[4] Clouds@home: http://clouds.gforge.inria.fr.

[5] Y. Huang, T. Z. J. Fu, D. M. Chiu, J. C. S. Lui, and C. Huang,
“Challenges, design and analysis of a large-scale p2p-vod
system,” in Proc. 2003 Conf. Applications, Technologies,
Architectures, and Protocols for Computer Communications,
2008, pp. 375–388.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield, “Live migration of
virtual machines,” in Proc. 2th USENIX Conf. Networked
Systems Design and Implementation, 2005, pp. 273–286.

[7] OpenVPN: http://openvpn.net/.

[8] Z. Pan, X. Ren, R. Eigenmann, and D. Xu, “Executing MPI
programs on virtual machines in an internet sharing system,”
in Proc. 20th Int. Parallel and Distributed Processing Sym-
posium, 2006, pp. 101–110.

[9] J. Maassen and H. E. Bal, “Smartsockets: solving the con-
nectivity problems in grid computing,” in Proc. 16th Int.
Symposium on High Performance Distributed Computing,
2007.

[10] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo, “IP
over P2P: Enabling self-configuring virtual ip networks for
grid computing,” in Proc. 20th Int. Parallel and Distributed
Processing Symposium, 2006.

[11] M. Tsugawa and J. Fortes, “A virtual network (ViNe) ar-
chitecture for grid computing,” Proc. 20th Int. Parallel and
Distributed Processing Symposium, pp. 10–19, 2006.

[12] A. I. Sundararaj and P. A. Dinda, “Towards virtual networks
for virtual machine grid computing,” in Proc. 3rd Conf.
Virtual Machine Research And Technology Symposium, 2004.

[13] X. Jiang and D. Xu, “VIOLIN: Virtual internetworking on
overlay infrastructure,” in Parallel and Distributed Processing
and Applications, December 2004.

[14] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communi-
cation across network address translators,” in Proc. USENIX
Annual Technical Conf., 2005, pp. 179–192.

[15] P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen, “Auto-
nomic live adaptation of virtual computational environments
in a multi-domain infrastructure,” in Proc. 3rd IEEE Int. Conf.
Autonomic Computing , 2006, pp. 5–14.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network,” in
Proc. 2001 Conf. Applications, Technologies, Architectures,
and Protocols for Computer Communications, vol. 31, no. 4,
October 2001, pp. 161–172.

[17] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo,
“WOW: Self-organizing wide area overlay networks of virtual
workstations,” in Proc. 15th Int. Symposium on High Perfor-
mance Distributed Computing, vol. 5, 2006, pp. 30–41.

[18] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. 9th ACM Symposium on Operating
Systems Principles, 2003, pp. 164–177.

[19] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “PlanetLab: an overlay
testbed for broad-coverage services,” ACM SIGCOMM Com-
puter Communication Review, vol. 33, pp. 3–12, July 2003.

[20] M. J. Quinn, Parallel Programming in C with MPI and
OpenMP, 2003.

[21] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski,
H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS parallel benchmarks,” The International Journal of
Supercomputer Applications, vol. 5, no. 3, pp. 63–73, 1991.

[22] L. Deri and R. Andrews, “N2N: A layer two peer-to-peer
VPN,” in Proc. 2nd Int. Conf. Autonomous Infrastructure,
Management and Security: Resilient Networks and Services,
2008, pp. 53–64.

[23] J. R. Lange and P. A. Dinda, “Transparent network services
via a virtual traffic layer for virtual machines,” in Proc. 16th
Int. Symposium on High Performance Distributed Computing,
2007, pp. 23–32.

[24] CloudNet: http://www.cloud-net.org/.

[25] OpenVPN: http://openvpn.net/.

294

