Knowledge Connectivity vs. Synchrony
Requirements
for Fault-Tolerant Agreement in Unknown Networks

Fabiola Greve — Sébastien Tixeuil

N° 1
Janvier 2007
Knowledge Connectivity vs. Synchrony Requirements for Fault-Tolerant Agreement in Unknown Networks

Fabíola Greve∗†, Sébastien Tixeuil‡†

Thème NUM — Systèmes numériques
Projet Grand Large

Rapport de recherche n° 1 — Janvier 2007 — 29 pages

Abstract: In self-organizing systems, such as mobile ad-hoc and peer-to-peer networks, consensus is a fundamental building block to solve agreement problems. It contributes to coordinate actions of nodes distributed in an ad-hoc manner in order to take consistent decisions. It is well known that in classical environments, in which entities behave asynchronously and where identities are known, consensus cannot be solved in the presence of even one process crash. It appears that self-organizing systems are even less favorable because the set and identity of participants are not known. We define necessary and sufficient conditions under which fault-tolerant consensus become solvable in these environments. Those conditions are related to the synchrony requirements of the environment, as well as the connectivity of the knowledge graph constructed by the nodes in order to communicate with their peers.

Key-words: Self-organization, Sensor Networks, Fault-tolerance, Consensus, Failure Detector

∗ DCC - Computer Science Department, Federal University of Bahia, 40170-110 Bahia, Brasil, fabiola@dcc.ufba.br.. Fabíola’s research is supported by grants from Fapesb-Bahia/Brazil and CNPQ/Brazil.
† This work is part of the Capes-Cofecub international cooperation program.
‡ Univ. Paris Sud, LRI-CNRS 8623, INRIA Grand Large, France, tixeuil@lri.fr
Connaissance vs. Synchronie pour l’Accord Tolérant aux Pannes dans les Réseaux Inconnus

Résumé : Dans les réseaux auto-organisés, tels que les réseaux mobiles ad hoc et les réseaux pair-à-pair, le consensus est une brique fondamentale pour résoudre les problèmes d’accord. Il permet de coordonner les actions de nœuds répartis de manière ad hoc de telle sorte que des décisions cohérentes puissent être prises. Il est notoire que dans les environnements classiques, où les entités se comportent de manière asynchrone et où les identités de chacun sont connues, le consensus ne peut être résolu dès qu’une panne crash est susceptible de se produire. Les systèmes auto-organisés renforcent ce résultat d’impossibilité car les identifiants des participants ne sont pas connus. Nous définissons des conditions nécessaires et suffisantes pour que le consensus puisse être résolu dans de tels environnements. Ces conditions sont liées aux hypothèses de synchronie sur l’environnement, ainsi qu’à la connectivité du graphe des connaissances induit par les nœuds qui souhaitent communiquer avec leurs pairs.

Mots-clés : Auto-organisation, Réseaux de capteurs, Tolérance aux pannes, Consensus, Détecteur de Fautes
Chapter 1

Introduction

Wireless sensor and ad hoc networks (and, in a different context, unstructured peer to peer networks) enable participating entities access to services and informations independently of their location or mobility. This is done by eliminating the necessity of any statically designed infrastructure or any centralized administrative authority. It is in the nature of such systems to be self-organizing, since additionaly, entities are allowed to join or leave the network in an arbitrary manner, making the whole system highly dynamic.

Agreement problems are fundamental building blocks of reliable distributed systems, and the issue of designing reliable solutions that can cope with the high dynamism and self-organization nature of sensor and ad-hoc network is a very active field of current research.

The core problem behind agreement problems is the consensus problem. Informally, a group of processes achieves consensus in the following sense: each process initially proposes a value and all correct processes (i.e. those that are not crashed) must reach a common decision on some value that is equal to one of the proposed values. For example, reaching agreement within a set of mobile robots was recently investigated in [9].

Contrarily to traditional (i.e. wired) networks, where processes are aware of network topology and have a complete knowledge of every other participant, in a self-organizing environment with no central authority, the number and processes are not known initially. Yet, even in a classical environment, when entities behave asynchronously, consensus cannot be solved if one of the participants is allowed to crash [6]. Thus, solving consensus when the set of participants is unknown is even more difficult. Nonetheless, due to the essential role of this problem, we study in this paper the conditions that permit to solve consensus in unknown asynchronous networks in spite of participant crashes.

In order to capture the unawareness of self-organizing systems regarding the topology of the network as well as the set of participants, Cachin et al. [1] defined a new problem named CUP (consensus with unknown participants). This new problem keeps the same definition of the classical consensus, except for the expected knowledge about the set of processes in the system. More precisely, they assume that processes are not aware of Π, the set of processes in the system. To solve any non trivial application, processes must somehow get a
partial knowledge about the other processes if some cooperation is expected. The participant detector abstraction was proposed to handle this subset of known processes \cite{1}. They can be seen as distributed oracles that provides hints about the participating processes in the computation. For example, a way to implement participant detectors for mobile nodes is to make use of local broadcasting in order to construct a local view formed by 1-hop neighbors. Based on the initial knowledge graph formed by the participant detectors in the system, Cachin et al. define necessary and sufficient connectivity conditions of this knowledge graph in order to solve CUP in an asynchronous environment but in a fault-free scenario.

In turn, failure detector oracles are an elegant abstraction which encapsulates the extra synchrony necessary to circumvent the impossibility result of fault-tolerant consensus in traditional networks \cite{3,8}. A failure detector of the class \mathcal{O} can be seen as an oracle that provides hints on crashed processes \cite{3}. Another failure detector, known as Ω, is a leader oracle that, eventually, provides processes with the same correct process identity (that is, the same leader) \cite{8}. Both, \mathcal{O} and Ω have the same computational power \cite{3}, and they have been proved to be the weakest classes of failure detectors allowing to solve consensus in asynchronous known networks \cite{3}. Those failure detectors may make an arbitrary number of mistakes, but, in spite of their inaccuracy, they will never compromise the safety properties of the consensus protocol that uses them. These consensus protocols are considered indulgent towards these oracles, meaning that they are conceived to tolerate their unreliability during arbitrary periods of asynchrony and instability of the environment. Moreover, any of those indulgent protocols will solve the uniform version of the consensus. The uniform consensus ensures the uniformity of the decision, processes become correct of faulty \cite{7}.

In the context of unknown networks, the problem of FT-CUP (fault-tolerant CUP) has been subsequently studied by Cachin et al. \cite{2}. By considering the minimal connectivity requirements over the initial knowledge graph for solving CUP, they identify a perfect failure detector (\mathcal{P}) to fulfill the necessary synchrony requirements for solving FT-CUP. A perfect failure detector never make mistakes and can only be implemented in a synchronous system. Thus, solving FT-CUP in a scenario with the weakest knowledge connectivity demands the strongest synchrony conditions. However, strong synchrony competes with the high dynamism, full decentralization and self-organizing nature of wireless sensor and ad-hoc networks. Moreover, even with a perfect failure detector, when the minimal knowledge connectivity is being considered, the uniform version of FT-CUP cannot be solved in unknown networks \cite{2}.

In this paper, we show that there is a trade-off between knowledge connectivity and synchrony for consensus in fault-prone unknown networks. In particular, we focus on solving FT-CUP with minimal synchrony assumption (i.e. the Ω failure detector), and investigate necessary and sufficient requirement about knowledge connectivity. If the system satisfies our knowledge connectivity conditions, any of the indulgent consensus algorithms initially designed for traditional networks can be reused to solve FT-CUP as well as uniform FT-CUP.

The remaining of the paper is organized as follows: Chapter 2 provides the model, notations, and statement of the problem we consider; Chapter 3 describes necessary and sufficient
conditions to solve FT-CUP and uniform FT-CUP with minimal synchrony assumptions. Chapter 4 provides some concluding remarks.
Chapter 2

Preliminaries

2.1 Model

We consider a distributed system that consists of a finite set Π of $n > 1$ processes, namely, $\Pi = \{p_1, \ldots, p_n\}$. In a known network, Π is known to every participating process, while in an unknown network, a process p_i may only be aware of a subset Π_i of Π.

Processes communicate by sending and receiving messages through reliable channels (i.e., there is no message creation, corruption, duplication, or loss). A process p_i may only send a message to another process p_j if $p_j \in \Pi_i$. Of course, if a process p_i sends a message to a process p_j such that $p_j \notin \Pi_i$, upon receipt of the message, p_j may add p_i to Π_j and send a message back to p_i. We assume the existence of a reliable underlying routing layer, in such a way that if $p_j \in \Pi_i$, then p_i can send a message reliably to p_j. There are no assumptions on the relative speed of processes or on message transfer delays, i.e., the system is asynchronous. A process may fail by crashing, i.e., by prematurely or by deliberately halting (switched off); a crashed process does not recover. A process behaves correctly (i.e., according to its specification) until it (possibly) crashes. By definition, a correct process is a process that does not crash. A faulty process is a process that is not correct. Let f denote the maximum number of processes that may crash in the system. We assume that f is known to every process.

2.2 Graph Notations

In this paper, we consider directed graphs $G_{di} = (V, E)$, defined by a set of vertices V and a set E of edges (v_1, v_2), which are ordered pairs of vertices of V. A directed path $v_0 \leadsto v_k$ is an ordered list of vertices $v_0, v_1, \ldots, v_k \in V$ such that, for any $i \in \{0, \ldots, k-1\}$, (v_i, v_{i+1}) is an edge of E. The length of this path is k. The distance between two vertices u, v (denoted by $d(u, v)$) is the minimum of the lengths of all directed paths from u to v (assuming there exists at least one such path). The out-degree of a vertex v of G_{di} is equal to the number of
vertices u such that the edge (v, u) is in E. A sink is a node with out-degree 0. Throughout the paper, the terms “node”, “vertex” and “process” will be used indistinctly.

A directed graph $G_{di}(V, E)$ is k-strongly connected if for any pair of nodes (v_i, v_j), v_i can reach v_j through k distinct node-disjoint paths. In particular, when $k = 1$, G_{di} is strongly connected. By Menger’s Theorem [10], it is known that the minimum number of nodes whose removal from $G_{di}(V, E)$ disconnects nodes v_i from v_j is equal to the maximal number of node-disjoint paths from v_i to v_j. This results leads to the following two observations:

1. For any n and k, there exists a n-sized k-strongly connected directed graph $G_{di}(V, E)$ such that the removal of k nodes disconnects the graph.

2. If the directed graph G_{di} is k-strongly connected, removing $(k - 1)$ nodes leaves at least one path between any pair of nodes (v_i, v_j). Thus, the graph remains strongly connected.

2.3 Synchrony and Knowledge Connectivity for Consensus in Fault-Prone Systems

Classical Consensus.

The consensus problem is the most fundamental agreement problem in distributed computing. Every process p_i proposes a value v_i and all correct processes decide on some unique value v, in relation to the set of proposed values. More precisely, the consensus problem is defined by the following properties [3, 6]:

- **Termination**: every correct process eventually decides some value;
- **Validity**: if a process decides v, then v was proposed by some process;
- **Agreement**: No two correct processes decide differently.

Uniform Consensus.

The uniform version of the consensus refines the agreement property so that it is satisfied by every process in the system (be it correct or not). So, it is changed for:

- **Uniform Agreement**: No two processes (correct or not) decide differently.

2.3.1 Failure Detector: a Synchrony Abstraction

A fundamental result in the consensus literature [6] states that even if Π is known to all processes in the system and the number of faulty processes is bounded by 1, consensus can not be solved by a deterministic algorithm in an asynchronous system. To enable solutions, some level of synchrony must be assumed. A nice abstraction to model network synchrony is the failure detector [3]. A failure detector (denoted by FD) can be seen as an oracle that provides hints on crashed processes. Failure detectors can be classified according to the properties (completeness and accuracy) they satisfy. The completeness property refers to the actual detection of crashes; the accuracy property restricts the mistakes a failure detector is allowed to make. The accuracy properties can be ensured only in systems that satisfy some synchrony assumptions. The strong completeness property states that eventually, every process that crashes is permanently suspected by every correct process.
Another approach for encapsulating eventual synchrony consists of extending the system with a leader detector \[\Omega\], also known as \[\Omega\]. A leader detector is an oracle which eventually provides the same correct process identity to all processes. So, \(\Omega\) ensures that eventually all processes have the same leader. In this paper, we consider two classes of failure detectors:

Perfect FD (\(P\)). Those failure detectors never make mistakes. They satisfy the *perpetual strong accuracy*, stating that no process is suspected before it crashes, and the *strong completeness* property.

Eventually Strong FD (\(\diamondsuit S\)). Those failure detectors can make an arbitrary number of mistakes. Yet, there is a time after which some correct process is never suspected (*eventual weak accuracy*). Moreover, they satisfy the *strong completeness* property. It has been proved that \(\diamondsuit S\) and \(\Omega\) have the same computational power \[4\] and that they are the weakest class of detectors allowing to solve the consensus and the uniform consensus problem in a system of known networks \[4\]. Relying on \(\diamondsuit S\) and \(\Omega\) failure detectors to solve agreement problems assumes that a majority of processes within the group never fails, i.e., \(f < n/2\).

2.3.2 Participant Detectors: a Knowledge Connectivity Abstraction

With the notable exception of \[1, 2\], literature on consensus related problems considers that \(\Pi\) is known to every process in the system. In *ad hoc* and sensor wireless networks, this assumption is clearly unrealistic since processes could be maintained by different administrative authorities, have various wake up times, initializations, failure rates, etc. Of course, some knowledge about other nodes is necessary to run any non trivial distributed algorithm. For example, the use of “Hello” messages (*i.e.* locally broadcasting your identifier to your vicinity) could be a possible way for each process to get some knowledge about the other processes.

The notion of *participant detectors* (denoted by PD) has been proposed by \[1\]. Similarly to failure detectors, they can be seen as distributed oracles that provide information about which processes participate to the system. We denote by \(i.\text{PD}\) the participant detector of process \(p_i\). When queried by \(p_i\), \(i.\text{PD}\) returns a subset of processes in \(\Pi\). The information provided by \(i.\text{PD}\) can evolve between queries. Let \(i.\text{PD}(t)\) be the query of process \(p_i\) at time \(t\). This query must satisfy the two following properties:

- **Information Inclusion.** The information returned by the participant detector is non-decreasing over time. \(p_i \in \Pi, t' \geq t : i.\text{PD}(t) \subseteq i.\text{PD}(t')\)

- **Information Accuracy.** The participant detector does not make mistakes. \(\forall p_i \in \Pi, \forall t : i.\text{PD}(t) \subseteq \Pi\)

The PD abstraction enriches the system with a knowledge connectivity graph. This graph is directed since knowledge that is given by participation detectors is not necessarily bidirectional (*i.e.* if \(p_j \in i.\text{PD}\), then \(p_i \in j.\text{PD}\) does not necessarily hold).
Definition 1 (Knowledge Connectivity Graph) Let $G_{di}(V, E)$ be the directed graph representing the knowledge relation determined by the PD oracle. Then, $V = \Pi$ and $(p_i, p_j) \in E$ if and only if $p_j \in i.PD$, i.e., p_i knows p_j.

Definition 2 (Undirected Knowledge Connectivity Graph) Let $G(V, E)$ be the undirected graph representing the knowledge relation determined by the PD oracle. Then, $V = \Pi$ and $(p_i, p_j) \in E$ if and only if $p_j \in i.PD$ or $p_i \in j.PD$.

Based on the induced knowledge connectivity graph, several classes of participant detectors were proposed in [1]:

Connectivity PD (CO). The undirected knowledge connectivity graph G induced by the PD oracle is connected.

Strong Connectivity PD (SCO). The knowledge connectivity graph G_{di} induced by the PD oracle is strongly connected.

One Sink Reducibility PD (OSR). The knowledge connectivity graph G_{di} induced by the PD oracle satisfies the following conditions:
1. the undirected knowledge connectivity graph G obtained from G_{di} is connected;
2. the directed acyclic graph obtained by reducing G_{di} to its strongly connected components has exactly one sink.

In this paper, we introduce three new participant detector classes:

k-Connectivity PD (k-CO). The undirected knowledge connectivity graph G induced by the PD oracle is k-connected.

k-Strong Connectivity PD (k-SCO). The knowledge connectivity graph G_{di} induced by the PD oracle is k-strongly connected.

k-One Sink Reducibility PD (k-OSR). The knowledge connectivity graph G_{di} induced by the PD oracle satisfies the following conditions:
1. the undirected knowledge connectivity graph G obtained from G_{di} is connected;
2. the directed acyclic graph obtained by reducing G_{di} to its k-strongly connected components has exactly one sink;
3. consider any two k-strongly connected components G_1 and G_2, if there is a path from G_1 to G_2, then there are k node-disjoint paths from G_1 to G_2.

Figure 2.1 illustrates a graph G_{di} induced by a k-OSR PD, for $k = 2$. Note that there is only one sink component (G_3) and that every component G_i is 2-strongly connected.

2.4 Problem Statement

In this paper, we concentrate on solving consensus in a fault-prone unknown network. We consider three variants of the problem:

CUP (Consensus with Unknown Participants). The goal is to solve consensus in an unknown network, where processes may not crash;

FT-CUP (Fault-Tolerant CUP). The goal is to solve consensus in an unknown network, where up to k processes (for some constant k) may crash;
Uniform FT-CUP (Uniform Fault-Tolerant CUP). The goal is to solve the uniform version of the consensus in an unknown network where up to k processes may crash.
Chapter 3

Knowledge Connectivity and Synchrony Requirements to Solve FT-CUP

In [1], the CUP problem is investigated in fault free networks, and it is shown that (i) the CO participant detector is necessary to solve CUP, (ii) the SCO participant detector is sufficient to solve CUP, and (iii) the OSR participant detector is both necessary and sufficient to solve CUP. Subsequently [2], the authors show that the same classes are not sufficient to solve FT-CUP.

In this section, we investigate the k-CO, k-SCO and k-OSR participant detectors with respect to the FT-CUP problem, assuming the lowest possible synchrony (i.e. the Ω failure detector) necessary to solve consensus in known networks. In a nutshell, we show that provided the actual number of faults f is strictly lower than some constant k ($k < n$), (i) the k-CO participant detector is necessary to solve FT-CUP (Proposition 1), (ii) the k-SCO participant detector is sufficient to solve uniform FT-CUP assuming Ω (Proposition 2), and (iii) the k-OSR participant detector is sufficient to solve uniform FT-CUP and necessary to solve FT-CUP assuming Ω (Proposition 3).

3.1 k-CO Participant Detector is Necessary to Solve FT-CUP

Proposition 1 The k-CO participant detector is necessary to solve FT-CUP, in spite of $f < k < n$ node crashes.

Proof: Assume by contradiction that the undirected knowledge connectivity graph G defined by the PD oracle is $(k - 1)$-connected. Following observation 2 in Section 2.2, the
removal of $k-1$ nodes may disconnect this undirected graph G into at least two components. From [1], connectivity of G is a necessary condition to solve CUP. So, to tolerate $f < k$ node removals, PD $\in k$-CO.

3.2 k-SCO Participant Detector is Sufficient to Solve Uniform FT-CUP Assuming Ω

Our approach to claim the main result of this section is constructive: we provide an algorithm (COLLECT) that enables the reuse of a previously known consensus algorithm assuming Ω.

3.2.1 The COLLECT Algorithm

Overview.

The COLLECT algorithm (presented as Algorithm [3]) provides nodes a partial view of the system participants. Each node eventually gets the maximal set of processes that it can reach. COLLECT considers that $f < k$ processes may crash. When initiating the algorithm, a process p_i first queries its participant detector to obtain i.PD; then p_i iteratively requests newly known processes to get knowledge improvement about the network, until no further knowledge can be acquired. Thus, COLLECT operates in rounds: in each round $r > 0$, p_i contacts all nodes it didn’t know about in round $r-1$ so that they increase p_i’s knowledge about the network. At round 0, p_i only knows about itself. In our scheme, we assume that for each process p_i, the participant detector i.PD of p_i is queried exactly once. This can be implemented for example by caching the value of the first result of i.PD and returning that value in the subsequent calls. This property guarantees that the partial snapshot about the initial knowledge connectivity of the system is consistent for all nodes in the system, and defines a common knowledge connectivity graph $G_{di} = (V, E)$.

Whenever PD $\in k$-SCO, COLLECT terminates and returns Π. Otherwise, whenever PD $\in k$-OSR, the algorithm provides p_i all reachable nodes from its k-strongly-connected components plus reachable nodes from other components (which includes at least all nodes in the sink component).

On the example of Figure 2.1, COLLECT will return for $p_i \in G_1$, a subset containing $p_j \in \{G_1 \cup G_2 \cup G_3\}$; for $p_i \in G_2$, a subset formed by $p_j \in \{G_2 \cup G_3\}$; for $p_i \in G_3$, a subset formed by $p_j \in \{G_3\}$.

Variables. A process p_i manages the following local variables:

- i.known: subset of processes known by p_i in the current round;
- i.responded: subset of processes from which p_i has received a message;
- i.previously_known: previous set of processes known by p_i in the previous round;
- i.wait: number of processes from which p_i is still waiting for a message.
Algorithm 1 COLLECT()

constant:
1. \(f \): int // upper bound on the number of crashes

variables:
2. \(i \).previously_known: set of nodes
3. \(i \).known: set of nodes
4. \(i \).responded: set of nodes
5. \(i \).wait: int

message:
6. VIEW message:
7. \(i \).initiator: node
8. \(i \).known: set of nodes

procedure:

Inquiry():
9. \textbf{for} \(j \) in \(i \).known \(\setminus \) \(i \).previously_known \textbf{do}
10. \quad send VIEW \((i, i \).known\) to \(p_j \); \textbf{end do}
11. \(i \).wait = \(|i \).known \(\setminus \) \(i \).responded\) - \(f \);
12. \(i \).previously_known = \(i \).known;

** Initiator Only **

INIT:
13. \(i \).known = \(i \).PD;
14. \(i \).responded = \(i \).previously_known = \{\};
15. call upon Inquiry();

** All Nodes **

IMPROVEMENT:
16. \textbf{upon receipt of} \textsc{view}(\(m \).initiator, \(m \).known) \textbf{from} \(p_j \) \textbf{to} \(p_i \):
17. \textbf{if} \(i == m \).initiator \textbf{then}
18. \quad \(i \).known = \(i \).known \cup \(m \).known;
19. \quad \(i \).responded = \(i \).responded \cup \{j\};
20. \quad \(i \).wait = \(i \).wait - 1;
21. \textbf{if} \(i \).wait == 0 \textbf{then}
22. \quad \textbf{if} \(i \).previously_known == \(i \).known \textbf{then}
23. \quad \quad \textbf{return} \(i \).known;
24. \quad \textbf{else}
25. \quad \quad \textbf{call upon Inquiry();} \textbf{end if}
26. \textbf{end if}
27. \textbf{else}
28. \quad send \textsc{view}(\(m \).initiator, \(i \).PD) to \(p_j \);
29. \textbf{end if}
Description. A process p_i starts the algorithm by executing the init phase (lines 13-15) in which p_i broadcast its knowledge (provided by the participant detector) about the system to every process in $i.PD$, inviting the contacted processes to do the same in return. In this initial stage, p_i queries its participant detector (line 13) and sets $i.known$ to the returned list of participants ($i.PD$). After that, it calls upon the Inquiry() procedure. Node p_i sends a message VIEW(i, $i.known$) to every known process p_j (lines 9-10) and updates some local variables. In particular, it sets $i.wait$ to the minimal number of correct nodes, i.e., the cardinality of its $i.known$ set minus the maximal number of crashes (f) (line 11).

In the improvement phase, upon receipt of a message VIEW($m.initiator$, $m.known$) from p_j to p_i, two cases are presented.

(1) $m.initiator \neq i$: this means that p_i have received a message from a remote node p_j querying its initial connectivity knowledge. Thus, p_i sends back to p_j its initial knowledge (line 28).

(2) $m.initiator = i$: in this case, p_i received back a message carrying p_j’s initial knowledge connectivity. Thus, in line 18, p_i improves its initial knowledge, extending $i.known$ with $j.PD$. Then, p_i updates its local variables $i.responded$ and $i.wait$ (lines 19-20) accordingly. Afterwards, by testing the predicate ($i.wait = 0$), p_i verifies whether it has received sufficiently many messages from all known correct nodes (line 21). If that is the case, p_i checks whether its current view has changed with respect to the previous one. Two situations can occur:

(1) If $i.previously.known = i.known$, this means that p_i has gathered knowledge information from all known correct nodes. In this case, the algorithm terminates and p_i returns its $i.known$ set (line 23).

(2) If $i.previously.known \neq i.known$, this means that p_i has discovered new nodes. So, it will start a new round to improve knowledge information about the new nodes belonging to $i.known \setminus i.previously.known$. So, p_i calls the Inquiry() procedure to send a message VIEW(i, $i.known$) to every new node recently discovered (line 24). After that, p_i updates $i.wait$ accordingly, excluding those having already responded and crashed. Finally, $i.previously.known$ receives the contents of the most recent $i.known$ set.

Lemma 1 The algorithm COLLECT proceeds execution by rounds, and the number of rounds is finite.

Proof: Inspecting the algorithm reveals that it proceeds execution by rounds. Each round r is started when the Inquiry() procedure is called upon by the initiator. In the beginning, the algorithm starts round $r = 1$, by executing lines 13-15 and calling upon Inquiry(). Afterwards, each round $r > 1$ is started whenever new informations about processes in the system are gathered by p_i in round $(r - 1)$, thus satisfying the condition ($i.known \neq i.previously.known$) in line 24. The algorithm proceeds by executing sequential rounds until it eventually terminates, which happens whenever ($i.known = i.previously.known$) is satisfied, meaning that the improvement on p_i’s knowledge has finished (line 23).

No assume that the number of rounds in infinite. This implies that p_i receives new knowledge about new processes infinitely often. As a consequence, the number of processes in the system is infinite. Thus, a contradiction.

\[\Box\]
Lemma 2 Starting by round \(r = 1 \), in each round \(r \) of algorithm COLLECT, \(i.\text{known} \) is augmented with reachable nodes whose distance from \(p_i \) is \(r \).

Proof: To discover the set of reachable processes, the algorithm COLLECT realizes a sort of breadth-first search in the graph \(G_{\text{dia}} \). Let the initiator \(p_i \) be the root of the tree established by this search. The rounds correspond to the levels of the tree. If \(p_j \) is first discovered by \(p_i \) in round \(r \), then \(d(p_i, p_j) = r \). This means that \(p_j \) is reached by the breadth-first search in level \(r \). Denote \(N_{(r)}(p_i) \) the set of all nodes reached by the breadth-first search until level \(r \). Let \(i.\text{known} \) be the set of known nodes in round \(r \). So, \(i.\text{known} = N_{(r)}(p_i) \). Let us proceed the proof by induction on \(r \).

Basis: In round \(r = 1 \) (level 1 of the tree), \(p_i \) attributes its list of adjacent nodes to \(i.\text{known} \), which corresponds to the list of participants returned by \(i.\text{PD} \) (line 14). So, if \(p_j \in i.\text{PD}, d(p_i, p_j) = 1 \). Let \(N_{(1)}(p_i) \) be the set of adjacent nodes. So, \(i.\text{known} = N_{(1)}(p_i) \).

Induction: Suppose the Lemma holds for level \(< r \) of the tree. By Lemma \(1 \), round \(r \) starts whenever informations about new nodes in the system are gathered by \(p_i \) in round \((r-1) \), satisfying the condition \(i.\text{known} \neq i.\text{previously-known} \) in line 24. Let \(p_j \) be a node in \((i.\text{known}\setminus i.\text{previously-known}) \). Thus, \(p_j \) has been discovered by \(p_i \) in round \((r-1) \). This means that \(p_j \) is reached by the breadth-first search in level \((r-1) \).

Starting round \(r \), \(p_i \) inquires \(p_j \) for sending its view of known processes (lines 13-14). After that, still in round \(r \), node \(p_j \) will reply, by passing back to \(p_i \) the list of participants returned by its participant detector \(j.\text{PD} \) (line 28). Let \(p_l \in j.\text{PD} \) and \(p_l \notin i.\text{known} \). This means that, in its probing for discovering new processes, \(p_i \) has not met \(p_l \) (round \(< r \)); otherwise, by the inductive hypothesis \(p_l \) would be in \(i.\text{known} \). Thus, \(d(p_l, p_i) > (r-1) \).

Upon reception of message view from \(p_j \), \(i.\text{known} \) is updated with \(j.\text{PD} \) (line 13). By the inductive hypothesis, in round \((r-1) \), \(i.\text{known} = N_{(r-1)}(p_i) \). Thus, in round \(r \), \(i.\text{known} \) contains \(N_{(r-1)}(p_i) \), extended with every new process discovered by \(p_i \) in round \(r \) (including \(p_l \)). So, in round \(r \), \(i.\text{known} = N_{(r)}(p_i) \). By definition, \((p_j, p_l) \in G_{\text{dia}} \) defined by \(j.\text{PD} \), thus \(d(p_j, p_l) = 1 \). By the inductive hypothesis, \(d(p_l, p_i) = r-1 \). Thus, \(d(p_l, p_i) = r \).

Thus, in round \(r \), \(i.\text{known} \) is augmented with nodes whose distance from \(p_i \) is \(r \). \(\square \)

Lemma 3 Consider a \(k\text{-OSR} \) participant detector. Let \(f < k \) be the number of nodes that may crash. Algorithm COLLECT (1) executed by each node (i.e. having each node being an initiator) satisfy the following properties:

- Termination: every node \(p_i \) terminates execution and returns a list of known nodes (processes with whom \(p_i \) can communicate);

- Safety: algorithm COLLECT returns the maximal set of correct processes reachable from \(p_i \).

Proof: Termination. Let us proceed our proof by induction on \(r \). In round \(r = 1 \), at beginning of the execution, \(i.\text{known} \) receives the list from \(i.\text{PD} \) (line 13). So, \(i.\text{known} \) is initially composed by processes with whom it can communicate. Going on the round, at line 13, \(p_i \) calls upon
the Inquiry() procedure, so that it will send a view message to every one of these known processes, excluded those in previously-known (which in round \(r = 1 \) is empty) (lines [1][4]). By Menger’s Theorem, there are at least \(k \) nodes in each one of the \(m \) components of \(G_{di} \). Since \(f < k \), there are at least 1 correct node in each one of these components. So, \(p_i \) will receive at least \((|\text{known}| - f) \geq 1 \) responses for its inquiry (line [10]). This number coincides to the initial value of the \(i.wait \) variable (set up in line [11]) and thus, due to its decay when a reply arrives (line [20]), eventually condition \((i.wait == 0) \) will be satisfied (see line [21]).

Note that, on the execution of this investigation procedure – characterized by the sent and reception of view() messages – \(p_i \) could enlarge its knowledge about processes in the system, resulting in the update of its \(\text{known} \) set (line [18]). Note also that \(p.i \)’s previous knowledge is stored in the \(\text{previously known} \) set (see line [12]). Whenever the condition \((i.wait == 0) \) is verified, two case are possible:

(i) \(i.known = \text{previously known} \). This means that correct processes in \(\text{known} \) share the same view. In this case, the algorithm terminates by returning the gathered \(\text{known} \) view (line [23]). (ii) \(i.known \neq \text{previously known} \). This means that \(p_i \) has enlarged its knowledge. In this case, it will inquiry for the view of these new processes, calling upon Inquiry() and starting a new round \(r + 1 \) (line [25]). Suppose these executing conditions hold in rounds \(r < r_i \). Eventually, in round \(r \), since the set of processes in the system \(\Pi \) is finite, no new process is going to be discovered by \(p_i \) in line [18]. Thus, condition (i) \((i.known = \text{previously known}) \) will be satisfied and the algorithm terminates.

Safety. Let us first make some useful remarks. Let \(G_{di} = (V, E) \) be the knowledge graph defined by \(k\text{-OSR} \) and decomposed into its \(m \) \(k \)-strongly connected components. Let \(G = G_1 \cup G_2 \cup ... \cup G_m \) be such a decomposition. Remember that there is exactly one sink component in \(G_{di} \). Note also that \(V = \Pi \).

Consider two nodes \(p_i \) and \(p_j \) in \(V \). Two cases are possible. (i) If \(p_i \) and \(p_j \) are in the same component \(G_i \), since each one of the \(G_{di} \) components is \(k \)-strongly connected, there is at least \(k \) node-disjoint paths between any two nodes in \(G_i \); (ii) If \(p_i \in G_i \) and \(p_j \in G_j \), \(G_i \neq G_j \) (the nodes are in distinct components), suppose that \(p_j \) is reachable from \(p_i \) \((p_i \sim p_j)\), from the property (3) of the graph \(G_{di} \) generated by \(k\text{-OSR} \), there are \(k \)-disjoint paths from \(G_i \) to \(G_j \). So, there is at least \(k \) node-disjoint paths from node \(p_i \) to \(p_j \) in \(G_{di} \). From the graph connectivity (see the observation 2 in Section 2.2), removing \((k - 1) \) nodes leaves at least one path between any pair of nodes \((p_i,p_j)\) in each \(k \)-strongly-connect component. Thus, in situation (i), the graph remains strongly connected, meaning that at least one path of correct nodes from every pair of nodes. In situation (ii), there is at least one path from \(p_i \) to \(p_j \) composed of correct nodes.

Our claim is that algorithm COLLECT returns to \(p_i \) the maximal set of correct processes reachable from \(p_i \). This set is stored in \(\text{known} \). Let us proceed our proof by induction on the number of rounds and demonstrate that, in round \(r \), \(\text{known} \) contains all reachable processes from \(p_i \) through a path of length at most \(r \).

In round \(r = 1 \), \(\text{known} \) contains all neighbor nodes returned by its participant detector \(i.PD. \) From Lemma 2, \(d(p_i,p_j) = 1 \).
Suppose the claim is valid for round \(r \). Let \(p_l \) be a node such that \(d(p_i, p_l) = r \). In this case, from the statements above (situations (i) and (ii)), there is at least one path from \(p_i \) to \(p_l \) composed of correct nodes. Let \(p_j \) be the predecessor of \(p_l \) in this path. Thus, \(p_l \) belongs to \(j.PD \). Evidently \(d(p_i, p_j) = (r - 1) \); otherwise, \(d(p_i, p_l) \neq r \). By the inductive step, \(i.known \) contains all those correct nodes that are exactly \((r - 1) \) edges away from \(p_i \). Since \(d(p_i, p_j) = (r - 1) \), \(p_j \) has been discovered by \(p_i \) in round \((r - 1) \) (Lemma 3).

Round \(r \) starts whenever informations about new nodes in the system are gathered by \(p_i \) in round \((r - 1) \), (see Lemma 1). Thus, in round \((r - 1) \), \(p_j \in (i.known \setminus i.previously.known) \). In round \(r \), at the beginning, \(p_i \) will inquiry all new nodes (including \(p_j \)) to send its view of known processes (lines 9-10). After that, still in round \(r \), node \(p_j \) will reply, by passing back to \(p_i \) its list of participants returned by its participant detector \(j.PD \) (line 28). Upon reception of message \(\text{view} \) from \(p_j \), \(i.known \) is updated with \(j.PD \) (18). By the inductive step, in round \((r - 1) \), \(i.known \) contains all processes reachable from \(p_i \) through a path of length at most \((r - 1) \). Thus, in round \(r \), \(i.known \) is extended with every new node discovered by \(p_i \) in round \(r \) (thus including \(p_l \)). So, in round \(r \), \(i.known \) contains all correct nodes reachable from \(p_i \) through a path of length at most \(r \).

These Corollaries below follow directly from Lemma 3.

Corollary 1 Consider a \(k-OSR \) participant detector. Let \(f < k < n \) be the number of nodes that may crash. Algorithm \(\text{COLLECT} \) (1) executed by each node results in every correct node getting upon termination the knowledge of the composition of its \(k \)-strongly-connected component plus reachable nodes from other components (which includes at least all nodes in the sink component).

Corollary 2 Consider a \(k-OSR \) participant detector. Let \(f < k < n \) be the number of nodes that may crash. Processes within the same \(k \)-strongly-connected component have the same view of reachable processes (known set) after executing algorithm \(\text{COLLECT} \) (1).

Corollary 3 Consider a \(k-SCO \) participant detector. Let \(f < k < n \) be the number of nodes that may crash. Algorithm \(\text{COLLECT} \) (1) executed by each node results in every correct node getting upon termination the knowledge of \(\Pi \).

Proposition 2 The \(k-SCO \) participant detector is sufficient to solve uniform \(FT-CUP \), in spite of \(f < k < n \) node crashes, assuming \(\Omega \).

Proof: Sufficient: The \(\text{COLLECT} \) algorithm provides each process \(p_i \) with the set \(\Pi \) (see Corollary 3), in spite of \(f < k \) crashes. Then, previous indulgent algorithms aiming for solving classical consensus, which are based on a priori knowledge about \(\Pi \), can be used [3, 8]. In particular, if \(f < k/2 \), and \(k < n \), it is possible to solve \(FT-CUP \) as well uniform \(FT-CUP \) in a system enriched with both: a \(k-SCO \) participant detector and a \(\Omega \) failure detector. \(\square \)
3.3 k-OSR Participant Detector is Sufficient and Necessary to Solve FT-CUP Assuming Ω

Our approach for the main result of this section is also constructive. The CONSENSUS algorithm that we provide builds upon the previously presented COLLECT algorithm and a second algorithm (SINK) that determines whether a node is in the single k-strongly connected sink component of the knowledge connectivity graph.

3.3.1 The SINK Algorithm

The SINK algorithm (presented as Algorithm 2) determines if a node belongs to the sink component, assuming the knowledge connectivity graph is in k-OSR. SINK makes use of the COLLECT algorithm that provides nodes with a partial view of the system composition. Now, in the sink component, nodes have the same view of the system (i.e. the same set of known nodes), whereas in the other components, nodes have strictly more knowledge than in the sink.

The algorithm is composed of two phases. In the INIT phase, processes broadcast their knowledge about the composition of the system (which is an approximation of Π), while in the VERIFICATION phase, processes determine whether they belong to the sink component or not.

Variables. A process p_i maintains the following local variables:
- i.known: subset of processes currently known by p_i;
- i.responded: subset of processes from which p_i have received an ack message;
- i.in_the_sink: predicate indicating whether p_i belongs to the sink component.

Description. A process p_i starts the algorithm by executing the INIT procedure (lines 1-12). First, p_i runs the COLLECT algorithm to get the partial list of nodes composing the system. This list is stored in i.known (line 1). Afterwards, p_i sends a REQUEST(i.known) message to every process p_j in this set (lines 13-14). Upon receipt of a REQUEST(m.known) message from p_j, process p_i tests if its own i.known set is equal to the message’s m.known set. In case of equality, this means that p_i belongs to the same component of p_j (Corollary 2). So, p_i sends back an ack response to p_j (line 15). Otherwise, p_i sends back a nack response (line 17).

Upon receipt of a RESPONSE(ack/nack) message from p_j, process p_i determines whether it is in the sink component or not. If p_j responded nack, this means that p_i has identified processes (including p_j) belonging to other components. So, p_i cannot be in the sink and it terminates execution returning false for the i.in_the_sink predicate (line 20).

If p_j responds ack, this means that p_j has the same view of p_i about reachable processes in the system. Moreover, If p_i receives ack messages from every correct process in its view, p_i can conclude that it is in the sink component. So, when receiving an ack message, p_i updates its local variable i.responded to take into account p_j’s response (line 20) and tests
Algorithm 2 SINK (

constants:
(1) \(f \): upper bound on the number of crashes
variables:
(2) \(i.\text{known} \): set of nodes
(3) \(i.\text{in}_\text{the}_\text{sink} \): boolean
(4) \(i.\text{responded} \): set of nodes
messages:
(5) \text{REQUEST} message:
(6) \(i.\text{known} \): set of nodes
(7) \text{RESPONSE} message:
(8) \text{ack/nack} \): boolean

** All Nodes **

INIT:
(9) \(i.\text{known} = \text{COLLECT}() \);
(10) \(i.\text{responded} = \{} \);
(11) for each \(j \) in \(i.\text{known} \) do
(12) send \text{REQUEST} \((i.\text{known})\) to \(p_j \); endfor

VERIFICATION:
(13) upon receipt of \text{REQUEST} \((m.\text{known})\) from \(p_j \):
(14) if \(m.\text{known} == i.\text{known} \) then
(15) send \text{RESPONSE} \((\text{ack})\) to \(p_j \);
(16) else
(17) send \text{RESPONSE} \((\text{nack})\) to \(p_j \); endif

(18) upon receipt of \text{RESPONSE} \((m)\) from \(p_j \):
(19) if \(m.\text{ack} \) then
(20) \(i.\text{responded} = i.\text{responded} \cup \{j\} \);
(21) if \(|i.\text{responded}| >= |i.\text{known}| - f \) then
(22) \(i.\text{in}_\text{the}_\text{sink} = \text{true}; \)
(23) return \((i.\text{in}_\text{the}_\text{sink}, i.\text{known})\); endif
(24) else
(25) \(i.\text{in}_\text{the}_\text{sink} = \text{false}; \)
(26) return \((i.\text{in}_\text{the}_\text{sink}, i.\text{known})\);
(27) endif
Lemma 4 Consider a k-OSR participant detector. Let $f < k < n$ be the number of nodes that may crash. Algorithm SINK executed by each node satisfy the following properties:

- **Termination**: every node p_i terminates execution by deciding whether it belongs to the sink component (true) or not (false);
- **Safety**: a node p_i is in the unique k-strongly connected sink component iff algorithm SINK returns true.

Proof: Termination. At the beginning of execution, node p_i sends a REQUEST message to all processes in its local view (i.known) lines 11-12. Since at most $f < k$ processes can crash, p_i will receive at least $s = |i$.known$| - f$ responses in line 13. Since G_d is k-strongly connected, $|i$.known$|$ ≥ k, thus $s ≥ k - f ≥ 1$. If one of these responses equals nack, the algorithm terminates, by returning false (lines 25-26). If a sufficient number ($≥ s$) of ack responses is received (line 21), the algorithm terminates by returning true (lines 22-23). Lines 23 and 26 are the only points where the algorithm terminates. Thus true or false are the only possible returns.

Safety. (i) Let us first prove that if node p_i is in the unique k-strongly connected sink component then algorithm SINK returns true. From Lemma 3, the COLLECT algorithm returns a list of all nodes reachable from p_i in G_d. Consequently, nodes in the unique k-strongly connected sink will have the same view of the system (Corollary 3) and the execution of line 9 returns the same i.known set to all nodes in the sink. In this case, every node p_j in view i.known which executes line 13 will respond ack to p_i’s request (line 15). Thus, the condition in line 24 will never be satisfied. Moreover, since there are at least $s = |i$.known$| - f$ correct processes in the system, at least a number of s responses will be received by p_i. Thus, condition in line 21 will eventually be satisfied and the algorithm terminates returning true (lines 22-23).

(ii) Let us now prove that if algorithm SINK returns true then node p_i is in the unique k-strongly connected sink component. Assume by contradiction that p_i does not belong to the unique sink of G_d. If that is the case, i.known is composed by processes belonging to other components than p_i’s (Corollary 1). By the connectivity of the graph, there are at least k nodes in each one of the m components in G_d. Since $f < k$, there are at least 1 correct node in each one of these components. So, p_i will receive in line 18 at least 1 nack response from a process p_l belonging to other components than p_i’s. Moreover, p_l will never receive, at line 19 $s ≥ |i$.known$| - f$ of ack responses, since at least 1 of those responses from a correct process will be nack. Thus the condition in line 21 will never be satisfied. So, eventually, condition in line 24 will be satisfied and the algorithm terminates returning false (lines 25-26), reaching a contradiction. \[\square\]
3.3.2 The CONSENSUS Algorithm

The CONSENSUS protocol is presented as Algorithm 3. In the initial phase, every node runs SINK (Algorithm 2) to get a partial view of the system and decide whether or not it belongs to the k-strongly connected sink component. Depending on whether the node belongs or not to the sink, two behaviors are possible.

For the nodes belonging to the sink, an AGREEMENT phase is launched in order to reach a consensus on some value. By construction, all nodes in the sink component share the same $i.\text{known}$ set, so using Ω is sufficient to solve consensus as soon as there are at least $2k+1$ nodes in the sink component. The other nodes (in the remaining k-strongly connected components) do not participate to this consensus. They launch a REQUEST phase to ask for and collect the value decided by the sink members. This is done by sending request messages to known processes and waiting for responses. Since at least one member from the sink is correct, at least one member will respond the decided value when it is decided.

Proposition 3 The k-OSR participant detector is sufficient to solve uniform FT-CUP and necessary to solve FT-CUP, in spite of $f < k < n$ crashes, assuming Ω.

Proof: *Sufficient:* Algorithm 3 solves uniform FT-CUP with $\text{PD} \in k$-OSR, assuming Ω. The following statements proves this claim.

Validity. This property trivially follows from the fact that a decided value is a value proposed by nodes in the sink component (line 16).

Termination. To prove that every correct process decides, we must prove that they finish by executing lines 21 or 22 of the algorithm. On the execution of the main decision task, we can distinguish two types of behavior: (i) that one from the nodes belonging to the sink and (ii) that from the nodes not in the sink component. In case (i), nodes in the sink will call upon a classical indulgent protocol which solves consensus (line 16). From the termination property of this algorithm, a decision is eventually attained and then line 17 is executed by every node in the sink. Thus, after executing lines 18-21, a decision is returned to the application (line 21). In case (ii), nodes not in the sink will send a message requesting for the decision to all the nodes in their $i.\text{known}$ set returned by the COLLECT procedure executed in the SINK algorithm (lines 27-28). From Corollary 1, every node in the sink belongs to $i.\text{known}$. Thus, after receiving the request message in task T2 from a node p_j not in the sink (line 22), a node in the sink will pass back the decision (if it has one) or store p_j’s identity in order to send the decision later. This will happen when the node receives the decision in line 17 and execute lines 19-20 in order to send the decision to processes who have asked for it. Note that, even if a node in the sink decides, by returning the decision value to the application (line 21), task T2 continues execution to diffuse this decision to all the other nodes not in the sink. So, a node not in the sink, eventually receives this response. Then, by executing line 22, it will receive the decision to finally return the decided value to the application (line 32).

Uniform Agreement. The guarantee that no two processes decide differently comes directly from the uniform agreement property of the underlying indulgent consensus. Thus, every node in the sink component will receive the same value v in line 17 for the decision.
Algorithm 3 CONSENSUS

constant:
(1) f: upper bound on the number of crashes

input:
(2) $i.initial$: value

variable:
(3) $i.in.the_sink$: boolean
(4) $i.known$: set of nodes;
(5) $i.decision$: value
(6) $i.asked$: set of nodes

message:
(7) REQUEST message.
(8) RESPONSE message:
(9) $decision$: value

** All Nodes **

task T1: { Main Decision Task }
(10) $i.asked = \{\}$; $i.decision = \perp$;
(11) $(i.in.the_sink, i.known) = \text{SINK}()$;
(12) if $i.in.the_sink$ then
(13) fork AGREEMENT
(14) else
(15) fork REQUEST end if

** Node In Sink **
AGREEMENT: { make use of classical consensus }
(16) $\text{Consensus}.propose(i.initial)$
(17) upon $\text{Consensus}.decide(v)$:
(18) $i.decision = v$;
(19) for every j in $i.asked$ do
(20) send RESPONSE ($i.decision$) to p_j; end for
(21) return ($i.decision$);

task T2: { Decision Dissemination Task }
(22) upon receipt of REQUEST() from p_j:
(23) if $i.decision \neq \perp$ then
(24) send RESPONSE ($i.decision$) to p_j;
(25) else
(26) $i.asked = i.asked \cup \{j\}$; end if

** Node Not In Sink **
REQUEST:
(27) for every j in $i.known$ do
(28) send REQUEST () to j
(29) upon receipt of RESPONSE (v) from j:
(30) if $i.decision = \perp$ then
(31) $i.decision = v$;
(32) return ($i.decision$); end if

INRIA
So, every one of these nodes will diffuse the same value \(v \), immediately after taken the decision on the execution of lines 19-20, or in the “decision dissemination task” \(T_2 \) (lines 23-26).

Necessary: Let us give a sketch of the proof which is based on the same arguments to prove the necessity of \(OSR \) for solving CUP \(\text{[1]} \). Assume by contradiction that there is an algorithm \(A \) which solves FT-CUP with a \(PD \notin k-OSR \). Let \(G_{di} \) be the knowledge graph induced by \(PD \) decomposed into its \(k \)-strongly connected components. The following scenarios are possible: (i) either there exists less than \(k \) node-disjoint paths between two components of \(G_{di} \); or (ii) the decomposition of \(G_{di} \) originates more than one sink. In the first scenario, the crash of \(k-1 \) nodes may disconnect the graph into at least two components. Since connectivity is a necessary condition to solve CUP \(\text{[1]} \), we reach a contradiction. In the second scenario, let \(G_1 \) and \(G_2 \) be two of those sinks. Assume that all processes in \(G_1 \) have input value equal to \(v \) and that all processes in \(G_2 \) have input value equal to \(w \), \(v \neq w \). By the termination property of consensus, processes in \(G_1 \) decide at time \(t_1 \) and processes in \(G_2 \) decide at time \(t_2 \). We can delay the reception of any messages from processes in other components to both \(G_1 \) and \(G_2 \) to a time \(t > \max\{t_1, t_2\} \). Since processes in the sinks are unaware about the existence of other processes, by the validity property of consensus, processes in \(G_1 \) decide for the value \(v \) and processes in \(G_2 \) decide for the value \(w \), violating the agreement and reaching thus a contradiction.

\[\square \]
Chapter 4

Discussion

In this paper, we investigated the trade-off between knowledge about the system and synchrony assumptions to enable consensus in fault-prone unknown systems. It turns out that if knowledge connectivity is k-OSR, then consensus can be solved assuming minimal synchrony assumptions. Our approach is constructive, and an interesting side effect of our design is that the uniform version of the consensus can be solved as well, with no particular effort. This complements nicely previous studies that showed that complete synchrony was needed whenever only minimal knowledge connectivity (OSR) was available. Interestingly enough, the same previous solution did not enable uniform consensus.

Our works leads to several interesting open questions:

1. It is still unclear whether the *performance* of the consensus algorithm is impacted by the knowledge connectivity of the system and by the synchrony assumptions. Would it more interesting to boost connectivity knowledge or synchrony to make decisions faster?

2. All known solutions to the FT-CUP problem have the consensus value chosen from the initial value of a particular set of nodes (the ones in the “sink” component). What would be the knowledge connectivity requirement (and the associated synchrony assumption) to have all initial values taken into account? (Besides the obvious SCO and k-SCO classes.)
Bibliography

