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1 Introduction 

One of the most demanding tasks in Grid computing is the 
case of resource allocation to application workloads, that is, 
the process of mapping jobs to distributed heterogeneous 
resources (Berstis, 2002; Moreno and Alonso-Conde, 2004). 
By resources, we mean those computing (processing nodes) 
and non-computing systems involved in the scheduling 
process. Similarly, by jobs we mean any user’s experimental 
tasks that are meant to be executed by the available 
resource. Another major difficulty that is associated with 
resource allocation in the Grid is the lack of exact resource 
status information and proper documenting of log history 
for every scheduling event. However, researchers have 
proposed several efficient scheduling algorithms and 
computational models that are used in the Grid resources 
with special emphases on job scheduling. See Shojafar et al. 
(2010), Bu et al. (2008), Gao et al. (2005), Izakian et al. 
(2009) and Ramakrishan et al. (2009). 

With the current advancement in the Grid computing 
domain, many research institutions such as universities and 
corporate organisations have shown keen interest in the Grid 
computing technology, as they exploit and integrate this 
platform into their computing infrastructures (Foster and 
Kesselman, 2005). Generally, Virtual laboratory is one 
application area that is built upon the Grid architecture 
(Afsarmanesh et al., 2000; Lawenda et al., 2004a; Lawenda  
et al., 2004b; Handschuh et al., 2009, p.31; Handschuh, 
2012). The virtual laboratory also requires and depends upon 
geographically distributed heterogeneous computing and non-
computing resources. Therefore, the Grid architecture is a 
natural fit for actualising the goals of developing an effective 
virtual laboratory with the key requirements for resource 
management and scheduling (Afsarmanesh et al., 2001; 
Weitzel, 2011). 

There are a number of challenging issues associated 
with the basic operation of the virtual laboratory,1 which are 
very similar to those mentioned above for the Grid 
computing platform. For running applications, resource 
management and job scheduling are the most crucial 
problems identified as the bottleneck to the smooth 
operation of the virtual laboratory system. 

The research was conducted at the Department of 
Computer Science, Distributed Computing Laboratory Section, 
Ahmadu Bello University, Zaria, Nigeria. Based on the 
ongoing networking of IT infrastructure project which foresees 
the networking of both physical and natural science research 
laboratory facilities on the campus, the paper presents a 
framework model that handles the aspect of resource allocation 
and tasks scheduling platform for the natural science laboratory 
equipment available in the university. 

The main focus of this work is to establish efficient 
resource scheduling modalities that will have significant 

influence on setting up multidisciplinary virtual experiment 
laboratory framework2 that will allow taking control on 
many different devices. The rest of the paper is organised as 
follows. A survey of related work is discussed in Section 2. 
The proposed conceptual model for the resource management 
system is presented in Section 3. Section 4 introduces the 
scheduling mechanism and Section 5 covers the derivations 
of mathematical models required by the matchmaker 
algorithm to manipulate the processes involved in job-
resource allocation techniques, while Section 6 presents 
experimental setup and numerical analysis results. Section 7 
summarises the results and discusses future directions. 

2 Related work 

Inside distributed system environments, scheduling algorithms 
play an important role in deciding where to schedule 
incoming or already submitted application jobs. However, 
their influence is restricted to taking decisions and cannot 
actually apply them. In order to apply the scheduling 
decisions taken by a scheduler, a resource management 
system is required. The resource management system 
provides a set of services which vary depending on the 
system but usually involves taking jobs and physically 
assigning them to resources based on the logical assignment 
done by the scheduling algorithm. Inside a Grid, we can 
generally view the scheduling algorithm as the legislative 
entity and the resource management system as the executive 
part (Frincu, 2011). Likewise, several projects have been 
built which provided the required technology for managing 
batch jobs within a single distributed system or domain. 
These sections shortly discuss some of the two key projects 
that are closely related to the work presented in this paper. 

2.1 Condor 

Condor (Thain et al., 2005) is a distributed computing 
resource management environment for high-throughput 
applications which harnesses idle time on managed 
resources and has capabilities for their sharing (Frincu, 
2011). Condor provides numerous advanced functionalities 
such as job arrays and workflow support, check-pointing, 
job migration, rescheduling and fault recovery. It enables 
users to define resource requirements and rank resources 
and mechanism for transferring files to and from remote 
machines. In other words, it offers intra-domain resource 
management methods that allow users to harness multi-
domain resources as if they all belong to one personal 
domain. A collector is responsible for information storage 
and listens for service advertisements. The resources are 
advertised by a resource agent, which periodically informs 
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the collector on the available services. A matchmaker agent 
is responsible for determining which resource advertised by 
the collector matches the desired job. It is also responsible 
for performing the scheduling of jobs inside a Condor. 
Although the system is being utilised for resources 
integration, it is actually intended to be used in smaller scale 
distributed system environments and thus should be seen 
more as a local job management system rather than a 
middleware for Grid. 

2.2 Condor G 

Condor-G (Berman et al., 2005) is an extension of the 
distributed resource management software discussed in 
Section 2.1. Condor-G enables using Condor tools for 
submitting jobs online to Grid infrastructures. However, 
Condor-G was not designed to carter for job scheduling, but 
rather to execute jobs across remote distributed resource by 
using grid middleware. The matchmaking mechanism in 
Condor-G enhances it with the ability to make use of some 
available matchmaking algorithm to schedule jobs to Grid 
resource. In Condor-G matchmaking mechanism users 
describe their applications with the classAds language and 
submit them to the matchmaker. This also enables users to 
describe custom attributes for jobs and resources. Some of the 
major disadvantages (Frey et al., 2002) of Condor-G 
Matchmaking are lack of support for parallel jobs, lack of 
implicit data-aware scheduling, though users can explicitly 
define resources, those closer to input data are preferred. 
Also, in the current version, it is not possible to define a 
custom scheduling algorithm. Another issue associated with 
Condor-G Matchmaking is that it lacks integration with grid 
information systems. In order to use Condor-G Matchmaking, 
one has to develop a custom system that will provide 
information about resources to Condor-G Matchmaker. 

In the proposed work, an attempt has been made to develop 
an enhanced version of job-resource matchmaking mechanism 
that dynamically allocates best laboratory resources to different 
user jobs in a distributed heterogeneous environment. Based on 
the empirical framework presented in this paper, it is assumed 
that the proposed technique performs optimally with respect to 
allocating parallel jobs to best matched resources. The 
matchmaking mechanism introduced here is very flexible as to 
allow for integration with the Grid information system. The 
backbone of the proposed resource matchmaking algorithm 
relies on using some mathematical concepts presented in 
Section 5 of this paper to perform its matching techniques. 

3 Resource management system 

Since the virtual laboratory is modelled upon the Gird 
architecture, there is the problem of decentralised policies in 
terms of distributed resource-sharing or allocation. The 
laboratory equipment and computational resources might be 
hosted across geographical locations owned by collaborating 
universities and research institutes. Each of these resources 
owners’ may use different localised resource allocation 
strategies for their operational scenarios; therefore, the case 
of adopting a centralised resources allocation manager is not 

feasible. In line with the Grid interoperability and scalability 
objectives, standard mechanisms can be deployed which can 
be configured with appropriate localised allocation policies 
(Foster et al., 2001; Galstyan et al., 2005). It has also been 
assumed to an extent that traditional scheduling systems are 
often distinguished by their strategies, as embodied in 
algorithms and deployment parameters (Foster and 
Kesselman, 2003; Liu, 2007). Indications from previous 
work on Grid platform deployment indicates that individual 
system users as well as brokering intermediaries apply 
allocation strategies to their own jobs in addition to the 
traditional resource provider’s, making allocation decisions 
for sets of jobs onto large resources (Czajkowski et al., 
1998; Czajkowski et al., 2002; Venugopal, 2006). 

It is therefore significant to understand what the impact 
of these decision will be on the performance of the entire 
resource utilisation for the given virtual laboratory system. 
The knowledge will somehow influence architectural 
decisions as well as scheduling strategies adopted for 
federated resource sharing within a scalable grid problem-
solving environment. 

3.1 Model of virtual laboratory resource 
management system 

The Virtual Laboratory Resource Management system plays 
a very significant role in handling the operational activities 
that occurs between the different application domains and 
the resources located on the Grid. To construct virtual 
laboratories, the grid architecture is deployed. Grid 
computing allows for increase in the computational power 
due to combining of multiple resources and implementation 
of any application. Therefore, it is considered as a core 
component of the virtual Laboratory system. Figure 1 
represents the structural diagram for the resource 
management system architecture. The system provides users 
with such functions as job submission, resource discovery, 
job management and monitoring. The scheduling model 
consists of job collector, scheduler, manager, information 
collector and database. 

3.1.1 Assumption about resources 

The assumption made when modelling a problem determines 
the variations of that problem that the model will support. We 
assume and incorporate two types of resources namely 
computational resources (such as computer clusters, servers, 
laboratory devices with processing ability, memory and so 
on) and non-computational resources (such as some 
laboratory apparatus lacking computing abilities, storage 
devices, software for experiment execution and so on). 
However, the distinction between computational and non-
computational resources is somewhat tenuous; in some cases, 
non-computational resource may become computational 
resource. For this, it implies that the non-computational 
resource also possesses some computing ability or processing 
power similar to that of the computational resource. Some of 
the basic assumptions made in this paper are explained in 
details and presented in following section. 
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Figure 1 Architecture of virtual laboratory resources management system 

 

3.1.2 Assumption about tasks 

Two types of users’ submitted jobs are assumed in the 
course of the system modelling, namely; experimental and 
computational tasks. For the experimental type of job, tasks 
are usually submitted to laboratory devices for execution, 
the device specifications or credentials have to be identified 
beforehand. While for the computational type of job, tasks 
are submitted to one of the application servers or computation 
nodes.  

3.1.3 Job collector 

As earlier mentioned, the virtual laboratory is synonymous 
to a multidisciplinary problem solving environment. The 
nature of tasks being handled on this platform is 
heterogeneous and distributed in nature and encompasses 
different research fields and application areas. The function 

of the job collector is to gather the basic information about 
submitted jobs that are necessary for further processing and 
as required by the entire global scheduling process and store 
them in the job information log database. Some of the key 
job credentials required for execution include job title, 
location, necessary parameters for execution and the 
destination directory path name for the generated output file 
and so on. The job collector is normally a user-oriented 
interface linking the job monitoring module to the web 
service which serves as a message carrier for the global 
scheduler. 

3.1.4 Grid information service 

The Grid information service integrates every other component 
of information services, whether static or dynamic, in the Grid 
system to provide a unified information access interface for 
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application users. Information service mainly includes two 
parts that comprise of resource acquisition and evaluation. 
Information services within the context of Grid environment 
provide a number of dynamic updates information such as the 
load, performance and so on. Some of the static information 
services provided by the Grid system with respect to resources 
deployable in virtual laboratories are: IP addresses for 
laboratory devices, operating system and storage capacity and 
other relevant information. 

3.1.5 Administrative domain 

Each administrative domain is comparable with remote 
virtual site location capable of providing resources on 
demand and rendering services akin to most problem-
solving environment upon the computational Grid. A virtual 
site may consist of multiple physical sites if they are 
interconnected by a high bandwidth network. Each site 
consists of computational servers, laboratory devices, 
storage systems, visualisation servers and software for 
experiment execution. A virtual site can be thought of as a 
‘regional resource centre’, a composite object containing a 
number of data servers, processing nodes and software for 
laboratory experiment execution where all are connected to 
a local area network. 

4 Scheduling model 

The scheduler is responsible for resource discovery, resource 
selection and job assignment. The resource discovery algorithm 
interacts with an information service (the Grid Information 
Service), identifies the list of authorised and available machines 
and equipment that can execute the submitted tasks and keeps 
track of resource status information. The resource selection 
algorithm is responsible for selecting those resources that meet 
the required performance criteria (CPU – hours, storage 
capacity, processing speed, network bandwidth and so on...) 
along with optimisation requirements (Han et al., 2008). The 
scheduling model shown in Figure 2 consists of scheduler, job 
analyser, resource discovery, resource selection, schedule 
generation, schedule selection and information collector. The 
resource selection, schedule generation and schedule selection 
involves detailed information about performance capabilities 
and most importantly they revolve around a more informed 
decision-making process that provides some high level of 
intelligence to the operational activity of the resource 

management system. 
It would be significant to understand those integral 

components that make up the building blocks of the scientific 
virtual laboratory; these include the system application user, 
scheduler, resource management centre, resources and 
laboratory equipment. A user first logs on to make use of the 
preferred domain application resident in the virtual lab, 
experiment is performed by the user and job is submitted to 
scheduler. The scheduler first analyses the job, splits it into 
various tasks and distributes the tasks to several resources 

based on the resource information collected from the resource 
manager. Allocation of resource is only made when user’s 
requirement matches with the available resource profile. 

Figure 2 A structure of scheduling model 

 

4.1 Job submitting 

The work of the job submitting module is to schedule job to 
resource node in accordance with the scheduler results. 
Uniformity in job distribution is achieved by the scheduler 
via generating log files for job and transferring it to a 
specific resource node. Unfortunately, the execution of 
users’ submitted jobs greatly depends on the steadiness of 
the local grid resource, as there are times when a job might 
fail to execute. The job monitoring module monitors the 
updating job profile information available in the job status 
log table; this is very important and mandatory so as to 
enable the system deal with any job failure execution.  

In the course of job scheduling, a job passes through 
several states (Venugopal, 2006) as is outlined in Figure 3. A 
job is an input to the scheduler which allocates it to a set of 
resources based on its requirements profiles. The first status of 
any user job is the ‘ready’ state, after which the status is then 
changed to ‘scheduled’. During the ‘stage in’ state, which is the 
point when the job is to be admitted into the remote scheduling 
process, input profiles and executables required for the job are 
staged to the remote resource. When this process is completed 
successfully and a handle is obtained, then a job is considered 
to be finally ‘submitted’. The job may be queued while waiting 
for an available processor and its state changes to ‘pending’. 
When the job starts its execution, it is considered ‘active’. After 
the job has finished executing, it enters the ‘stage out’ stage 
where its output profiles are transferred back to the resource 
provider. If all its output profiles are received and are as 
expected by the task requirements, then the job is considered as 
‘done’. If any one of the state transitions fails on the remote 
side or the job has completed on the remote side but has not 
produced the expected result profiles, then it is considered 
‘failed’ and is reassigned for rescheduling. Also if the job was 
interrupted and could not complete the execution process or it 
is terminated prematurely, then it is considered ‘aborted’ and is 
re-set for scheduling. 
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4.2 Resource manager 

The Resource Manager consists of the following 
components: Grid monitor, Hidden Markov Model (HMM) 
and resource analyser. A similar model has been introduced 
by Jacob et al. (2011). It often provides mediatory services 
among the following group of activities: requester, 
matchmaker and the Grid service providers. The resource 
manager receives request from the requester and receives 
the results from the matchmaker engine and gives back to 
the scheduler. It manages all resources in various Grid sites. 
The resource manager accepts the resource into the grid site 
only if the matchmaker ontology matches with the resource 
ontology (ontology is a formal explicit specification of  
a shared conceptualisation3 (Gruber, 1993)). The Resource 
Manager acts like a registry in which the resources 
ontologies and locations are registered. The Resource 
Manager checks the request and resource ontology and 
directs the request to the appropriate resource providers and 
sends the result back to the requester.  

Figure 3 Grid platform job execution phases (see online version 
for colours) 

 

4.3 Matchmaker 

The matchmaking framework depicted in Figure 4 includes a 
resource specification component and matchmaking algorithms. 
Upon receiving a request (a request is composed using 
vocabulary in the request ontology) the matchmaker activates 
the matching algorithm to find a list of potential matches  
sorted according to the requester’s preference criteria. The 
matchmaker simply returns the matched list (or NoMatchFound) 
to the requester (i.e. feedback). The matchmaker gets all 
resource’s ontology from the Resource Manager. It matches the 
resource with the request by considering the static, dynamic 
and behavioural parameters in ontology and uses the 
mathematical models (presented in Section 4.) to calculate the 
matching degree. After calculating the matching degree, it 
calculates the rank for the resource by considering weight value 
for each parameter and forwards the result to the Resource 

Manager. The requester can then claim the resource by 
contacting the resource providers for their services via the 
resource manager using the claiming rule (which comprises of 
validly matched results ontology). 

Figure 4 Matchmaker activity framework 

 
 
 
 

Requester Matchmaker 
(Matching Algorithm) 

Resource Manager 
(Resource Negotiator) 

Send a request

Return a set of 
candidate resource 

*Request for resource specifications 

Claiming resource

Grid sites 

Send a copy of matching result to RM 
for storage 

Send back found specifications 

Resource Providers 
(resource ontology) 

Publish resource speciation

 

*A request specification includes a matchmaking function 
and possibly two additional constraints, a cardinality 
threshold and a matching degree threshold. The cardinality 
threshold specifies how many resources are expected  
to be returned by the matchmaking service. The matching 
degree threshold specifies the least matching degree of the 
resources returned by the service. 

The four major steps involved in the matchmaking 
process are described as follows: (a) Resource providers 
advertise by sending their resource descriptions to the 
resource manager; (b) A requester sends request comprising 
of resource specifications to the matchmaker; (c) The 
matchmaker executes a matchmaking algorithm based on the 
requester’s order by first sending request to RM to confirm 
the availability of the requested resource specifications, if 
resource available, RM sends back all the results to the 
matchmaker to implement matching process and returns a set 
of ranked resources to the requester and also stores a similar 
copy in RM; (d) The requester chooses the highest ranked 
resource from the set and then contacts the corresponding 
resource provider directly to claim the resource. 

4.4 Schedule generation 

Schedule generation module performs the tasks of 
generating schedule marks ID containing log reference ID; 
indexes of selected distributed resource; IP address of 
selected resource; job description; job states and other 
related information that are required to effect schedule 
decision that will lead to the desired job execution. On the 
other hand, when a fault is detected in any of the resource 
nodes by the resource monitor, the process of schedule 
generation is re-scheduled again so as to achieve effective 
scheduling result. The process is repeated for n number of 
times in as much as there is n number of jobs in the job 
queue awaiting execution. 
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4.5 Matchmaking resource and request 
specifications 

The set of rule for constructing the attribute names for an 
attribute as stated by Bai et al. (2004) are: 

1 If the attribute refers to a slot of the resource class, the 
attribute name is the slot name. 

2 If a slot of the resource class refers to an instance of 
other class and the attribute refers to a slot of this 
instance, the attribute name is the combination of the 
two slot names connected by “.” 

Following the same conceptual view of the above rule, we 
can construct an attribute name for a set of experimental 
devices/apparatus say with resource class ‘microscope’ in 
the following format: 

Both requests and resources are expected to share 
similarity in their specification and representation syntax, 
either in the form of attribute-value pairs or any other 
acceptable format that is known to both the application 
users and resource providers. It is equally important to note 
that for the matching process to work properly, it is 
suggested that both the requester and resource providers use 
the same attribute naming convention and agree upon 
attribute values beforehand. Figures 5 and 6 are two 
examples of resource and request specifications represented 
in the form of attribute-value pairs. These illustrations are 
nothing more than abstract denotation of previous 
explanation of resource matching and allocation by the 
matchmaking framework.  

Figure 5 Example of resource instance: seven set of electron 
microscope 

Microscope.Name = “Electron.bio.edu” 
Microscope.IPAddress = “microscope.electron.bio.abu.edu” 
Microscope.resolutionSE = 3.0nm at 30kv (high vacuum mode) 
Microscope.resolutionBSE = 4.0nm at 30kv (variable pressure mode)
Microscope.Magnification = “x5 ~ x300.000” 
Microscope.AcceleratingVoltage = 0.3 – 30kv 
Microscope.LowVacuumRange  = 6 ~ 270 pa through graphic menu 
Microscope.OperatingSystem  = “windowsXP” 
Microscope.MaximumSpecimen.Size =153mm in diameter 
Microscope.NumberAvailable = 7 
. . .  

Figure 6 Example of request specifications 

Request.Name=”user1” 
Request.ResourceType = “Microscope” 
Request.Resource.Name = “Electron.bio.edu” 
Request.Resource.IPAddress = “microscope.electron.bio.abu.edu” 
Request.Resource.resolutionSE = 3.0nm at 30kv (high vacuum mode) 
Request.Resource.resolutionBSE = 4.0nm at 30kv (variable pressure mode)
Request.Resource.Magnification = “x5 ~ x300.000” 
Request.Resource.AcceleratingVoltage = 0.3 – 30kv 
Request.Resource.LowVacuumRange  = 6 ~ 270 pa through graphic menu 
Request.Resource.OperatingSystem  = “windowsXP” 
Request.Resource.NumberAvailable = 3 
. . .  

4.6 Scheduling algorithms 

Several implementations of the matchmaking frameworks 
and algorithms exist in literature; see (Kuokka and Harada, 
1995; Bai et al., 2004; Liu and He, 2007; Shu et al., 2007; 
Han et al., 2008). Part of the services rendered by the 
matchmaker is to execute a matching algorithm for each 
request sent by the requester. The inputs to the algorithm are 
the request and the grid resource instances stored in the 
knowledge base of the matchmaking service. The matchmaking 
algorithm evaluates the request function in the context of each 
resource instance in the knowledge base. The output of the 
algorithm is a number of grid resources ranked according to 
their matching degrees. Let n denote the cardinality threshold 
specified by the request. The matchmaking algorithm returns 
the grid resources that have the n largest matching degrees to 
the requester. The matching degrees are computed using the 
mathematical models discussed in section 5. In a nutshell, 
these models distinctively distinguish our algorithmic 
framework from those found in literatures. The pseudo code 
of the matchmaking algorithm is shown in algorithm listing 1. 

Algorithm 1: Pseudo-code for the match maker agent 

1: Input: req //request specification for resource Ri 

2: Output: matched list of set of candidate resource 
instances cr 

3: BEGIN 

4: cr =  

5: n = req.CardinalityThreshold; 

6: mdt = req.MatchedDegreeThreshold; 

7: /* Matchmaker gets corresponding resource specification  

8:  (ontology) for Ri from RM */ 

9: for each resource r in Ri do 

10:   for i = 1to k do // where k is the kth resource instance 

11: // compute the matching degree md for resource r 

12: md = compute req.RequestFunction(r[i]); 

13: if (md>=mdt)then 

14:  cr[i] r[i]; //insert r into cr 

15:  update.cr_size;  

16:  // cr_size is the size of the cardinality set cr 

17: endif 

18: if (cr_size > k*n)then 

19:  break; 

20: endif 

21: //compute the ranking expression pik for the set of  

22:  //candidate resource instances cr 

23:  cr(ri ) {pi1, pi2,,pik }; // store result in cr and 
RM 

24: //we use pik to denote the k-th candidate for the i-th 
resource in cr 

25: end for 

26: end for 

27: END 
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The ranking process adopted for the framework considers an 
instance where resource that compare equally receive the 
same ranking number (an instance of multiple resource 
request by user) and the next resource(s) receive the 
immediately following ranking number. Equivalently, each 
resource’s ranking number is one plus the numbers of 
resources ranked above it that are distinct with respect to the 
ranking order. Thus, if r1 ranks ahead of r2 and r3 (which 
compares equally) which are both ranked ahead of r4, then 
r1 gets ranking number 1 (‘first’), r2 gets ranking number 2 
(‘joint second’), r3 also gets ranking number 2 (‘joint 
second’) and r4 gets ranking number 3 (‘third’). 

5 Mathematical modelling 

The virtual laboratory system has its own peculiar challenges 
when it comes to resource sharing and/or scheduling. Tasks are 
interactive and are scheduled according to dynamic 
measurement scenario. Also time slot reservation is required 
for experiments execution, especially for those experiments 
that need supervision or observation by multiple individuals 
online. Therefore the authors have assumed that the best 
approach to solve the resource management problem for virtual 
laboratory system is to tackle the problem by adopting several 
computational models. The hyper-heuristic method and hybrid 
algorithms are examples of where multiple techniques were 
merged and used to achieve quality results (Braun et al., 2003; 
Ritchie and Levine, 2004; Bhanu and Gopalan, 2008). In this 
research, we follow a similar trend by considering different 
mathematical models that can assist us solve the problem of 
multiple resource selection in the Grid system with regard to 
virtual laboratory application. However, the objective of 
introducing this concept is to devise suitable ways of achieving 
optimal resource selection by the scheduling system. 

5.1 Mapping model 

In the system under consideration, we assume that there are 
n distributed and shared resources R1, R2,,Rn, comprising 
of compute and non-compute resources as specified by the 
resource requirements and m independent jobs X1, X2,,Xm 
competing for the resources. We also assume that Xi and Xj 
can compete for one resource, for i ≠ j. If we let R = {R1, R2, 
Rn} and X = {X1, X2, Xm}, then we can define a non-
invertible function f (a function which does not have an 
inverse except for the case where f = R) from X to R as 
follows: F:X → R. We say that two sets X and Y of jobs are 
compatible if ( ) ( )f X f Y   , otherwise, X and Y are 

incompatible. That is, resource allocation can only take 
place from one resource R to more than one job sets if the 
job sets all have the same attributes. However, allocation 
between the resource R and a job X occurs if the function F: 
X → R exists. In this case, we say that X is compatible with 
R. Figure 7 is a diagrammatical representation of the 
compatibility relation between job-resource assignments as 
explained earlier on. 

5.2 Statistical modelling 

The suboptimal resource is selected by considering some 
basic statistical techniques such as assignment technique, 
correlation technique, sample testing technique and 
measures of dispersion. The remaining part of this section is 
devoted to developing statistical model to ascertain the 
degree of correctness of the proposed virtual laboratory 
resource management systems. 

Figure 7 Compatibility job to resource assignment 

 

5.2.1 Parameter (assignment technique) 

Resources usually have sets of attributes or credentials that 
are used to identify them on the grid. Some of these 
attributes are resource name, resource type (this is further 
categorised into compute and non-compute resource types), 
memory sizes, resource capacity, resource IP addresses and 
so on, depending on the resource providers’ requirements’ 
definition policies. If an application user provides this set of 
resource information alongside its submitted jobs, then the 
resource will be chosen among the various resources that 
closely match the request using assignment method. Table 1 
shows job-resource assignment, while Figure 8 illustrates 
the job-resource assignment strategy. 

Figure 8 Job assignment strategies 

 

 R11, R12, R13, R14, R15 

 R21, R22, R23, R24, R25 

 R31, R32, R33, R34, R35 

 R41, R42, R43, R44, R45 

 R51, R52, R53, R54, R55 

X1             X11, X12, X13, X14, X15 

Job      job with resource parameters 

X2           X21, X22, X23, X24, X25 

Job     job with resource parameters 

X3           X31, X32, X33, X34, X35 

Job      job with resource parameters 

X4           X41, X42, X43, X44, X45 

Job      job with resource parameters 

X5          X51, X52, X53, X54, X55 

Job     job with resource parameters 

 
 



16 A.E. Ezugwu, S.M. Buhari and S.B. Junaidu  
 

Table 1 Job-resource assignment 

Job-resource assignment 
Resource Job ID Resource ID 

 

Y1 Y2 Y3 Y4 Y5 … Yn 

Name X1 Y1 XI R11 R12 R13 R14 R15  

IP address X2 Y2 X2 R21 R22 R23 R24 R25  

Memory X3 Y3 X3 R31 R32 R33 R34 R35  

Type X4 Y4 X4 R41 R42 R43 R44 R45  

Capacity X5 Y5 X5 R55 R52 R53 R54 R55  

… … … … …  

… … … … …  

… Xm Yn Xm  … Rmn 

5.2.2 Parameter (correlation technique) 

Information on the relationship between two sets of 
variables can be obtained by the use of correlation 
coefficients. Correlation coefficient shows the following: 

1 Whether the relationship is positive or negative. 

2 The strength of the relationship. 

The correlation between the request and the resource is 
calculated using the following: 

Let  1 2 3, , ,..., mX X X X X  represent a set of jobs, 

where Xm is the m-th job. 

Let  1 2 3, , ,..., nR R R R R  be the set of resources, where 

Rn is the n-th resource available in the grid. 
Let 
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where i = 1,2,,n 

m = total available number of resources 

XjRij = sum of the product of paired j-th job to j-th resource  

Xj = sum of i-th jobs in the job pool 

Rij = sum of i-th participating resources 

We use the symbol ri to stand for the correlation. Through the 
magic of mathematics it turns out that R will always lie  
 

between –1.0 and +1.0. If the correlation is negative, we have a 
negative relationship; if it’s positive, the relationship is 
positive. A negative correlation indicates poor relationship 
between placed request and the probability of finding suitable 
resources (which invariably produces a poor response time). 
However, a positive correlation indicates good relationship 
between resource request and finding suitable resource. 

5.2.3 Parameter (sample testing technique)  

The behaviour of service is calculated by testing of samples for 
each parameter based on the following single regression model: 

1 2

Observational value of

the number of resources usedi i iY X      (1) 

1 2

Estimated value of the

number of re
ˆ ˆ

sources usedi i iY X e     (2) 

1 2

The estimated average valueˆ
of the resou

ˆ ˆ
rces usedi iXY     (3) 

where 

Xi = the number of response time per second 

1 = the actual value of the intercept term 

2 = the actual value of the slope 

1̂ = the estimator of 1 

2̂ = the estimator of 2 

i = the stochastic term (unobservable) 

ei = the error term (observable) 

6 Experimental setup 

The experiments conducted are aimed at showing the 
efficiency of the proposed algorithm compared to the 
existing one in Condor-G. The experiment was conducted 
with 1600 resource providers with varying number of 
resources. The request sent per time ranges from 1 to 100. It  
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was assumed that all service providers are available at all 
time, provided they are free with their resources. The 
number of requests served per second increases as the 
system receives more jobs. The optimal resource is  
selected by considering mapping model, assignment model, 
correlation model, testing of samples and measures of 
dispersion. The experimental findings and results are 
presented in Section 6.2. 

6.1 Simulation tools 

The implementation of the experiments was performed on 
GridSim Version 4.0 simulator. GridSim is a java-based 
discrete event Grid simulation toolkit. This simulation software 
enables us to directly evaluate the practicability and test the 
performance of the proposed scheduling strategy presented  
in this paper. It also provides a comprehensive facility for 
simulation of different classes of heterogeneous distributed 
resources, users, applications, resource brokers and schedulers 
(Buyya and Murshed, 2002). An econometric model was 
likewise used to analyse the result of the mathematical models. 
Econometric model is a statistical model used in econometrics; 
the model specifies the statistical relationship that is believed to 
hold between the various quantities under study. To compare 
the relative performance of the existing Condor G matchmaker 
algorithm, we simulated a serial job allocation mechanism and 
then compared the simulation results with that of the proposed 
algorithm. It has been mentioned that the existing technology 
matches jobs to resources sequentially. 

6.2 Experimental results and analysis of the 
mathematical models 

This section is a discussion on the implementation and 
analysis of the model presented in Section 4. Descriptive 
statistics and regression analysis were used to perform data 
analysis for entries in Table 2. Econometric model was used 
to analyse the effect of the average response time (sec.) on 
the number of resources. 

Table 2 Time taken to find the best matched resources for a 
job by statistical method 

Time taken in second 
No. of 

Resources 
No. of 
Jobs Parameter 

I 
Parameter 

II 
Parameter 

III 
Total Average

200 10 379 18 10 407 135.67 

400 10 798 21 14 833 277.67 

600 10 1310 25 16 1351 450.33 

800 10 1768 27 20 1815 605.00 

1000 10 2502 29 21 2552 850.67 

1200 10 3122 30 23 3175 1058.33

1400 10 3599 31 23 3653 1217.67

1600 10 4218 32 24 4274 1424.67

Table 3 presents three experimental results obtained for 
various scenarios using statistical methods. The time  
taken for each of the mathematical models, which is the 

assignment and correlation method, was found and then 
their total average time for which the best matched resource 
to a job was computed. However, it was observed that as the 
number of resources increase, the average time taken to find 
the best matched resource increases gradually. 

Table 3 Descriptive statistics 

 Mean Std. deviation N 

number of resources 900.00 489.898 8 

average response time 
(sec.) 

752.50 461.422 8 

The average number of resources is 900. The mean of the 
average response time (sec.) is 752.5. According to Table 3, 
the standard deviation of the number of resources is 489.9 
and the standard deviation for the average response time 
(sec.) is 461.4. Standard deviation here implies the measures 
of the spread or how far each of the set of resource is from 
the mean or centre of the available resource distribution. 

Table 4 indicates that the value of the coefficient of 
determination is 0.99 which shows that the average response 
time (sec.) explain the variation of the number of resources 
around their mean value of 900 for about 99%. 

Table 4 Model summary 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .998a .996 .995 33.001 

Notes: a Predictors: (Constant), average response time 
(sec.). 

Table 5 shows that the explanatory power of the model is 
significant, that is, the 99% variation in the number of 
resources is accounted for by the average time (sec.) is 
significant. On the other hand only 1% of the variation in the 
number of resources is due to random happenings (residual). 

Table 5 ANOVAb 

Model Sum of squares df Mean square F Sig. 

Regression 1673465.693 1 1673465.693 1536.627 .000a

Residual 6534.307 6 1089.051 – – 1

Total 1680000.000 7 – – – 

Notes: a Predictors: (Constant), average response time 
(sec.). 

  b Dependent variable: number of resources. 

According to Table 6, the value of the intercept term is 
102.6, that is, if the average response time (sec.) is zero the 
number of average response time is expected to be 102.6. 
The slope of the model is 1.1 indicating that if the average 
response time (sec.) changes by one, averagely the number 
of resources changes by 1.1. The p-value of the coefficient 
being less than the theoretical level of significance which is 
5%, we can conclude that the intercept term and the slope of 
the regression model are significant. This further shows that 
there is a significant relationship between the average 
response time (sec.) and the number of resources. 
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Table 6 Coefficientsa 

Model Unstandardised  
coefficients 

Standardised 
coefficients 

95% confidence  
interval for 1 

 1 Std. Error 1 

t Sig. 

Lower bound Upper bound 

(Constant) 102.614 23.450 – 4.376 .005 45.234 159.995 1 
average response 

time (sec.) 
1.060 .027 .998 39.200 .000 .994 1.126 

Notes: a Dependent variable: number of resources. 

We explain below some of the terms in Table 6: 
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2nt


  = tabulated value of t-statistic 

2
ix  = square deviation of the number of response time from 

their mean 

ei = the error term (observable) 
2ˆ  = estimated variance of the stochastic disturbance term  

n = sample size 

 = 5% (type I error) 

Figure 9 shows the impact of scheduling users’ job amidst 
large number of available grid resource. As the number of 
resources increase, the average time taken in seconds to find a 
suitable resources increases likewise, especially for the 
assignment technique which adopt a static means of matching 
jobs to resources. However, the remaining two models 
decrease the search time significantly irrespective of the 
number of jobs to resources ratio available at any given time. 

Figure 9 Measurement of time to allocate n number of resources 
(see online version for colours) 

 

Figure 10 illustrates the average response time performance of 
the existing Condor-G matchmaker mechanism with our 
proposed model. One major disadvantage of the existing 

mechanism as stated earlier, is that the system simply assumes 
that it is dealing with serial jobs even when the jobs are 
distributed. However, the proposed job allocation mechanism is 
dynamic and has the capability of detecting job parallelism and 
likewise handles distributed job allocation efficiently. 

Figure 10 Comparison between the existing matchmaker algorithm 
with the proposed algorithm for the average response 
time taken to find the best matched resources (see online 
version for colours) 

 

The measure of dispersion for both proposed and existing 
models based on the computed standard deviations is 
illustrated in Figure 11. The standard deviation indicates the 
measure of dispersion for the average response time with 
respect to resource distribution.  

Figure 11 Comparison of measure of dispersion for the average 
response time for the existing and proposed matchmaking 
methods (see online version for colours) 
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7 Conclusion and future directions 

This paper addresses some of the challenges that could be 
encountered in the course of developing an efficient scheduling 
model for solving resource allocation problems in a 
heterogeneous distributed problem solving environment such 
as the scientific virtual laboratory framework. Resource 
management system and scheduling models are proposed for 
allocating resource to users’ submitted jobs and scheduling of 
multiple workloads for scientific virtual laboratory applications. 
The experimental result obtained indicates that the proposed 
model will be efficient enough to perform multiple tasks 
scheduling with shareable and distributed grid resources. It is 
also anticipated that the proposed model should be able to 
balance the processing workloads of users’ submitted jobs 
efficiently. We are planning to adapt the proposed model in 
dynamic real-time processing environments to collaborative 
scientific experiment application. With such improvements, the 
model can be integrated into the virtual laboratory scheduling 
scheme in order to improve their performance. 

The proposed framework described in this paper is a 
step in the direction of providing a flexible environment to 
support both current and future applications and their 
emerging requirements for the challenging issues that come 
with various workflow scenarios in the virtual laboratory 
framework described by Handschuh et al. (2009), Lawenda 
et al. (2004b) and Imamagic et al. (2006). 
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Notes 

1 Virtual Laboratory is generally perceived as a heterogeneous, 
distributed environment, which allows scientists and 
engineers from different geographical location to conduct 
experiments with the usage of physical laboratory devices, 
perform simulation using computational application software; 
enable communication and collaboration among users 
working on the same group of research projects. 

2 From service connection point of view, VL can be divided 
into three levels of operational activities: the user interface, 
the application server and the device server. More so, from 
architectural point of view it can be portioned into four layers: 
Access layer, Grid layer, Supervisory layer and Resources 
layer. Also see Lawenda et al. (2004b). 

3 Conceptualisation is an abstract and simplified view of the 
world that we wish to represent for some purpose. 


