
8 Int. J. Grid and Utility Computing, Vol. 6, No. 1, 2015

Copyright © 2015 Inderscience Enterprises Ltd.

Resource management system for scientific virtual
laboratory applications

Absalom E. Ezugwu*
Department of Computer Science,
Faculty of Science,
Federal University Lafia,
Lafia, Nigeria
Email: ezugwu.absalom@fulafia.edu.ng
*Corresponding author

Seyed M. Buhari
Department of Information Technology,
Faculty of Computing and Information Technology,
King Abdulaziz University,
Jeddah, Saudi Arabia
Email: mesbukary@kau.edu.sa

Sahalu B. Junaidu
Department of Mathematics,
Faculty of Science,
Ahmadu Bello University, Zaria,
Zaria, Nigeria
Email: sahalu@abu.edu.ng

Abstract: The paper presents a conceptual framework for a resource management system
designed for remote virtual laboratory experimentation in both the natural and physical sciences
domains. One of the key problems addressed in this paper is the use of a mathematical model to
solve resource allocation or task scheduling problems in a dynamic Grid environment that
consists of a heterogeneous distributed cyberinfrastructure. The main focus of this paper however
includes: architectural design model for scientific virtual laboratory tasks scheduling framework,
resource allocation matchmaking algorithm design, mathematical modelling of resource
allocation optimisation and computational analysis of the proposed system. The research work is
in line with the on-going IT infrastructure networking project at the Ahmadu Bello University,
Zaria, Nigeria.

Keywords: grid; virtual laboratory; resource management system; scheduling; resource
allocation; match making algorithm.

Reference to this paper should be made as follows: Ezugwu, A.E., Buhari, S.M. and Junaidu, S.B.
(2015) ‘Resource management system for scientific virtual laboratory applications’, Int. J. Grid
and Utility Computing, Vol. 6, No. 1, pp.8–20.

Biographical notes: Absalom E. Ezugwu is a Lecturer in the Department of Computer Science,
Federal University Lafia, Nigeria. He is currently a PhD student at the Ahmadu Bello University,
Zaria-Nigeria. He received his BSc in Mathematics with Computer Science and MSc in
Computer Science degrees from Ahmadu Bello University, Zaria-Nigeria, in 2007 and 2011,
respectively. His research interests include parallel and distributed computing, grid and cloud
scheduling and ubiquitous computing.

Seyed M. Buhari is working with Faculty of Computing and Information Technology, King
Abdulaziz University, Jeddah, Saudi Arabia. He received his BE degree in Computer
Engineering from Madurai Kamaraj University, India, in 1996 and ME degree in Computer
Science and Engineering from Bharathiar University, India in 1998. He has obtained his PhD in
Information Technology from Multimedia University, Malaysia. His current research interests are
in the areas of grid computing, IPv6 performance testing and high performance computing.

Sahalu B. Junaidu currently works as a Professor in Ahmadu Bello University, Zaria, Nigeria.
Before then he worked at King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
and at Universiti Telekom Malaysia. Professor Junaidu obtained his BSc (Mathematics with

 Resource management system for scientific virtual laboratory applications 9

Computer Science) from Ahmadu Bello University, Zaria, Nigeria. He obtained his MSc (Formal
Methods in Software Engineering) from Queen Mary & Westfield College University of London
and PhD (Computer Science) from St. Andrews University, Scoltland. His research interests
include high performance computing.

1 Introduction

One of the most demanding tasks in Grid computing is the
case of resource allocation to application workloads, that is,
the process of mapping jobs to distributed heterogeneous
resources (Berstis, 2002; Moreno and Alonso-Conde, 2004).
By resources, we mean those computing (processing nodes)
and non-computing systems involved in the scheduling
process. Similarly, by jobs we mean any user’s experimental
tasks that are meant to be executed by the available
resource. Another major difficulty that is associated with
resource allocation in the Grid is the lack of exact resource
status information and proper documenting of log history
for every scheduling event. However, researchers have
proposed several efficient scheduling algorithms and
computational models that are used in the Grid resources
with special emphases on job scheduling. See Shojafar et al.
(2010), Bu et al. (2008), Gao et al. (2005), Izakian et al.
(2009) and Ramakrishan et al. (2009).

With the current advancement in the Grid computing
domain, many research institutions such as universities and
corporate organisations have shown keen interest in the Grid
computing technology, as they exploit and integrate this
platform into their computing infrastructures (Foster and
Kesselman, 2005). Generally, Virtual laboratory is one
application area that is built upon the Grid architecture
(Afsarmanesh et al., 2000; Lawenda et al., 2004a; Lawenda
et al., 2004b; Handschuh et al., 2009, p.31; Handschuh,
2012). The virtual laboratory also requires and depends upon
geographically distributed heterogeneous computing and non-
computing resources. Therefore, the Grid architecture is a
natural fit for actualising the goals of developing an effective
virtual laboratory with the key requirements for resource
management and scheduling (Afsarmanesh et al., 2001;
Weitzel, 2011).

There are a number of challenging issues associated
with the basic operation of the virtual laboratory,1 which are
very similar to those mentioned above for the Grid
computing platform. For running applications, resource
management and job scheduling are the most crucial
problems identified as the bottleneck to the smooth
operation of the virtual laboratory system.

The research was conducted at the Department of
Computer Science, Distributed Computing Laboratory Section,
Ahmadu Bello University, Zaria, Nigeria. Based on the
ongoing networking of IT infrastructure project which foresees
the networking of both physical and natural science research
laboratory facilities on the campus, the paper presents a
framework model that handles the aspect of resource allocation
and tasks scheduling platform for the natural science laboratory
equipment available in the university.

The main focus of this work is to establish efficient
resource scheduling modalities that will have significant

influence on setting up multidisciplinary virtual experiment
laboratory framework2 that will allow taking control on
many different devices. The rest of the paper is organised as
follows. A survey of related work is discussed in Section 2.
The proposed conceptual model for the resource management
system is presented in Section 3. Section 4 introduces the
scheduling mechanism and Section 5 covers the derivations
of mathematical models required by the matchmaker
algorithm to manipulate the processes involved in job-
resource allocation techniques, while Section 6 presents
experimental setup and numerical analysis results. Section 7
summarises the results and discusses future directions.

2 Related work

Inside distributed system environments, scheduling algorithms
play an important role in deciding where to schedule
incoming or already submitted application jobs. However,
their influence is restricted to taking decisions and cannot
actually apply them. In order to apply the scheduling
decisions taken by a scheduler, a resource management
system is required. The resource management system
provides a set of services which vary depending on the
system but usually involves taking jobs and physically
assigning them to resources based on the logical assignment
done by the scheduling algorithm. Inside a Grid, we can
generally view the scheduling algorithm as the legislative
entity and the resource management system as the executive
part (Frincu, 2011). Likewise, several projects have been
built which provided the required technology for managing
batch jobs within a single distributed system or domain.
These sections shortly discuss some of the two key projects
that are closely related to the work presented in this paper.

2.1 Condor

Condor (Thain et al., 2005) is a distributed computing
resource management environment for high-throughput
applications which harnesses idle time on managed
resources and has capabilities for their sharing (Frincu,
2011). Condor provides numerous advanced functionalities
such as job arrays and workflow support, check-pointing,
job migration, rescheduling and fault recovery. It enables
users to define resource requirements and rank resources
and mechanism for transferring files to and from remote
machines. In other words, it offers intra-domain resource
management methods that allow users to harness multi-
domain resources as if they all belong to one personal
domain. A collector is responsible for information storage
and listens for service advertisements. The resources are
advertised by a resource agent, which periodically informs

10 A.E. Ezugwu, S.M. Buhari and S.B. Junaidu

the collector on the available services. A matchmaker agent
is responsible for determining which resource advertised by
the collector matches the desired job. It is also responsible
for performing the scheduling of jobs inside a Condor.
Although the system is being utilised for resources
integration, it is actually intended to be used in smaller scale
distributed system environments and thus should be seen
more as a local job management system rather than a
middleware for Grid.

2.2 Condor G

Condor-G (Berman et al., 2005) is an extension of the
distributed resource management software discussed in
Section 2.1. Condor-G enables using Condor tools for
submitting jobs online to Grid infrastructures. However,
Condor-G was not designed to carter for job scheduling, but
rather to execute jobs across remote distributed resource by
using grid middleware. The matchmaking mechanism in
Condor-G enhances it with the ability to make use of some
available matchmaking algorithm to schedule jobs to Grid
resource. In Condor-G matchmaking mechanism users
describe their applications with the classAds language and
submit them to the matchmaker. This also enables users to
describe custom attributes for jobs and resources. Some of the
major disadvantages (Frey et al., 2002) of Condor-G
Matchmaking are lack of support for parallel jobs, lack of
implicit data-aware scheduling, though users can explicitly
define resources, those closer to input data are preferred.
Also, in the current version, it is not possible to define a
custom scheduling algorithm. Another issue associated with
Condor-G Matchmaking is that it lacks integration with grid
information systems. In order to use Condor-G Matchmaking,
one has to develop a custom system that will provide
information about resources to Condor-G Matchmaker.

In the proposed work, an attempt has been made to develop
an enhanced version of job-resource matchmaking mechanism
that dynamically allocates best laboratory resources to different
user jobs in a distributed heterogeneous environment. Based on
the empirical framework presented in this paper, it is assumed
that the proposed technique performs optimally with respect to
allocating parallel jobs to best matched resources. The
matchmaking mechanism introduced here is very flexible as to
allow for integration with the Grid information system. The
backbone of the proposed resource matchmaking algorithm
relies on using some mathematical concepts presented in
Section 5 of this paper to perform its matching techniques.

3 Resource management system

Since the virtual laboratory is modelled upon the Gird
architecture, there is the problem of decentralised policies in
terms of distributed resource-sharing or allocation. The
laboratory equipment and computational resources might be
hosted across geographical locations owned by collaborating
universities and research institutes. Each of these resources
owners’ may use different localised resource allocation
strategies for their operational scenarios; therefore, the case
of adopting a centralised resources allocation manager is not

feasible. In line with the Grid interoperability and scalability
objectives, standard mechanisms can be deployed which can
be configured with appropriate localised allocation policies
(Foster et al., 2001; Galstyan et al., 2005). It has also been
assumed to an extent that traditional scheduling systems are
often distinguished by their strategies, as embodied in
algorithms and deployment parameters (Foster and
Kesselman, 2003; Liu, 2007). Indications from previous
work on Grid platform deployment indicates that individual
system users as well as brokering intermediaries apply
allocation strategies to their own jobs in addition to the
traditional resource provider’s, making allocation decisions
for sets of jobs onto large resources (Czajkowski et al.,
1998; Czajkowski et al., 2002; Venugopal, 2006).

It is therefore significant to understand what the impact
of these decision will be on the performance of the entire
resource utilisation for the given virtual laboratory system.
The knowledge will somehow influence architectural
decisions as well as scheduling strategies adopted for
federated resource sharing within a scalable grid problem-
solving environment.

3.1 Model of virtual laboratory resource
management system

The Virtual Laboratory Resource Management system plays
a very significant role in handling the operational activities
that occurs between the different application domains and
the resources located on the Grid. To construct virtual
laboratories, the grid architecture is deployed. Grid
computing allows for increase in the computational power
due to combining of multiple resources and implementation
of any application. Therefore, it is considered as a core
component of the virtual Laboratory system. Figure 1
represents the structural diagram for the resource
management system architecture. The system provides users
with such functions as job submission, resource discovery,
job management and monitoring. The scheduling model
consists of job collector, scheduler, manager, information
collector and database.

3.1.1 Assumption about resources

The assumption made when modelling a problem determines
the variations of that problem that the model will support. We
assume and incorporate two types of resources namely
computational resources (such as computer clusters, servers,
laboratory devices with processing ability, memory and so
on) and non-computational resources (such as some
laboratory apparatus lacking computing abilities, storage
devices, software for experiment execution and so on).
However, the distinction between computational and non-
computational resources is somewhat tenuous; in some cases,
non-computational resource may become computational
resource. For this, it implies that the non-computational
resource also possesses some computing ability or processing
power similar to that of the computational resource. Some of
the basic assumptions made in this paper are explained in
details and presented in following section.

 Resource management system for scientific virtual laboratory applications 11

Figure 1 Architecture of virtual laboratory resources management system

3.1.2 Assumption about tasks

Two types of users’ submitted jobs are assumed in the
course of the system modelling, namely; experimental and
computational tasks. For the experimental type of job, tasks
are usually submitted to laboratory devices for execution,
the device specifications or credentials have to be identified
beforehand. While for the computational type of job, tasks
are submitted to one of the application servers or computation
nodes.

3.1.3 Job collector

As earlier mentioned, the virtual laboratory is synonymous
to a multidisciplinary problem solving environment. The
nature of tasks being handled on this platform is
heterogeneous and distributed in nature and encompasses
different research fields and application areas. The function

of the job collector is to gather the basic information about
submitted jobs that are necessary for further processing and
as required by the entire global scheduling process and store
them in the job information log database. Some of the key
job credentials required for execution include job title,
location, necessary parameters for execution and the
destination directory path name for the generated output file
and so on. The job collector is normally a user-oriented
interface linking the job monitoring module to the web
service which serves as a message carrier for the global
scheduler.

3.1.4 Grid information service

The Grid information service integrates every other component
of information services, whether static or dynamic, in the Grid
system to provide a unified information access interface for

12 A.E. Ezugwu, S.M. Buhari and S.B. Junaidu

application users. Information service mainly includes two
parts that comprise of resource acquisition and evaluation.
Information services within the context of Grid environment
provide a number of dynamic updates information such as the
load, performance and so on. Some of the static information
services provided by the Grid system with respect to resources
deployable in virtual laboratories are: IP addresses for
laboratory devices, operating system and storage capacity and
other relevant information.

3.1.5 Administrative domain

Each administrative domain is comparable with remote
virtual site location capable of providing resources on
demand and rendering services akin to most problem-
solving environment upon the computational Grid. A virtual
site may consist of multiple physical sites if they are
interconnected by a high bandwidth network. Each site
consists of computational servers, laboratory devices,
storage systems, visualisation servers and software for
experiment execution. A virtual site can be thought of as a
‘regional resource centre’, a composite object containing a
number of data servers, processing nodes and software for
laboratory experiment execution where all are connected to
a local area network.

4 Scheduling model

The scheduler is responsible for resource discovery, resource
selection and job assignment. The resource discovery algorithm
interacts with an information service (the Grid Information
Service), identifies the list of authorised and available machines
and equipment that can execute the submitted tasks and keeps
track of resource status information. The resource selection
algorithm is responsible for selecting those resources that meet
the required performance criteria (CPU – hours, storage
capacity, processing speed, network bandwidth and so on...)
along with optimisation requirements (Han et al., 2008). The
scheduling model shown in Figure 2 consists of scheduler, job
analyser, resource discovery, resource selection, schedule
generation, schedule selection and information collector. The
resource selection, schedule generation and schedule selection
involves detailed information about performance capabilities
and most importantly they revolve around a more informed
decision-making process that provides some high level of
intelligence to the operational activity of the resource

management system.
It would be significant to understand those integral

components that make up the building blocks of the scientific
virtual laboratory; these include the system application user,
scheduler, resource management centre, resources and
laboratory equipment. A user first logs on to make use of the
preferred domain application resident in the virtual lab,
experiment is performed by the user and job is submitted to
scheduler. The scheduler first analyses the job, splits it into
various tasks and distributes the tasks to several resources

based on the resource information collected from the resource
manager. Allocation of resource is only made when user’s
requirement matches with the available resource profile.

Figure 2 A structure of scheduling model

4.1 Job submitting

The work of the job submitting module is to schedule job to
resource node in accordance with the scheduler results.
Uniformity in job distribution is achieved by the scheduler
via generating log files for job and transferring it to a
specific resource node. Unfortunately, the execution of
users’ submitted jobs greatly depends on the steadiness of
the local grid resource, as there are times when a job might
fail to execute. The job monitoring module monitors the
updating job profile information available in the job status
log table; this is very important and mandatory so as to
enable the system deal with any job failure execution.

In the course of job scheduling, a job passes through
several states (Venugopal, 2006) as is outlined in Figure 3. A
job is an input to the scheduler which allocates it to a set of
resources based on its requirements profiles. The first status of
any user job is the ‘ready’ state, after which the status is then
changed to ‘scheduled’. During the ‘stage in’ state, which is the
point when the job is to be admitted into the remote scheduling
process, input profiles and executables required for the job are
staged to the remote resource. When this process is completed
successfully and a handle is obtained, then a job is considered
to be finally ‘submitted’. The job may be queued while waiting
for an available processor and its state changes to ‘pending’.
When the job starts its execution, it is considered ‘active’. After
the job has finished executing, it enters the ‘stage out’ stage
where its output profiles are transferred back to the resource
provider. If all its output profiles are received and are as
expected by the task requirements, then the job is considered as
‘done’. If any one of the state transitions fails on the remote
side or the job has completed on the remote side but has not
produced the expected result profiles, then it is considered
‘failed’ and is reassigned for rescheduling. Also if the job was
interrupted and could not complete the execution process or it
is terminated prematurely, then it is considered ‘aborted’ and is
re-set for scheduling.

 Resource management system for scientific virtual laboratory applications 13

4.2 Resource manager

The Resource Manager consists of the following
components: Grid monitor, Hidden Markov Model (HMM)
and resource analyser. A similar model has been introduced
by Jacob et al. (2011). It often provides mediatory services
among the following group of activities: requester,
matchmaker and the Grid service providers. The resource
manager receives request from the requester and receives
the results from the matchmaker engine and gives back to
the scheduler. It manages all resources in various Grid sites.
The resource manager accepts the resource into the grid site
only if the matchmaker ontology matches with the resource
ontology (ontology is a formal explicit specification of
a shared conceptualisation3 (Gruber, 1993)). The Resource
Manager acts like a registry in which the resources
ontologies and locations are registered. The Resource
Manager checks the request and resource ontology and
directs the request to the appropriate resource providers and
sends the result back to the requester.

Figure 3 Grid platform job execution phases (see online version
for colours)

4.3 Matchmaker

The matchmaking framework depicted in Figure 4 includes a
resource specification component and matchmaking algorithms.
Upon receiving a request (a request is composed using
vocabulary in the request ontology) the matchmaker activates
the matching algorithm to find a list of potential matches
sorted according to the requester’s preference criteria. The
matchmaker simply returns the matched list (or NoMatchFound)
to the requester (i.e. feedback). The matchmaker gets all
resource’s ontology from the Resource Manager. It matches the
resource with the request by considering the static, dynamic
and behavioural parameters in ontology and uses the
mathematical models (presented in Section 4.) to calculate the
matching degree. After calculating the matching degree, it
calculates the rank for the resource by considering weight value
for each parameter and forwards the result to the Resource

Manager. The requester can then claim the resource by
contacting the resource providers for their services via the
resource manager using the claiming rule (which comprises of
validly matched results ontology).

Figure 4 Matchmaker activity framework

Requester Matchmaker
(Matching Algorithm)

Resource Manager
(Resource Negotiator)

Send a request

Return a set of
candidate resource

*Request for resource specifications

Claiming resource

Grid sites

Send a copy of matching result to RM
for storage

Send back found specifications

Resource Providers
(resource ontology)

Publish resource speciation

*A request specification includes a matchmaking function
and possibly two additional constraints, a cardinality
threshold and a matching degree threshold. The cardinality
threshold specifies how many resources are expected
to be returned by the matchmaking service. The matching
degree threshold specifies the least matching degree of the
resources returned by the service.

The four major steps involved in the matchmaking
process are described as follows: (a) Resource providers
advertise by sending their resource descriptions to the
resource manager; (b) A requester sends request comprising
of resource specifications to the matchmaker; (c) The
matchmaker executes a matchmaking algorithm based on the
requester’s order by first sending request to RM to confirm
the availability of the requested resource specifications, if
resource available, RM sends back all the results to the
matchmaker to implement matching process and returns a set
of ranked resources to the requester and also stores a similar
copy in RM; (d) The requester chooses the highest ranked
resource from the set and then contacts the corresponding
resource provider directly to claim the resource.

4.4 Schedule generation

Schedule generation module performs the tasks of
generating schedule marks ID containing log reference ID;
indexes of selected distributed resource; IP address of
selected resource; job description; job states and other
related information that are required to effect schedule
decision that will lead to the desired job execution. On the
other hand, when a fault is detected in any of the resource
nodes by the resource monitor, the process of schedule
generation is re-scheduled again so as to achieve effective
scheduling result. The process is repeated for n number of
times in as much as there is n number of jobs in the job
queue awaiting execution.

14 A.E. Ezugwu, S.M. Buhari and S.B. Junaidu

4.5 Matchmaking resource and request
specifications

The set of rule for constructing the attribute names for an
attribute as stated by Bai et al. (2004) are:

1 If the attribute refers to a slot of the resource class, the
attribute name is the slot name.

2 If a slot of the resource class refers to an instance of
other class and the attribute refers to a slot of this
instance, the attribute name is the combination of the
two slot names connected by “.”

Following the same conceptual view of the above rule, we
can construct an attribute name for a set of experimental
devices/apparatus say with resource class ‘microscope’ in
the following format:

Both requests and resources are expected to share
similarity in their specification and representation syntax,
either in the form of attribute-value pairs or any other
acceptable format that is known to both the application
users and resource providers. It is equally important to note
that for the matching process to work properly, it is
suggested that both the requester and resource providers use
the same attribute naming convention and agree upon
attribute values beforehand. Figures 5 and 6 are two
examples of resource and request specifications represented
in the form of attribute-value pairs. These illustrations are
nothing more than abstract denotation of previous
explanation of resource matching and allocation by the
matchmaking framework.

Figure 5 Example of resource instance: seven set of electron
microscope

Microscope.Name = “Electron.bio.edu”
Microscope.IPAddress = “microscope.electron.bio.abu.edu”
Microscope.resolutionSE = 3.0nm at 30kv (high vacuum mode)
Microscope.resolutionBSE = 4.0nm at 30kv (variable pressure mode)
Microscope.Magnification = “x5 ~ x300.000”
Microscope.AcceleratingVoltage = 0.3 – 30kv
Microscope.LowVacuumRange = 6 ~ 270 pa through graphic menu
Microscope.OperatingSystem = “windowsXP”
Microscope.MaximumSpecimen.Size =153mm in diameter
Microscope.NumberAvailable = 7
. . .

Figure 6 Example of request specifications

Request.Name=”user1”
Request.ResourceType = “Microscope”
Request.Resource.Name = “Electron.bio.edu”
Request.Resource.IPAddress = “microscope.electron.bio.abu.edu”
Request.Resource.resolutionSE = 3.0nm at 30kv (high vacuum mode)
Request.Resource.resolutionBSE = 4.0nm at 30kv (variable pressure mode)
Request.Resource.Magnification = “x5 ~ x300.000”
Request.Resource.AcceleratingVoltage = 0.3 – 30kv
Request.Resource.LowVacuumRange = 6 ~ 270 pa through graphic menu
Request.Resource.OperatingSystem = “windowsXP”
Request.Resource.NumberAvailable = 3
. . .

4.6 Scheduling algorithms

Several implementations of the matchmaking frameworks
and algorithms exist in literature; see (Kuokka and Harada,
1995; Bai et al., 2004; Liu and He, 2007; Shu et al., 2007;
Han et al., 2008). Part of the services rendered by the
matchmaker is to execute a matching algorithm for each
request sent by the requester. The inputs to the algorithm are
the request and the grid resource instances stored in the
knowledge base of the matchmaking service. The matchmaking
algorithm evaluates the request function in the context of each
resource instance in the knowledge base. The output of the
algorithm is a number of grid resources ranked according to
their matching degrees. Let n denote the cardinality threshold
specified by the request. The matchmaking algorithm returns
the grid resources that have the n largest matching degrees to
the requester. The matching degrees are computed using the
mathematical models discussed in section 5. In a nutshell,
these models distinctively distinguish our algorithmic
framework from those found in literatures. The pseudo code
of the matchmaking algorithm is shown in algorithm listing 1.

Algorithm 1: Pseudo-code for the match maker agent

1: Input: req //request specification for resource Ri

2: Output: matched list of set of candidate resource
instances cr

3: BEGIN

4: cr = 

5: n = req.CardinalityThreshold;

6: mdt = req.MatchedDegreeThreshold;

7: /* Matchmaker gets corresponding resource specification

8: (ontology) for Ri from RM */

9: for each resource r in Ri do

10: for i = 1to k do // where k is the kth resource instance

11: // compute the matching degree md for resource r

12: md = compute req.RequestFunction(r[i]);

13: if (md>=mdt)then

14: cr[i] r[i]; //insert r into cr

15: update.cr_size;

16: // cr_size is the size of the cardinality set cr

17: endif

18: if (cr_size > k*n)then

19: break;

20: endif

21: //compute the ranking expression pik for the set of

22: //candidate resource instances cr

23: cr(ri) {pi1, pi2,,pik }; // store result in cr and
RM

24: //we use pik to denote the k-th candidate for the i-th
resource in cr

25: end for

26: end for

27: END

 Resource management system for scientific virtual laboratory applications 15

The ranking process adopted for the framework considers an
instance where resource that compare equally receive the
same ranking number (an instance of multiple resource
request by user) and the next resource(s) receive the
immediately following ranking number. Equivalently, each
resource’s ranking number is one plus the numbers of
resources ranked above it that are distinct with respect to the
ranking order. Thus, if r1 ranks ahead of r2 and r3 (which
compares equally) which are both ranked ahead of r4, then
r1 gets ranking number 1 (‘first’), r2 gets ranking number 2
(‘joint second’), r3 also gets ranking number 2 (‘joint
second’) and r4 gets ranking number 3 (‘third’).

5 Mathematical modelling

The virtual laboratory system has its own peculiar challenges
when it comes to resource sharing and/or scheduling. Tasks are
interactive and are scheduled according to dynamic
measurement scenario. Also time slot reservation is required
for experiments execution, especially for those experiments
that need supervision or observation by multiple individuals
online. Therefore the authors have assumed that the best
approach to solve the resource management problem for virtual
laboratory system is to tackle the problem by adopting several
computational models. The hyper-heuristic method and hybrid
algorithms are examples of where multiple techniques were
merged and used to achieve quality results (Braun et al., 2003;
Ritchie and Levine, 2004; Bhanu and Gopalan, 2008). In this
research, we follow a similar trend by considering different
mathematical models that can assist us solve the problem of
multiple resource selection in the Grid system with regard to
virtual laboratory application. However, the objective of
introducing this concept is to devise suitable ways of achieving
optimal resource selection by the scheduling system.

5.1 Mapping model

In the system under consideration, we assume that there are
n distributed and shared resources R1, R2,,Rn, comprising
of compute and non-compute resources as specified by the
resource requirements and m independent jobs X1, X2,,Xm
competing for the resources. We also assume that Xi and Xj
can compete for one resource, for i ≠ j. If we let R = {R1, R2,
Rn} and X = {X1, X2, Xm}, then we can define a non-
invertible function f (a function which does not have an
inverse except for the case where f = R) from X to R as
follows: F:X → R. We say that two sets X and Y of jobs are
compatible if () ()f X f Y   , otherwise, X and Y are

incompatible. That is, resource allocation can only take
place from one resource R to more than one job sets if the
job sets all have the same attributes. However, allocation
between the resource R and a job X occurs if the function F:
X → R exists. In this case, we say that X is compatible with
R. Figure 7 is a diagrammatical representation of the
compatibility relation between job-resource assignments as
explained earlier on.

5.2 Statistical modelling

The suboptimal resource is selected by considering some
basic statistical techniques such as assignment technique,
correlation technique, sample testing technique and
measures of dispersion. The remaining part of this section is
devoted to developing statistical model to ascertain the
degree of correctness of the proposed virtual laboratory
resource management systems.

Figure 7 Compatibility job to resource assignment

5.2.1 Parameter (assignment technique)

Resources usually have sets of attributes or credentials that
are used to identify them on the grid. Some of these
attributes are resource name, resource type (this is further
categorised into compute and non-compute resource types),
memory sizes, resource capacity, resource IP addresses and
so on, depending on the resource providers’ requirements’
definition policies. If an application user provides this set of
resource information alongside its submitted jobs, then the
resource will be chosen among the various resources that
closely match the request using assignment method. Table 1
shows job-resource assignment, while Figure 8 illustrates
the job-resource assignment strategy.

Figure 8 Job assignment strategies

 R11, R12, R13, R14, R15

 R21, R22, R23, R24, R25

 R31, R32, R33, R34, R35

 R41, R42, R43, R44, R45

 R51, R52, R53, R54, R55

X1 X11, X12, X13, X14, X15

Job job with resource parameters

X2 X21, X22, X23, X24, X25

Job job with resource parameters

X3 X31, X32, X33, X34, X35

Job job with resource parameters

X4 X41, X42, X43, X44, X45

Job job with resource parameters

X5 X51, X52, X53, X54, X55

Job job with resource parameters

16 A.E. Ezugwu, S.M. Buhari and S.B. Junaidu

Table 1 Job-resource assignment

Job-resource assignment
Resource Job ID Resource ID

Y1 Y2 Y3 Y4 Y5 … Yn

Name X1 Y1 XI R11 R12 R13 R14 R15

IP address X2 Y2 X2 R21 R22 R23 R24 R25

Memory X3 Y3 X3 R31 R32 R33 R34 R35

Type X4 Y4 X4 R41 R42 R43 R44 R45

Capacity X5 Y5 X5 R55 R52 R53 R54 R55

… … … … …

… … … … …

… Xm Yn Xm … Rmn

5.2.2 Parameter (correlation technique)

Information on the relationship between two sets of
variables can be obtained by the use of correlation
coefficients. Correlation coefficient shows the following:

1 Whether the relationship is positive or negative.

2 The strength of the relationship.

The correlation between the request and the resource is
calculated using the following:

Let  1 2 3, , ,..., mX X X X X represent a set of jobs,

where Xm is the m-th job.

Let  1 2 3, , ,..., nR R R R R be the set of resources, where

Rn is the n-th resource available in the grid.
Let

 
 
 

 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

1 2 3

, , ,...,

, , ,...,

, , ,...,

, , ,...,

m

m

m

n n n n nm

R R R R R

R R R R R

R R R R R

R R R R R











Then

1 1 1

2 2

2 2

1 1 1 1

m m m

j i j j i j
j j j

i
m m m m

j j i j i j
j j j j

m X R X R

r

m X X m R R

  

   

  
  
  
  

      
             

         

  

   

where i = 1,2,,n

m = total available number of resources

XjRij = sum of the product of paired j-th job to j-th resource

Xj = sum of i-th jobs in the job pool

Rij = sum of i-th participating resources

We use the symbol ri to stand for the correlation. Through the
magic of mathematics it turns out that R will always lie

between –1.0 and +1.0. If the correlation is negative, we have a
negative relationship; if it’s positive, the relationship is
positive. A negative correlation indicates poor relationship
between placed request and the probability of finding suitable
resources (which invariably produces a poor response time).
However, a positive correlation indicates good relationship
between resource request and finding suitable resource.

5.2.3 Parameter (sample testing technique)

The behaviour of service is calculated by testing of samples for
each parameter based on the following single regression model:

1 2

Observational value of

the number of resources usedi i iY X     (1)

1 2

Estimated value of the

number of re
ˆ ˆ

sources usedi i iY X e    (2)

1 2

The estimated average valueˆ
of the resou

ˆ ˆ
rces usedi iXY    (3)

where

Xi = the number of response time per second

1 = the actual value of the intercept term

2 = the actual value of the slope

1̂ = the estimator of 1

2̂ = the estimator of 2

i = the stochastic term (unobservable)

ei = the error term (observable)

6 Experimental setup

The experiments conducted are aimed at showing the
efficiency of the proposed algorithm compared to the
existing one in Condor-G. The experiment was conducted
with 1600 resource providers with varying number of
resources. The request sent per time ranges from 1 to 100. It

 Resource management system for scientific virtual laboratory applications 17

was assumed that all service providers are available at all
time, provided they are free with their resources. The
number of requests served per second increases as the
system receives more jobs. The optimal resource is
selected by considering mapping model, assignment model,
correlation model, testing of samples and measures of
dispersion. The experimental findings and results are
presented in Section 6.2.

6.1 Simulation tools

The implementation of the experiments was performed on
GridSim Version 4.0 simulator. GridSim is a java-based
discrete event Grid simulation toolkit. This simulation software
enables us to directly evaluate the practicability and test the
performance of the proposed scheduling strategy presented
in this paper. It also provides a comprehensive facility for
simulation of different classes of heterogeneous distributed
resources, users, applications, resource brokers and schedulers
(Buyya and Murshed, 2002). An econometric model was
likewise used to analyse the result of the mathematical models.
Econometric model is a statistical model used in econometrics;
the model specifies the statistical relationship that is believed to
hold between the various quantities under study. To compare
the relative performance of the existing Condor G matchmaker
algorithm, we simulated a serial job allocation mechanism and
then compared the simulation results with that of the proposed
algorithm. It has been mentioned that the existing technology
matches jobs to resources sequentially.

6.2 Experimental results and analysis of the
mathematical models

This section is a discussion on the implementation and
analysis of the model presented in Section 4. Descriptive
statistics and regression analysis were used to perform data
analysis for entries in Table 2. Econometric model was used
to analyse the effect of the average response time (sec.) on
the number of resources.

Table 2 Time taken to find the best matched resources for a
job by statistical method

Time taken in second
No. of

Resources
No. of
Jobs Parameter

I
Parameter

II
Parameter

III
Total Average

200 10 379 18 10 407 135.67

400 10 798 21 14 833 277.67

600 10 1310 25 16 1351 450.33

800 10 1768 27 20 1815 605.00

1000 10 2502 29 21 2552 850.67

1200 10 3122 30 23 3175 1058.33

1400 10 3599 31 23 3653 1217.67

1600 10 4218 32 24 4274 1424.67

Table 3 presents three experimental results obtained for
various scenarios using statistical methods. The time
taken for each of the mathematical models, which is the

assignment and correlation method, was found and then
their total average time for which the best matched resource
to a job was computed. However, it was observed that as the
number of resources increase, the average time taken to find
the best matched resource increases gradually.

Table 3 Descriptive statistics

 Mean Std. deviation N

number of resources 900.00 489.898 8

average response time
(sec.)

752.50 461.422 8

The average number of resources is 900. The mean of the
average response time (sec.) is 752.5. According to Table 3,
the standard deviation of the number of resources is 489.9
and the standard deviation for the average response time
(sec.) is 461.4. Standard deviation here implies the measures
of the spread or how far each of the set of resource is from
the mean or centre of the available resource distribution.

Table 4 indicates that the value of the coefficient of
determination is 0.99 which shows that the average response
time (sec.) explain the variation of the number of resources
around their mean value of 900 for about 99%.

Table 4 Model summary

Model R R Square
Adjusted R

Square
Std. Error of
the Estimate

1 .998a .996 .995 33.001

Notes: a Predictors: (Constant), average response time
(sec.).

Table 5 shows that the explanatory power of the model is
significant, that is, the 99% variation in the number of
resources is accounted for by the average time (sec.) is
significant. On the other hand only 1% of the variation in the
number of resources is due to random happenings (residual).

Table 5 ANOVAb

Model Sum of squares df Mean square F Sig.

Regression 1673465.693 1 1673465.693 1536.627 .000a

Residual 6534.307 6 1089.051 – – 1

Total 1680000.000 7 – – –

Notes: a Predictors: (Constant), average response time
(sec.).

 b Dependent variable: number of resources.

According to Table 6, the value of the intercept term is
102.6, that is, if the average response time (sec.) is zero the
number of average response time is expected to be 102.6.
The slope of the model is 1.1 indicating that if the average
response time (sec.) changes by one, averagely the number
of resources changes by 1.1. The p-value of the coefficient
being less than the theoretical level of significance which is
5%, we can conclude that the intercept term and the slope of
the regression model are significant. This further shows that
there is a significant relationship between the average
response time (sec.) and the number of resources.

18 A.E. Ezugwu, S.M. Buhari and S.B. Junaidu

Table 6 Coefficientsa

Model Unstandardised
coefficients

Standardised
coefficients

95% confidence
interval for 1

 1 Std. Error 1

t Sig.

Lower bound Upper bound

(Constant) 102.614 23.450 – 4.376 .005 45.234 159.995 1
average response

time (sec.)
1.060 .027 .998 39.200 .000 .994 1.126

Notes: a Dependent variable: number of resources.

We explain below some of the terms in Table 6:

/2
2~

ˆ
i i

n

i

t t

Se











 
 
 


,   2

2 2

1ˆ

i

Se
n x

 


,
2

2ˆ
2

ie

n 



,

ˆ
i i ie Y Y 

t = standardised value of i


/2
2nt


 = tabulated value of t-statistic

2
ix = square deviation of the number of response time from

their mean

ei = the error term (observable)
2ˆ = estimated variance of the stochastic disturbance term

n = sample size

 = 5% (type I error)

Figure 9 shows the impact of scheduling users’ job amidst
large number of available grid resource. As the number of
resources increase, the average time taken in seconds to find a
suitable resources increases likewise, especially for the
assignment technique which adopt a static means of matching
jobs to resources. However, the remaining two models
decrease the search time significantly irrespective of the
number of jobs to resources ratio available at any given time.

Figure 9 Measurement of time to allocate n number of resources
(see online version for colours)

Figure 10 illustrates the average response time performance of
the existing Condor-G matchmaker mechanism with our
proposed model. One major disadvantage of the existing

mechanism as stated earlier, is that the system simply assumes
that it is dealing with serial jobs even when the jobs are
distributed. However, the proposed job allocation mechanism is
dynamic and has the capability of detecting job parallelism and
likewise handles distributed job allocation efficiently.

Figure 10 Comparison between the existing matchmaker algorithm
with the proposed algorithm for the average response
time taken to find the best matched resources (see online
version for colours)

The measure of dispersion for both proposed and existing
models based on the computed standard deviations is
illustrated in Figure 11. The standard deviation indicates the
measure of dispersion for the average response time with
respect to resource distribution.

Figure 11 Comparison of measure of dispersion for the average
response time for the existing and proposed matchmaking
methods (see online version for colours)

 Resource management system for scientific virtual laboratory applications 19

7 Conclusion and future directions

This paper addresses some of the challenges that could be
encountered in the course of developing an efficient scheduling
model for solving resource allocation problems in a
heterogeneous distributed problem solving environment such
as the scientific virtual laboratory framework. Resource
management system and scheduling models are proposed for
allocating resource to users’ submitted jobs and scheduling of
multiple workloads for scientific virtual laboratory applications.
The experimental result obtained indicates that the proposed
model will be efficient enough to perform multiple tasks
scheduling with shareable and distributed grid resources. It is
also anticipated that the proposed model should be able to
balance the processing workloads of users’ submitted jobs
efficiently. We are planning to adapt the proposed model in
dynamic real-time processing environments to collaborative
scientific experiment application. With such improvements, the
model can be integrated into the virtual laboratory scheduling
scheme in order to improve their performance.

The proposed framework described in this paper is a
step in the direction of providing a flexible environment to
support both current and future applications and their
emerging requirements for the challenging issues that come
with various workflow scenarios in the virtual laboratory
framework described by Handschuh et al. (2009), Lawenda
et al. (2004b) and Imamagic et al. (2006).

References

Afsarmanesh, H., Benabdelkader, A., Kaletas, E.C., Garita, C. and
Hertzberger, L.O. (2000) ‘Towards a multi-layer architecture for
scientific virtual laboratories’, High Performance Computing and
Networking, Springer, Berlin Heidelberg, pp.163–176.

Afsarmanesh, H., Kaletas, E.C., Benabdelkader, A., Garita, C. and
Hertzberger, L.O. (2001) ‘A reference architecture for
scientific virtual laboratories’, Future Generation Computer
Systems, Vol. 17, No. 8, pp.999–1008.

Bai, X., Yu, H., Ji, Y. and Marinescu, D.C. (2004) ‘Resource
matching and a matchmaking service for an intelligent grid’,
International Conference on Computational Intelligence, 17–
19 December, Istanbul, Turkey, pp.262–265.

Berman, F., Casanova, H., Chien, A., Cooper, K., Dail, H.,
Dasgupta, A., Deng, W., Dongarra, J., Johnsson, L., Kennedy,
K., Koelbel, C., Liu B., Liu, X., Mandal, A., Marin, G.,
Mazina, M., Mellor-Crummey, J., Mendes, C., Olugbile, A.,
Patel, M., Reed, D., Shi, Z., Sievert, O., Xia, H. and YarKhan, A.
(2005) ‘New grid scheduling and rescheduling methods in the
GrADS project’, International Journal of Parallel Programming,
Vol. 33, No. 2, pp.209–229.

Berstis, V. (2002) ‘Fundamentals of grid computing’, IBM
Redbooks Paper, pp.1–28.

Bhanu, S.M.S. and Gopalan, N.P. (2008) ‘A hyper-heuristic
approach for efficient resource scheduling in grid’, International
Journal of Computers, Communication and Control, Vol. 3,
No. 3, pp.249–258.

Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M.,
Reuther, A.I. and Freund, R.F. (2001) ‘A comparison of eleven
static heuristics for mapping a class of independent tasks onto
heterogeneous distributed computing systems’, Journal of
Parallel and Distributed Computing, Vol. 61, No. 6, pp.810–837.

Bu, Y-P., Wei, Z. and Yu, J-S. (2008) ‘An improved PSO algorithm
and its application to grid scheduling problem’, International
Symposium on Computer Science and Computational
Technology, ISCSCT’08, 20–22 December, Shanghai, China,
Vol. 1, pp.352–355.

Buyya, R. and Murshed, M. (2002) ‘Gridsim: a toolkit for the
modeling and simulation of distributed resource management
and scheduling for grid computing’, Concurrency and
Computation: Practice and Experience, Vol. 14, Nos. 13–15,
pp.1175–1220.

Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S.,
Smith, W. and Tuecke, S. (1998) ‘A resource management
architecture for metacomputing systems’, Job Scheduling
Strategies for Parallel Processing, Springer, Berlin Heidelberg,
pp.62–82.

Czajkowski, K., Foster, I., Kesselman, C., Sander, V. and Tuecke,
S. (2002) ‘SNAP: a protocol for negotiating service level
agreements and coordinating resource management in
distributed systems’, Job Scheduling Strategies for Parallel
Processing, Springer, Berlin Heidelberg, pp.153–183.

Foster, I. and Kesselman, C. (Eds) (2003) The Grid 2: Blueprint
for a New Computing Infrastructure, Access Online via
Elsevier.

Foster, I., Kesselman, C. and Tuecke, S. (2001) ‘The anatomy of the
grid: enabling scalable virtual organizations’, International
Journal of High Performance Computing Applications, Vol. 15,
No. 3, pp.200–222.

Frey, J., Tannenbaum, T., Livny, M., Foster, I. and Tuecke, S.
(2002) ‘Condor-G: a computation management agent for
multi-institutional grids’, Cluster Computing, Vol. 5, No. 3,
pp.237–246.

Frincu, E.M. (2011) Adaptive Scheduling for Distributed Systems,
Doctorial Dissertation, West University of Timisoara,
Timisoara, Romania.

Galstyan, A., Czajkowski, K. and Lerman, K. (2005) ‘Resource
allocation in the grid with learning agents’, Journal of Grid
Computing, Vol. 3, Nos. 1/2, pp.91–100.

Gao, Y., Rong, H. and Huang, J.Z. (2005) ‘Adaptive grid job
scheduling with genetic algorithms’, Future Generation
Computer Systems, Vol. 21, No. 1, pp.151–161.

Gruber, T.R. (1993) ‘A translation approach to portable ontology
specifications’, Knowledge Acquisition, Vol. 5, No. 2, pp.199–220.

Han, W., Shi, X. and Chen, R. (2008) ‘Process-context aware
matchmaking for web service composition’, Journal of Network
and Computer Applications, Vol. 31, No. 4, pp.559–576.

Handschuh, L. (2012) Virtual Laboratories as the New Approach
to Genomic Experiments. Available online at: http:// lib.
bioinfo. pl/courses/question_list/515 (accessed on 15 January
2012).

Handschuh, L., Lawenda, M., Stępniak, P., Figlerowicz, M., Stroiński,
M. and Węglarz, J. (2009) ‘New approach to genomics
experiments taking advantage of virtual laboratory system’,
Computational Methods in Science and Technology, Vol. 15,
No. 1, pp.31–40.

Imamagic, E., Radic, B. and Dobrenic, D. (2006) ‘An approach to
grid scheduling by using condor-G matchmaking mechanism’,
Journal of Computing and Information Technology, Vol. 14,
No. 4, pp.329–336.

Izakian, H., Ladani, B.T., Zamanifar, K. and Abraham, A. (2009)
‘A novel particle swarm optimization approach for grid
job scheduling’, Information Systems, Technology and
Management, Springer, Berlin Heidelberg, pp.100–109.

20 A.E. Ezugwu, S.M. Buhari and S.B. Junaidu

Jacob, J., Rajsingh, B.E. and Jesudasan, I.B. (2011) ‘Three
dimensional matchmaking model for optimal allocation of
resources in grid’, European Journal of Scientific Research,
Vol. 67, No. 1, pp.128–136.

Kuokka, D. and Harada, L. (1995) ‘Matchmaking for information
agents’, Proceedings of the 14th International Joint Conference
on Artificial Intelligence, IJCAI’95, 20–25 August, Montreal,
Quebec, Canada, Vol. 1, pp.672–678.

Lawenda, M., Meyer, N., Rajtar, T., Okon, M., Stokłosa, D.,
Kaliszan, D. and Stroiński, M. (2004a) ‘Generalization
aspects in the virtual laboratory system’, Poznan
Supercomputer and Networking System. Available online at:
http://www.psnc.pl/ (accessed on 07 January 2012).

Lawenda, M., Meyer, N., Rajtar, T., Okon, M., Stoklosa, D. and
Stroinski, M. (2004b) ‘Job workflow in the virtual
laboratory’, Global Grid Forum, Vol. 10, pp.1–9.

Liu, S. (2007) ‘User-centric resource allocation hierarchy in grid
computing’, 6th International Conference on Grid and
Cooperative Computing, GCC’07, 16–18 August, Los
Alamitos, CA, USA, pp.228–235.

Liu, Y. and He, H. (2007) ‘Grid resource discovery approach
based on matchmaking engine overlay’, 3rd International
Conference on Semantics, Knowledge and Grid, 29–31
October, Shan Xi, China, pp.294–297

Moreno, R. and Alonso-Conde, A.B. (2004) ‘Job scheduling and
resource management techniques in economic grid environments’,
Grid Computing, Springer, Berlin Heidelberg, pp.25–32.

Ramakrishan, L., Nurmi, D., Mandal, A., Koelbel, C., Gannon, D.,
Huang, M., Kee, Y-S., Obertelli. G., Thyagaraja, K., Wolski, R.,
YarKhan, A. and Zagorodnov, D. (2009) ‘VGrADS: enabling e-
Science workflows on grids and clouds with fault tolerance’,
High Proceedings of the Conference on Performance Computing
Networking, Storage and Analysis, 14–20 November, Portland,
Oregon, pp.1–12.

Ritchie, G. and Levine, J. (2004) ‘A hybrid ant algorithm for
scheduling independent jobs in heterogeneous computing
environments’, Proceedings of the 23rd Workshop of the UK
Planning and Scheduling Special Interest Group, Cork.

Shojafar, M., Barzegar, S. and Meybodi, M.R. (2010) ‘A new
method on resource scheduling in grid systems based on
hierarchical stochastic Petri net’, Proceedings of 3rd
International Conference on Computer and Electrical
Engineering (ICCEE 2010), 16–18 November, Chengdu,
Sichuan, China, pp.175–180.

Shu, G., Rana, O.F., Avis, N.J. and Dingfang, C. (2007)
‘Ontology-based semantic matchmaking approach’, Advances
in Engineering Software, Vol. 38, No. 1, pp.59–67.

Thain, D., Tannenbaum, T. and Livny, M. (2005) ‘Distributed
computing in practice: the condor experience’, Concurrency
and Computation: Practice and Experience, Vol. 17, Nos. 2–4,
pp.323–356.

Venugopal, S. (2006) Scheduling Distributed Data-Intensive
Applications on Global Grids, PhD Thesis, The University of
Melbourne, Melbourne, Australia, pp.82–83.

Weitzel, D. (2011) Campus Grids: A Framework to Facilitate
Resource Sharing, Doctoral Dissertation, University of
Nebraska, Lincoln, Nebraska, USA.

Notes

1 Virtual Laboratory is generally perceived as a heterogeneous,
distributed environment, which allows scientists and
engineers from different geographical location to conduct
experiments with the usage of physical laboratory devices,
perform simulation using computational application software;
enable communication and collaboration among users
working on the same group of research projects.

2 From service connection point of view, VL can be divided
into three levels of operational activities: the user interface,
the application server and the device server. More so, from
architectural point of view it can be portioned into four layers:
Access layer, Grid layer, Supervisory layer and Resources
layer. Also see Lawenda et al. (2004b).

3 Conceptualisation is an abstract and simplified view of the
world that we wish to represent for some purpose.

