Improving Image Resolution by Adaptive Back-Projection Correction Techniques

Giuseppe Messina, Sebastiano Battiato, Massimo Mancuso, Antonio Buemi

Abstract—The paper describes a back-projection based algorithm, improved by adaptive techniques, able to reconstruct a high-resolution image from multiple low-resolution frames. The proposed approach is mainly based on a specific metric, the uncertainty degree, used in pixel reconstruction and on a local Auto-iterative approach for error correction. Using uncertainty the amount of computation is sensibly reduced. The Auto-iterative technique reduces drastically the number of iterations needed to decrease approximation errors. This method is suitable to be applied when real-time processing is required. Experimental results are presented both in terms of perceived and measured quality.

Index Terms—Resolution Enhancement, Back-projection, Super-resolution, Uncertainty, Auto-iterative, Motion Estimation.

I. INTRODUCTION

In the global communication era the need of multi-media contact is diffusing. Image capturing devices market is focused on quality improvement and reduction of the processing time [3]. Quality improvement is obtained by increasing the resolution of the sensor and/or by using more sophisticated image-processing algorithms [1], [2] and [5], while new features drive competition among the different manufacturers (video clip acquisition, MP3 player, scanning of film negative, etc).

But for specific application (e.g. mobile imaging) there are too many constraints to manage in terms of power consumption, DSP capabilities, etc. Best quality image acquisition with low cost is thus necessary. The main objective is to obtain from a low cost image sensor a High-Resolution (HR) image in a relatively short time. Zooming algorithms usually interpolate “new artificial” intra-pixel information to expand the images resolution. Simple interpolation is not well suited to generate resolution-enhanced images. Resolution enhancement techniques aim to insert “real” intra-pixel information to obtain the true matching scene.

Most mathematical theories to solve this ill-posed problem are presented in [6]. Almost all of them merge non-redundant image information combining multiple Low-Resolution (LR) frames. One of the LR input images is fixed as reference image. Using the data remaining from the other LR images it is possible to obtain a more accurate HR image. The methods developed so far can be divided into three main categories:

- Frequency domain methods use relationships between continuous and discrete Fourier transforms of LR frames [22];
- Bayesian approaches apply a prior stochastic model using MAP (Maximum A Posteriori) estimation techniques (e.g. integration of multiple satellite images [7], non linear expansion method [19]);
- Reconstruction methods use an iterative process on LR images starting from a “draft” HR image obtained by heuristic considerations; simple iterative projection such as Iterated Back-Projection (IBP) procedures [11], [12], update the estimated HR reconstruction by back-projecting the errors between simulated and observed LR images. IBP enforces that HR reconstruction matches the observed scene. Reconstruction methods can also be based on POCS [9], [16], [17] and [20].

All previous methods use LR image alignment to exploit LR information. Global or local motion estimation can be used depending on specific application [4], [8], [13], [14] and [18]. The proposed approach, that uses a global motion estimation algorithm, is based on few adaptive techniques able to improve classical IBP methods. The local heuristics considered (e.g. auto-iterative, uncertainty degree) are fast and allow obtaining impressive results when applied on input Low-resolution sequences acquired by digital consumer engines.

The paper is organized as follows. Next section briefly describes previous art techniques. Section 3 introduces the proposed IBP based approach presenting a few adaptive techniques able to speedup the iterative process without perceived quality loss. The main steps are: uncertainty estimation and auto-iterative correction. In section 4 experimental results show the effectiveness of the proposed techniques. A final section closes the paper tracking directions for future works.

G. Messina, S. Battiato and A. Buemi are at Catania Advanced System Technology of STMicroelectronics, Stradale Primosole 50, Catania 95121 Italy (e-mail: giuseppe.messina@st.com, sebastiano.battiato@st.com, antonio.buemi@st.com).

M. Mancuso is at Agrate Advanced System Technology of STMicroelectronics, via C. Olivetti 2, Agrate-Brianza Italy (e-mail: massimo.mancuso@st.com).
Unlike all other methods, the data are initially transformed to the frequency domain where they are combined together. This data is then transformed back into spatial domain where the new image will have a higher resolution than the original frames (see Fig. 1).

The frequency domain method limits are mainly due to the simple assumption of the real image set. The existing algorithm doesn’t reach good results for the real image sequences. Moreover these methods are computationally expensive.

B. Bayesian Methods

Bayesian methods for HR image reconstruction use a statistical a priori model combined with maximum a posterior (MAP) or maximum likelihood (ML) formulation for HR reconstruction.

Bayes’ theorem gives the rule for updating belief in a Hypothesis \(A \) (i.e. the probability of \(A \)) given additional evidence \(B \), and background information (context) \(c \):

\[
p(A/B,c) = p(A/c)p(B/A,c)/p(B/c) \tag{1}
\]

The left-hand term, \(p(A/B,c) \), is called the posterior probability, and it gives the probability of the hypothesis \(A \) after considering the effect of evidence \(B \) in context \(c \). The \(p(A/c) \) term is just the prior probability of \(A \) given \(B \) alone, in context \(c \); that is, the belief in \(A \) before the evidence \(B \) is considered. The term \(p(B/A,c) \) is called the likelihood, and it gives the probability of the evidence assuming the hypothesis \(A \) and background information \(c \) are true. The last term, \(1/p(B/c) \), is independent of \(A \), and can be regarded as a normalizing or scaling constant. The information \(c \) is a conjunction of (at least) all of the other statements relevant to determining \(p(A/c) \) and \(p(B/c) \).

An example of Bayesian approach is given by NASA Ames Research Center [7]. NASA researchers use Bayesian theory for constructing super-resolved surface models by combining information from a set of LR images. The basic idea behind NASA approach is based on inverse graphics. That is, if it’s known what the ground is like, the lighting conditions, the camera orientation and characteristics, etc., then it is possible to predict what the camera would see (an image). This is the standard computer graphics problem. However, the problem is here inverted: it is known what the images are, and it must be found the most probable ground truth (surface) that would have generated them, assuming the lighting conditions and camera characteristics are known. The most important (and difficult) part of this process is the recovering of the camera orientation and position for each image. To do this, all the images must be registered with respect to each other by

Unlike all other methods, the data are initially transformed to the frequency domain where they are combined together. This data is then transformed back into spatial domain where the new image will have a higher resolution than the original frames (see Fig. 1).

The frequency domain method limits are mainly due to the simple assumption of the real image set. The existing algorithm doesn’t reach good results for the real image sequences. Moreover these methods are computationally expensive.

B. Bayesian Methods

Bayesian methods for HR image reconstruction use a statistical a priori model combined with maximum a posterior (MAP) or maximum likelihood (ML) formulation for HR reconstruction.

Bayes’ theorem gives the rule for updating belief in a Hypothesis \(A \) (i.e. the probability of \(A \)) given additional evidence \(B \), and background information (context) \(c \):

\[
p(A/B,c) = p(A/c)p(B/A,c)/p(B/c) \tag{1}
\]

The left-hand term, \(p(A/B,c) \), is called the posterior probability, and it gives the probability of the hypothesis \(A \) after considering the effect of evidence \(B \) in context \(c \). The \(p(A/c) \) term is just the prior probability of \(A \) given \(B \) alone, in context \(c \); that is, the belief in \(A \) before the evidence \(B \) is considered. The term \(p(B/A,c) \) is called the likelihood, and it gives the probability of the evidence assuming the hypothesis \(A \) and background information \(c \) are true. The last term, \(1/p(B/c) \), is independent of \(A \), and can be regarded as a normalizing or scaling constant. The information \(c \) is a conjunction of (at least) all of the other statements relevant to determining \(p(A/c) \) and \(p(B/c) \).

An example of Bayesian approach is given by NASA Ames Research Center [7]. NASA researchers use Bayesian theory for constructing super-resolved surface models by combining information from a set of LR images. The basic idea behind NASA approach is based on inverse graphics. That is, if it’s known what the ground is like, the lighting conditions, the camera orientation and characteristics, etc., then it is possible to predict what the camera would see (an image). This is the standard computer graphics problem. However, the problem is here inverted: it is known what the images are, and it must be found the most probable ground truth (surface) that would have generated them, assuming the lighting conditions and camera characteristics are known. The most important (and difficult) part of this process is the recovering of the camera orientation and position for each image. To do this, all the images must be registered with respect to each other by

Unlike all other methods, the data are initially transformed to the frequency domain where they are combined together. This data is then transformed back into spatial domain where the new image will have a higher resolution than the original frames (see Fig. 1).

The frequency domain method limits are mainly due to the simple assumption of the real image set. The existing algorithm doesn’t reach good results for the real image sequences. Moreover these methods are computationally expensive.

B. Bayesian Methods

Bayesian methods for HR image reconstruction use a statistical a priori model combined with maximum a posterior (MAP) or maximum likelihood (ML) formulation for HR reconstruction.

Bayes’ theorem gives the rule for updating belief in a Hypothesis \(A \) (i.e. the probability of \(A \)) given additional evidence \(B \), and background information (context) \(c \):

\[
p(A/B,c) = p(A/c)p(B/A,c)/p(B/c) \tag{1}
\]

The left-hand term, \(p(A/B,c) \), is called the posterior probability, and it gives the probability of the hypothesis \(A \) after considering the effect of evidence \(B \) in context \(c \). The \(p(A/c) \) term is just the prior probability of \(A \) given \(B \) alone, in context \(c \); that is, the belief in \(A \) before the evidence \(B \) is considered. The term \(p(B/A,c) \) is called the likelihood, and it gives the probability of the evidence assuming the hypothesis \(A \) and background information \(c \) are true. The last term, \(1/p(B/c) \), is independent of \(A \), and can be regarded as a normalizing or scaling constant. The information \(c \) is a conjunction of (at least) all of the other statements relevant to determining \(p(A/c) \) and \(p(B/c) \).

An example of Bayesian approach is given by NASA Ames Research Center [7]. NASA researchers use Bayesian theory for constructing super-resolved surface models by combining information from a set of LR images. The basic idea behind NASA approach is based on inverse graphics. That is, if it’s known what the ground is like, the lighting conditions, the camera orientation and characteristics, etc., then it is possible to predict what the camera would see (an image). This is the standard computer graphics problem. However, the problem is here inverted: it is known what the images are, and it must be found the most probable ground truth (surface) that would have generated them, assuming the lighting conditions and camera characteristics are known. The most important (and difficult) part of this process is the recovering of the camera orientation and position for each image. To do this, all the images must be registered with respect to each other by

Unlike all other methods, the data are initially transformed to the frequency domain where they are combined together. This data is then transformed back into spatial domain where the new image will have a higher resolution than the original frames (see Fig. 1).

The frequency domain method limits are mainly due to the simple assumption of the real image set. The existing algorithm doesn’t reach good results for the real image sequences. Moreover these methods are computationally expensive.

B. Bayesian Methods

Bayesian methods for HR image reconstruction use a statistical a priori model combined with maximum a posterior (MAP) or maximum likelihood (ML) formulation for HR reconstruction.

Bayes’ theorem gives the rule for updating belief in a Hypothesis \(A \) (i.e. the probability of \(A \)) given additional evidence \(B \), and background information (context) \(c \):

\[
p(A/B,c) = p(A/c)p(B/A,c)/p(B/c) \tag{1}
\]

The left-hand term, \(p(A/B,c) \), is called the posterior probability, and it gives the probability of the hypothesis \(A \) after considering the effect of evidence \(B \) in context \(c \). The \(p(A/c) \) term is just the prior probability of \(A \) given \(B \) alone, in context \(c \); that is, the belief in \(A \) before the evidence \(B \) is considered. The term \(p(B/A,c) \) is called the likelihood, and it gives the probability of the evidence assuming the hypothesis \(A \) and background information \(c \) are true. The last term, \(1/p(B/c) \), is independent of \(A \), and can be regarded as a normalizing or scaling constant. The information \(c \) is a conjunction of (at least) all of the other statements relevant to determining \(p(A/c) \) and \(p(B/c) \).

An example of Bayesian approach is given by NASA Ames Research Center [7]. NASA researchers use Bayesian theory for constructing super-resolved surface models by combining information from a set of LR images. The basic idea behind NASA approach is based on inverse graphics. That is, if it’s known what the ground is like, the lighting conditions, the camera orientation and characteristics, etc., then it is possible to predict what the camera would see (an image). This is the standard computer graphics problem. However, the problem is here inverted: it is known what the images are, and it must be found the most probable ground truth (surface) that would have generated them, assuming the lighting conditions and camera characteristics are known. The most important (and difficult) part of this process is the recovering of the camera orientation and position for each image. To do this, all the images must be registered with respect to each other by
accuracy of small fraction of pixel; this registration clarifies how an image map onto the ground truth model is built. The initial ground model is formed by consenting to each pixel "to vote" on how much that ground position contributed to that pixel. This initial ground model is then used to project what each image should be (i.e. to predict each pixel value). The difference between the predicted pixel value and the observed value is used to update the ground model until it cannot be further improved. This procedure increases both spatial and gray-scale resolution.

The NASA approach was implemented with standard statistical (ML) methods. The resulting image (Fig. 2) shows a surprisingly good job of enhancing the real data more than the noise, but some graininess (quantization noise) remains. Bayesian theory offers a way to smooth out the noise without smoothing out the real features, by including neighbour correlation into the ground pixels model. In other words, in the surface reconstruction a ground pixel is not just a function of the corresponding projected pixels, but also depends on its neighbour values. This correlation addition makes NASA approach much less sensitive to noise in the pixel values, and in theory it should produce more realistic reconstruction. On the other hand this method needs many low-resolution frames to get a good output (in the order of thousands frames), and also is not suitable for consumer electronics devices.

C. Reconstruction Methods

In this class of methods, both observation model and reconstruction are accomplished in the spatial domain. These approaches use a model relating the LR images to the desired HR image by iterative reconstruction techniques useful to estimate the HR image. The main advantage of this approach is the ability of modeling more realistic video formulation process and the flexibility of applying different iterative methods to estimate HR image. In the following we describe some of the most popular approaches.

1) POCS (Projection Onto Convex Sets): Stark and Oskouei [20] have studied HR problems, using projection onto convex set (POCS). In that case the blur caused by sensor geometry is taken into account. Ozkan et alii [16] apply POCS formulation using also the sensor noise, in addition to the blur caused by the physical dimension of the sensor. These methods assume only translational motion among relative LR images ignoring the aperture time in their image model. Later Patti et alii [17] have extended the POCS based method by considering a complete model of video acquisition with an arbitrary input sampling lattice and a nonzero aperture time.

The POCS method requires the definition of closed convex constraint sets within a well-defined vector space that contains the actual HR image. An estimate of the HR image is then defined as a point in the intersection of these constraint sets, and is determined by successively projecting an arbitrary initial estimate onto the constraint sets.

A projection operator \(P \) is associated with each constraint set, mapping an arbitrary point within the space to the closest point within the set. Relaxed projection operators,

\[
T = (1 - \lambda) I + \lambda P \quad \text{where } 0 < \lambda < 2,
\]

can be also defined and used in finding an estimate in the intersection set.

The Convex Sets are defined in the following way: For each pixel within the LR image sequence \(g(m_1, m_2, k) \), where \(k \) is the frame number, it is fixed, at a time \(t_r \):

\[
C_r(m_1, m_2, k) = \{ y(n_1, n_2, t_r) : |r^y(m_1, m_2, k)| \leq \delta_0(m_1, m_2, k) \}
\]

where

\[
r^y(m_1, m_2, k) = g(m_1, m_2, k) - \sum_{(n_1, n_2)} y(n_1, n_2, t_r) h_r(n_1, n_2, m_1, m_2, k)
\]

is the residual associated with an arbitrary member \(y \) of the constraint set. These sets are referred to as the data consistency constraint sets. Sets \(C_u(m_1, m_2, k) \) can be defined only where the motion information is accurate. Therefore it is simple to incorporate occlusion and uncovered background knowledge by only defining sets for appropriate observations. The quantity \(\delta_0(m_1, m_2, k) \) is a bound reflecting the statistical confidence, with which the actual image is a member of the set \(C_r(m_1, m_2, k) \).

If \(y \) denotes the actual image,

\[
r^y(m_1, m_2, k) = v(m_1, m_2, k),
\]

where \(v \) is the noise due to the LR sensor. Hence the bound \(\delta_0(m_1, m_2, k) \) is determined from the possible space and time-varying statistics of the noise process and thus POCS solution will be able to model space and time-varying white noise processes.

Once Convex Sets are defined, for an arbitrary high resolution image \(y(n_1, n_2, t_r) \), the Projection operator is constructed as follow:

\[
P_r(m_1, m_2, k)[y(n_1, n_2, t_r)]
\]

to project \(y(n_1, n_2, t_r) \) onto convex set \(C_r(m_1, m_2, k) \), where

\[
P_r(m_1, m_2, k)[y(n_1, n_2, t_r)] = y(n_1, n_2, t_r) + \begin{cases} \left(r^y(-) - \delta_0(-) \right) h_r(n_1, n_2, t_r), & r^y(-) > \delta_0(-) \\ \left(r^y(-) + \delta_0(-) \right) h_r(n_1, n_2, t_r), & r^y(-) < -\delta_0(-) \\ 0, & \text{else} \end{cases}
\]

where "\(- \)" function argument is interpreted as "\(m_1, m_2, k \)". \(o_1 \) and \(o_2 \) denote the \(h_r \) blur function support in \(y(n_1, n_2, t_r) \) refer to
lower image frame k at pixel (m, n). Additional constraint C_A (bounded amplitude and positivity) can be utilized to improve the results.

Given the above projections, an estimate, $\hat{f}(n_1, n_2, t_r)$, of the HR image $f(n_1, n_2, t_r)$, is obtained iteratively from all LR images $g(m, n, k)$ where constraint sets can be defined as

$$\hat{f}_{x,t}(n_1, n_2, t_r) = T_r \hat{T}_{x}[\hat{f}_t(n_1, n_2, t_r)]$$

where T_A is the relaxed projection operator of C_A and \hat{T} denotes the composition of the relaxed projection operators onto the family of sets $C_n(m, n, k)$.

The initial estimate $\hat{f}_0(n_1, n_2, t_r)$ is obtained by bilinearly interpolating one of the LR images to HR image and then motion compensating.

In theory, the iterations continue until an estimate lies within the intersection of all the constraint sets. In practice, however, iterations are generally terminated according to a certain stopping criterion such as visual inspection of the image quality, or when changes between successive estimates, as measured by some metric (i.e., $\|\hat{f}_i - \hat{f}_{i-1}\|$, using the L_2 norm), fall below a preset threshold. POCS is an image domain method that offers the flexibility of space-varying (pixel-by-pixel) processing. Later Eren et al [9] have proposed a robust, object-based SR reconstruction using POCS framework. The proposed method employs a validity map and/or segmentation map. The validity map disables projections based on observations with inaccurate motion information for robust reconstruction in the presence of motion estimation errors; while segmentation map enables object-based processing where more accurate motion models can be utilized to improve the quality of the reconstructed image.

2) Simple Back-Projection: This iterative process was initially ideated by Michal Irani and Schmuvel Peleg [11], [12]. This technique uses averaged projections in HR grid to iteratively solve the HR image.

This algorithm considers also translational and rotational motion between LR frames.

The approach of back projection method is based on the comparison between the known low-resolution frames and the simulated low-resolution frames, resulting from the computed high-resolution image. At the same of Computer-Aided-Tomography (CAT), HR images are reconstructed from their projections in many directions. The low-resolution pixel is a “projection”, in HR grid, of a region in the scene whose size is determined by the imaging blur.

The imaging process, yielding the observed image sequence $[g_k]$, is modelled by:

$$g_k(m, n) = \alpha(h(f(x, y)) + \eta(x, y))$$

where
- g_k is the k-th observed image frame;
- f is the original scene;
- h is the blurring operator;
- η is an additive noise term;
- α is a non-linear function that digitizes and decimates the image into pixels and quantizes the resulting pixels values from intensities into gray levels. α also includes the displacement of kth the frame;
- (x,y) is the center of the receptive field (in f) of the detector whose output is $g_k(m, n)$.

Starting with an initial guess $f^{(0)}$ for the high-resolution image, the imaging process is simulated to obtain a set of low-resolution images $[g_k]$ corresponding to the observed input image $[g_k]$. If $f^{(0)}$ were the correct high-resolution image, then the simulated low-resolution frames $[g_k]$ should be identical to the observed $[g_k]$. The difference images $[g_k - g_k^{(0)}]$ are then computed and used to improve the initial guess by “back-projecting” each value in the difference images onto its receptive field in $f^{(0)}$. The process is repeated iteratively to minimize the error function:

$$e^{(n)} = \sum_{k} \sum_{(x,y)} (g_k(x, y) - g_k^{(0)}(x, y))^2$$

In Fig. 3 it is shown schematically the main steps of such techniques. The imaging process of g_k at the n-th iteration is simulated by:

$$g_k^{(n)} = T_k(f^{(n)} \circ h) \Downarrow$$

![Fig. 3. Schematic Diagram of the Back Projection algorithm.](image)

![Fig. 4. Classical IBP Block description.](image)
where \(\downarrow s \) denotes a downsampling operator by a factor \(s \), and \(\ast \) is the convolution operator. The iterative update scheme of the high-resolution images is expressed by:

\[
\begin{align*}
\mathbf{f}^{(n+1)} &= \mathbf{f}^{(n)} + \sum_{k=1}^{K} T_k^{-1} ((\mathbf{g}_k - \mathbf{g}_k^{(n)}) \ast \mathbf{s}) \ast \mathbf{h}^{BP} \\
\end{align*}
\]

where \(K \) is the number of low-resolution frames, \(\uparrow s \) is an upsampling operator by a factor of \(s \), and \(\mathbf{h}^{BP} \) is a "back-projection" kernel, determined by \(\mathbf{h} \) and \(T_k \). The mean value taken in this last equation reduces additive noise. In Fig. 4 is shown a block description of Irani-Peleg approach.

D. Motion Estimation

There are different methods to estimate inter-frames displacement [4], [8], [13], [14], [18], some of them are computationally expensive and involve too much parameters (for translation, rotation, pan, tilt, and zoom), like “Video Orbits” presented by Mann and Picard [14]. To speed up real-time image registration only translational parameters are considered.

In our approach we use the algorithm described by Kim and Koo [13]. In this work authors have proposed an Image resolution enhancement algorithm based on extracting 1-dimensional characteristic curves from subsequent frames with sub-pixel displacement values. This 1-dimensional algorithm is simple and cost-effective, and can be easily applied in real-time processing. In Fig. 5 is represented the extraction process of 1-dimensional characteristics curves from a LR image.

Other kind of motion estimation algorithms could be used. The choice of displacement registration algorithm is strictly constrained by device capabilities and available resources.

III. PROPOSED ALGORITHM

In order to generate the final HR image, a set of LR frames is acquired. Let \(\{\mathbf{g}_k(i,j) | k=1,2,..,N; i=1,2,..,H; j=1,2,..,V \} \) be the set of LR frames, where \(N \) is the number of LR available frames, \(H \) and \(V \) are the horizontal and vertical size of LR images respectively.

For every pixel of the LR frame \(\mathbf{g}_k(i,j) \) a suitable displacement vector \(\mathbf{g}_k(i,j) \) is computed and is used to find the real position of each LR pixels in the HR grid. To improve resolution by an integer factor \(M \) in both horizontal and vertical directions, each pixel \(\mathbf{g}_k(i,j) \) is positioned using the vectors \(\mathbf{g}_k(i,j) \) in a subpixel \(M \times M \) matrix over the HR-grid. For all HR-grid subpixels, a set \(\mathbf{U}(i',j') \) (where \(i'=1,2,..,H \cdot M, j'=1,2,..,V \cdot M \) of almost \(N \) values coming from LR frames, is then collected. The first “draft” HR image is constructed using for each pixel \(\mathbf{HR}(i',j') \) the average of the values contained in the corresponding set \(\mathbf{U}(i',j') \).

An uncertainty degree \(d \geq 0 \) is associated to each HR subpixel. Depending on \(d \) values the algorithm selects the areas of the real scene that must be effectively improved. In our experiments we have chosen

\[
\mathbf{d}(i',j')=\max(\mathbf{U}(i',j')) - \min(\mathbf{U}(i',j')) ,
\]

where \(i'=1,2,..,H \cdot M, j'=1,2,..,V \cdot M \) (See Fig. 6). The use of subpixel uncertainty degree together with a few back-projection steps for error estimation, allows reducing the number of computation and iterations without affecting the final quality of the reconstructed image.

Further minimization of processed pixels is obtained by fixing the following threshold values:

- \(T \) that represents the minimum amount of admissible uncertainty;
- \(S, L \) used to discard pixels in too darklight regions [11, 17].

In our experiments the following gray levels threshold ranges were derived empirically: \(T \in [4,6], S \in [5,6], L \in [225,230] \). The IBP is improved updating each sub-pixel value by properly using errors \(\mathbf{E}=[E_1, E_2, .., E_2] \) already computed in its neighbourhood (See Fig. 7). This approach, named Auto-Iterative, converges quicker than classical IBP methods.

Several heuristics using different approaches have been performed in order to determine the “optimum strategy”, involving Local minimum Error, Local Average Error, Local Median Error, etc. Each pixel neighbourhood error, in HR grid location \(X \), is the average of differences between the down-sampled HR pixel value \(\{\mathbf{g}(x \downarrow M) \} \) and its corresponding shifted LR pixels \(\{\mathbf{g}(x \downarrow M) \} \), that is:

\[
\mathbf{E}=egin{bmatrix}
E_1 & E_2 & E_3 \\
E_4 & X
\end{bmatrix}
\]

Fig. 7. Example of neighborhood used in Auto-Iterative approach.
Fig. 10. Resolution Enhancement of a real captured sequence (VGA format with CCD sensor): a) Detail of one of the original LR frames; b) Detail of a zoomed LR image through Bicubic Algorithm; c) Detail of High-Resolution image with IBP + Auto-Iterative + Uncertainty.

Fig. 9. Results: a) One of the down-sampled frames; b) Zoomed image through Bicubic Algorithm; c) Enhanced image with IBP + Uncertainty + Auto-Iterative.

G. Messina received his Italian degree in Computer Science in 2000 at Catania University doing a thesis about Statistical Methods for Textures Discrimination. Since March 2001 he has been working at STMicroelectronics in the Advanced System Technology (AST) Digital Still Camera Group as System Engineer. His current research interests are in the area of Image Processing, Resolution Enhancement, Analysis/Synthesis of Texture, and Biometric Recognition.

S. Battiatò received his Italian degree in Computer Science in 1995 and PhD in Applied Mathematics and Computer Science in 1999 both at Catania University. He attended several international workshops/conferences in the imaging field where some results of his research has been presented and then published in the relative Proceedings. A few papers have been also published in International Journals. Since November 1999 has been working at STMicroelectronics in AST Catania Lab in the Digital Still Camera Group as Algorithm Dev. Team Leader. His current research interests are in the area of Image Processing, Compression (Jpeg, Jpeg2000), Watermarking, and Analysis/Synthesis of Texture.

M. Mancuso received the Degree in Electronics Engineering (summa cum laude) from the University of Palermo (Italy) in 1990. He cooperated with the University of Genova for the development of CAL system for DSP. After a research period at the University of Palermo in the Image Processing field, he joined the Co.Ri.M.Me (a consortium between SGTS-Thomson and the University of Catania) and he was involved in image processing using Fuzzy Logic based techniques. At the present he works as Digital Still Camera & Multimedia Mobile Program Manager at AST Catania Lab of STMicroelectronics. He is author of several papers and patents in Image Processing field.

A. Buemi received his degree in Computer Science at Catania University in 1998. In 1999 he won a study grant announced by Italian National Research Council and he spent it at Catania University, developing new image processing algorithms based on fuzzy logic. Since the end of 2000 has been working at STMicroelectronics in AST Catania Lab in the Digital Still Camera Group as System Engineer. His current research activity concerns the following areas of Image Processing: compression of digital image (Jpeg2000), textures classification and fuzzy algorithms for medical applications.