IMMPDAF Approach for Road-Boundary Tracking

K. R. S. Kodagoda, Shuzhi Sam Ge, Fellow, IEEE, Wijerupage Sardha Wijesoma, Member, IEEE, and Arjuna P. Balasuriya, Member, IEEE

Abstract—Robust road-boundary extraction/tracking is one of the main problems in autonomous roadway navigation. Although the road boundary can be defined by various means including lane markings, curbs, and borders of vegetation, this paper focuses on road-boundary tracking using curbs. A vehicle-mounted (downward tilted) 2-D laser-measurement system is utilized to detect the curbs. The tracking problem is difficult because both the vehicle is moving and the target is disappearing, reappearing, and maneuvering in clutter. The interacting-multiple-model probabilistic-data-association filter (IMMPDAF) is proposed to solve the problems after detailed analysis. Track initiation, confirmation, and deletion are performed using the sequential-probability-ratio test. Extensive simulations followed by experiments in a campus environment show that the road-boundary tracking utilizing curbs is possible and robust through IMMPDAF.

Index Terms—Autonomous vehicles, laser radar, road transportation, robot-sensing systems.

I. INTRODUCTION

OAD SAFETY is a worldwide concern and has yet to be solved satisfactorily [1]. Sensing, detection, and tracking of roads are essential in intelligent and safe operation. Different technologies have been investigated for road-boundary detection and tracking including, camera [2]–[4], millimeter wave radar (MMWR) [5], [6], and laser-measurement systems (LMSs) [7], [8]. Camera-based methods are the most extensively researched and tested as it has the advantages of high information content, low cost, low operating power, and absence of a sweep time, but it performs poorly in bad illumination. Although MMWR has the ability to provide good-quality image of a road scene ahead over longer distances (1–200 m) in snow, haze, dust, and rain and is not susceptible to ambient light, it is still very expensive. The utilization of LMSs in automotive applications on the rise due to their low cost, low operating power, and small size, as compared with MMWR. In this paper, we utilize an LMS for detection of curbs and, hence, road boundaries.

The complex curb tracking can be considered as tracking of a maneuvering target in clutter. Adaptive techniques are usually used for the state estimation of maneuvering targets. The multiple-model approach, such as the interacting multiple model (IMM) [15], provides one of the most effective frameworks for tracking maneuvering targets [13]. Cluttered data complicate the maneuver detection and data association, which can be effectively handled in the framework of the probabilistic data association (PDA) [15]. The integration of IMM with PDA is collectively called IMMPDAF in the literature [15]. IMMPDAF has been applied to target tracking with radar sensors [15], [20], passive sensors such as infrared cameras [19], and multisensory systems (radar and an infrared sensor) in clutter [18], [22]. In this paper, we make an attempt to apply the IMMPDAF for curb tracking using an LMS, which can be effectively incorporated into motion planning [9], [10] and localization [11] in practice. The effectiveness of the proposed problem formulation and solution is demonstrated through extensive simulations and comparison with IMM and nearest neighbor data association, followed by realistic and thorough experimentations on a full-size carlike mobile robot in actual road environments.

The main contributions of this paper are as follows: 1) A novel method is presented in formulating the curb-tracking problem (using an LMS) as tracking a maneuvering line target in clutter with a moving observer, which successfully overcomes the inherent problems of curb tracking caused by conflicts between maneuver detection and data association; 2) the problems of disappearances and reappearances of the curbs (e.g., in intersections) are conveniently solved by geometric road constraints coupled with a probabilistically determined track termination and track initialization; and 3) problems due to irregularities of road surface, water puddles, or objects on the road are minimized by devising a methodology to detect/track vertical curb surfaces.

In Section II, the problem of road-boundary tracking is formulated. The IMMPDAF algorithm is described in Section III. In Section IV, simulations and experimental results are presented for various road scenarios. Section V concludes this paper, giving future directions.

II. PROBLEM FORMULATION

The main objective of this paper is to extract and track road boundaries in urban and suburban environments. Such environments inherently consist of curbs defining the road boundaries. In this paper, it is perceived that the road boundaries are defined by the temporal evolution of line segments corresponding to the vertical surfaces of curbs, which can be extracted by a looking-down (αL = 2.6°) front-mounted...
KODAGODA et al.: IMMPDAF APPROACH FOR ROAD-BOUNDARY TRACKING 479

Fig. 1. Sensor mounting and coordinate systems.

Fig. 2. Vehicle kinematics.

2-D LMS, as shown in Fig. 1. When the vehicle is in motion (moving observer), the line segments or targets move along the curbs (left/right). Straight road ahead defines a nonmaneuvering target state. Road bend ahead defines a maneuvering target state. The curb-tracking problem becomes nontrivial due to the maneuvering nature, vanishing and reappearance of the target, and the presence of clutter. It is further complicated by the utilization of a moving observer. IMMPDAF offers one of the most effective and robust techniques to handle such targets with modest computational requirements [15].

A. Process Model

The moving observer or the carlike vehicle process model can be derived from Fig. 2 as

\[
\mathbf{s}^v(k+1) = \begin{bmatrix} x^v_w(k) + \Delta T V(k) \cos \phi^v_w(k) \\ y^v_w(k) + \Delta T V(k) \sin \phi^v_w(k) \\ \phi^v_w(k) + \frac{\Delta T V(k) \sin \gamma(k)}{L} \end{bmatrix} + \mathbf{v}^v(k+1)
\]

where the states are given by \(s^v = [x^v_w, y^v_w, \phi^v_w]^T\), \(\{x^v_w, y^v_w\}\) are the coordinates of the center of the rear axle of the vehicle, \(\phi^v_w\) is the orientation of the vehicle axis with respect to the world-coordinate system shown in Fig. 2, \(V\) and \(\Delta T\) are the speed of the vehicle and sampling time, respectively, and \(\mathbf{v}^v(k+1)\) is the zero-mean Gaussian process noise.

In this tracking problem, the target (i.e., the curb) is represented as a line segment denoted by the midpoint \((x, y)\) and orientation \(\phi\). For the left-bend and right-bend curb scenarios (equivalent to a maneuvering target), the usual turn-rate model in the world-coordinate system is utilized [14]

\[
\mathbf{s}^t(k+1) = \begin{bmatrix} x^c_w(k) + \bar{m} \dot{x}^c_w(k) - \bar{n} \dot{y}^c_w(k) \\ y^c_w(k) + \bar{m} \dot{y}^c_w(k) + \bar{n} \dot{x}^c_w(k) \\ \omega \Delta T + \phi^c_w(k) \end{bmatrix} + \begin{bmatrix} 0.5 \Delta T^2 & 0 \\ \Delta T & 0 \\ 0 & 0 \end{bmatrix} \mathbf{v}^t(k+1)
\]

\[
\bar{m} = \sin \omega \Delta T, \quad \bar{n} = \frac{(1 - \cos \omega \Delta T)}{\omega}
\]

where the states are \(s^t = [x^c_w, \dot{x}^c_w, y^c_w, \dot{y}^c_w, \phi^c_w]^T\), \(\{x^c_w, y^c_w\}\) are the coordinates of the midpoint of the line segment (target) corresponding to a curb, \(\phi^c_w\) is the orientation of the line segment, \(\{\dot{x}^c_w, \dot{y}^c_w\}\) are the target’s speeds along the \(x\)- and \(y\)-axes, \(\mathbf{v}^t(k+1)\) is the process noise (zero-mean Gaussian), and \(\omega\) is the turn rate of the target and can be assigned a few values to define several models, including \(\omega = 0\) for constant velocity model (for straight-curb scenario).
Suppose that \(\{M(k+1)\}, k \geq 0 \) represents the target operational regime or mode at time \(k + 1 \) and assume that \(M \) evolves as a homogeneous discrete-time Markov process in the state space \(\{1, \ldots, r\} \) with transition-probability matrix \(T_{ij} = P(M(k+1) = j | M(k) = i) \) with initial conditions \(P(M(0) = i) = \pi_0(i) \). Then, the composite nonlinear vehicle and target dynamics (1) and (2) can be described as

\[
s(k+1) = \begin{bmatrix} s'^{(k+1)} \\ s''^{(k+1)} \end{bmatrix} = f(M(k+1), s(k)) + B(M(k+1)) \nu(k+1)
\]

where \(s(k), \nu(k) \in \mathbb{R}^n \) with \(s(0) \) is a Gaussian random vector, \(f(M(k+1), s(k)) \) is the mode-dependent nonlinear-state transition matrix, and \(B(M(k+1)) \) is the mode-dependent matrix defined by (1) and (2). The process noise \(\nu(k+1) \) is a sequence of independent zero-mean Gaussian random vectors with positive-definite covariance matrix \(Q \). The process noise \(\nu(k+1) \) and \(s(0) \) are uncorrelated.

As depicted in Fig. 2, the road-curb (line) segment in the world coordinates is represented by \(\{x_{w}, y_{w}, \phi_{w}\} \), and the observation model

\[
\begin{bmatrix}
 x_{w}^{\text{GPS}}(k+1) \\
y_{w}^{\text{GPS}}(k+1) \\
\phi_{w}^{\text{GPS}}(k+1) \\
x_{c}^{L}(k+1) \\
y_{c}^{L}(k+1) \\
\phi_{c}^{L}(k+1)
\end{bmatrix} =
\begin{bmatrix}
x_{w}(k+1) \\
y_{w}(k+1) \\
\phi_{w}(k+1) \\
\pi \cos \phi_{w}(k+1) + b \sin \phi_{w}(k+1) - a \\
-\pi \sin \phi_{w}(k+1) + b \cos \phi_{w}(k+1) - b \\
\pi/2 + \phi_{w}(k+1) - k_{w}(k+1) + w(k+1)
\end{bmatrix}
\]

where \(a = x_{w}(k+1) - x_{w}^{u}(k+1), b = y_{w}(k+1) - y_{w}^{u}(k+1), x_{w}^{u}, y_{w}^{u}, \phi_{w}^{u} \) are the measurements of vehicle position using [global-positioning system, (GPS)] along the \(x \)-axis, \(y \)-axis, and vehicle orientation measured using a gyroscope, respectively. \(\{x_{c}^{L}, y_{c}^{L}, \phi_{c}^{L}\} \) is the curb data extracted by the laser scanner in laser coordinate system, and constants \(a \) and \(b \) are as defined in Fig. 2.

Therefore, the measurement model of the hybrid vehicle and LMS sensor is

\[
z(k+1) = h(s(k+1)) + w(k+1)
\]

where \(z(k) = [x_{w}^{\text{GPS}}(k+1), y_{w}^{\text{GPS}}(k+1), \phi_{w}^{\text{GPS}}(k+1), x_{c}^{L}(k+1), \ldots, y_{c}^{L}(k+1), \phi_{c}^{L}(k+1)]^T \), \(w(k) \in \mathbb{R}^m \) a sequence of zero-mean Gaussian random vectors with covariance matrix \(R \), the process \(\nu(k) \) is uncorrelated with \(w(k), s(0), \) and \(\{M(k)\} \).

The aim is now to find the hybrid vehicle and target-state estimate \(s(k+1) \) given the measurements \(Z(k+1) = \{z(1), \ldots, z(k+1)\} \).

III. IMMADF Algorithm

Curb tracking can be formulated as a problem of tracking a maneuvering target in clutter. This section describes the utilization of IMMADF to solve for it.

A. Track Formation and Termination

False-track initiations give rise to missed detections, which may lead to track loss. Therefore, track initiation is an important aspect of the tracking algorithm, and in this paper, it is handled in the manner described as follows.

An unscented-Kalman-filter (UKF) [21]-based approach is used for laser data segmentation and line-parameter estimation [12]. Each segment is then analyzed through a sequence of filtering [12] to obtain the line segments corresponding to the road curbs. The midpoint of a line segment \(\{x_L, y_L\} \) is estimated as the mean of LMS data (in Cartesian coordinates) in a particular segmented data set, and \(\phi_L \) is directly estimated through UKF.

Although the initial tracks determined through the above procedure are robust to various road scenarios, there can be a little possibility that those are due to clutter. Therefore, these initial tracks are used to form tentative tracks, and ideas from the integrated PDA [16] with sequential-probability-ratio test (SPRT) [13] are used for track confirmation and termination. Using the Markov relationship, the probability of existence of the true target \(P_T(k+1|k) \) before the receipt of data in scan \(k+1 \) is [17]

\[
P_T(k+1|k) = P_{22} P_T(k|k) + P_{12} [1 - P_T(k|k)]
\]

where \(P_{22} \) is the probability of transition from an observable state to observable state, while \(P_{12} \) is the probability of transition from an unobservable state to observable state. Then, the update of the probability of target existence is [16]

\[
P_T(k+1|k+1) = \frac{1 - \delta_{k+1}}{1 - \delta_{k+1} P_T(k+1|k)} P_T(k+1|k)
\]

where \(\delta_{k+1} \) is defined by the expression shown at the bottom of the page. \(V = V_{Gk+1}/(N_{k+1} - P_{D} P_{G} P_T(k+1|k)) \), \(P_D \) is the probability of detection, \(P_G \) is the gate probability, \(V_G \) is the gate volume, \(N_{k+1} \) is the number of measurements inside the validation gate, \(S \) is the innovation covariance, and \(d^2 \) is the normalized innovation squared of the \(i \)th measurement.

The log-likelihood ratio (LLR) can now be defined as [13]

\[
\text{LLR}_{k+1} = \ln \left(\frac{P_T}{1 - P_T} \right).
\]
Once the LLR is obtained, track confirmation and termination thresholds are determined using the SPRT [13] as
\[
\text{LLR}_{k+1} \geq \ln \left(\frac{1 - \beta_T}{\alpha_T} \right), \quad \text{declare track confirmation}
\]
\[
\ln \left(\frac{\beta_T}{1 - \alpha_T} \right) < \text{LLR}_{k+1} < \ln \left(\frac{1 - \beta_T}{\alpha_T} \right), \quad \text{continue test}
\]
\[
\text{LLR}_{k+1} \leq \ln \left(\frac{\beta_T}{1 - \alpha_T} \right), \quad \text{delete track}
\]

where \(\alpha_T\) is the probability of false-track confirmation, and \(\beta_T\) is the probability of true-track termination.

B. Track Maintenance

The IMMPDAF is capable of tracking highly maneuvering targets [15]. Therefore, it is used for track maintenance as detailed below.

1) **Mixing Probabilities:** In the IMM algorithm, input to the filter matched to the model \(j\) is computed using estimates with probabilistic weightings called mixing probabilities and are calculated as
\[
\mu_{ij}(k) = P \{ M_i(k) | M_j(k+1), Z^k \} = \frac{1}{\bar{c}_j} T_{ij} \mu_i(k)
\]

where \(\mu_{ij}(k)\) is the conditional probability that the target transitioned from state \(i\) to state \(j\) at scan \(k\), \(\mu_i(k)\) is the probability that the target is in mode \(i\) as computed just after data are received on scan \(k\), \(T_{ij}\) is the mode-transition probability matrix, and \(\bar{c}_j\) is the normalization constant, which is defined by \(\bar{c}_j = \sum_{i=1}^{r} T_{ij} \mu_i(k)\).
where H formed and used in the covariance calculation

$$y = \begin{bmatrix} 1 \end{bmatrix} \mathbf{H} \mu_j(k) + \mathbf{w}(k) \quad \text{(10)}$$

$$P_j(k) = \mathbf{F}_j(k)P_j(k|k-1)\mathbf{F}_j^T(k) + \mathbf{Q}_j \quad \text{(11)}$$

where $\mathbf{F}_j(k|k-1)$ is the Kalman filter prediction matrix.

2) Mixing: Starting with $\tilde{s}_i^j(k|k)$, the mixed initial conditions for the filter matched to mode $M_j(k+1)$ can be computed as

$$\tilde{s}_i^j(k|k) = \sum_{i=1}^r \tilde{s}_i^j(k|k) \mu_{ij}(k) \quad \text{(12)}$$

$$\tilde{P}_i^j(k|k) = \sum_{i=1}^r \mu_{ij}(k) \left\{ \tilde{P}_i^j(k|k) + \tilde{s}_i(k|k)\tilde{s}_i^T(k|k) \right\} \quad \text{(13)}$$

where $\tilde{s}_i(k|k) = \tilde{s}_i^j(k|k) - \tilde{s}_i^G(k|k)$.

3) State Prediction and Associated Covariance: With the nonlinear process model, state prediction and covariance calculation are carried out using the standard extended Kalman filter (EKF)

$$\mathbf{s}^j(k+1) = f(\tilde{s}_i^j(k|k), M_j(k+1)) \quad \text{(14)}$$

$$\tilde{P}(k+1) = \mathbf{F}^j(\tilde{P}_i^j(k|k)\mathbf{F}^j_T + \mathbf{B}^j\mathbf{Q}\mathbf{B}^j_T) \quad \text{(15)}$$

where $\mathbf{F}^j = (\partial f/\partial s)|_{s = \tilde{s}_i^j(k|k)}$.

4) Measurement Prediction and Validation: Since the measurement model is nonlinear, EKF-based linearization is performed and used in the covariance calculation

$$\tilde{z}_i^j(k+1) = \mathbf{h}\left[\mathbf{s}_i^j(k+1) \right] \quad \text{(16)}$$

$$\mathbf{S}_i^j(k+1) = \mathbf{H}^j\tilde{P}_i^j(k+1)\mathbf{H}^j_T + \mathbf{R} \quad \text{(17)}$$

where $\mathbf{H}^j = (\partial h_i/\partial s)|_{s = \tilde{s}_i^j(k|k)}$.

The measurement residuals $\mathbf{z}_i^j(k+1)$ are validated if and only if $|\mathbf{z}_i^j(k+1) - \mathbf{z}_i^j(k+1)|S_j^j(k+1)^{-1}|\mathbf{z}_i^j(k+1) - \mathbf{z}_i^j(k+1)|^T \leq \gamma_G$, where $|\mathbf{z}_i^j(k+1) - \mathbf{z}_i^j(k+1)|$ is the measurement residual of the jth mode, $S_j^j(k+1)$ is the innovation covariance of the jth mode, and γ_G is the threshold, which is determined using chi-square tables.

5) Likelihood Calculation and Mode-Probability Update: The likelihood function Λ^j is calculated for each mode j. This includes N_{G+1} data association hypotheses corresponding to each observation ($l = 1, \ldots, N_{k+1}$) in the gate and the hypothesis that none of the observation is valid.

$$\Lambda^j(k+1) = (1 - P_{D}P_G)\beta_D + \sum_{l=1}^{N_{k+1}} \frac{P_{D}e^{-d_{lj}^2/2}}{\sqrt{(2\pi)^M|\mathbf{S}_j^j(k+1)|}} \quad \text{(18)}$$

where $\beta_D = N_{k+1}/V_G$, and d_{lj} is the square of the Mahalanobis distance associated with the predicted measurement of the jth mode with lth measurement within the gate. Then, the mode probabilities are updated as

$$\pi_j(k+1) = \Lambda^j(k+1)\mu_j(k) \quad c = \sum_{j=1}^{r} \Lambda^j(k+1)\mu_j(k). \quad \text{(19)}$$

6) State and Covariance Update Using Nonparametric Version of PDA [18]: The probabilities associated with $N_{k+1} + 1$ hypotheses that assign observation i to track j are computed through

$$P_{ji} = \begin{cases} \frac{b^* + \sum_{j=1}^{N_{k+1}} \alpha_{ij}}{b^* + \sum_{j=1}^{N_{k+1}} \alpha_{ij}}, & i = 0 \\ \frac{b^* + \sum_{j=1}^{N_{k+1}} \alpha_{ij}}{b^* + \sum_{j=1}^{N_{k+1}} \alpha_{ij}}, & i = 1, \ldots, N_{k+1} \end{cases} \quad \text{(20)}$$

where $b^* = (1 - P_{D}P_G)\beta(2\pi)^{M/2} |\mathbf{S}|$, and $\alpha_{ij} = P_{D}e^{-d_{ij}^2/2}$.

Fig. 6. Position rms error in x-direction for 50 runs. (a) Right-hand side curb. (b) Left-hand side curb.

Fig. 7. Position rms error in y-direction for 50 runs. (a) Right-hand side curb. (b) Left-hand side curb.
Fig. 8. RMS error in orientation for 50 runs. (a) Right-hand side curb. (b) Left-hand side curb.

Then, the standard EKF state update is

$$
\hat{s}_{j}(k+1|k+1) = \hat{s}_{j}(k+1|k) + K(k+1)\nu_j(k+1)
$$

$$
\nu_j(k+1) = \sum_{l=1}^{N_{k+1}} p_{jl} (z_l(k+1) - \hat{z}_j(k+1))
$$

$$
K(k+1) = P_j(k+1)H_j^T S_j(k+1)^{-1}\quad(19)
$$

The covariance has to be updated considering the uncertainties associated with the PDA. Therefore, it can be computed as

$$
P_j(k+1|k+1) = P_0(k+1|k+1) + dP(k+1)
$$

$$
P_0(k+1|k+1) = \mu_j(k+1) \{ \hat{P}_j(k+1|k+1) + s \cdot s^T \}
$$

$$
dP(k+1) = K(k+1) \sum_{l=1}^{N_{k+1}} (p_{jl}\nu_{jl}\nu_{jl}^T) - \nu_j\nu_j^T
$$

$$
\times K(k+1)^T \quad (20)
$$

where $P_0(k+1|k+1)$ is the covariance calculated assuming a single correct-measurement association, and $dP(k+1)$ is the incremental term added to compensate for the uncertainty in data association.

7) Output Step: Combination of the model-conditioned states and covariances are performed for output purposes. Note that these are not parts of the recursive filter

$$
\tilde{s}(k+1|k+1) = \sum_{j=1}^{r} \hat{s}_j(k+1|k+1) \overline{\mu}_j(k+1)
$$

$$
\tilde{P}(k+1|k+1) = \sum_{j=1}^{r} \overline{\mu}_j(k+1) \left\{ \hat{P}_j(k+1|k+1) + \overline{\tilde{s}} \cdot \overline{\tilde{s}}^T \right\}
$$

$$
\overline{\tilde{s}} = \hat{s}_j(k+1|k+1) - \tilde{s}(k+1|k+1)\quad(21)
$$

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation Results

A simulation study has been carried out to compare the performance of the IMM global nearest-neighbor filter (IMMGNNF) with IMMPDAF and to analyze the robustness of the IMMPDAF in the road-boundary-tracking application. The sensors used are the vehicle-mounted 2-D LMS, GPS, and gyroscope. The LMS is assumed to be capable of detecting 1It should be noted that the process model for a maneuvering target is not known, and it is achieved as a probabilistically weighted output of a few target models and utilizes a bank of extended Kalman filters. Furthermore, the track initialization and termination are also handled within the filter. This makes the theoretical performance analysis of the IMMPDAF extremely hard, and thus, these analyses are commonly performed based on simulation experiments.
line segments with measurement errors of $\sigma_{x_L} = 0.1$ m, $\sigma_{y_L} = 0.1$ m, and $\sigma_{\phi_L} = 0.01$ rad. The vehicle-pose measurement errors are assumed to be $\sigma_{x_v} = 0.1$ m, $\sigma_{y_v} = 0.1$ m, and $\sigma_{\phi_v} = 0.01$ rad. All the sensor-errors are assumed to be zero-mean Gaussian distributions.

The vehicle is assumed to be traveling at a speed of 3 m s^{-1} along the trajectory A–F, as shown in Figs. 3 and 4. The route consists of straight portions and bends with or without observations. The clutter is Poisson distributed with density 2.9×10^{-4}. Segment B-C resembles a cross road, where there are no curbs present on both sides of the road. Segment D-E resembles a right road branching at a bend, where there is no curb on the right side of the road. Three modes are considered: Mode 1 refers to straight road ahead [(2) with $\omega = 0$]; Mode 2 refers to left turns [(2) with $\omega = 0.3 \text{ rad/s}$]; and Mode 3 refers to right turns [(2) with $\omega = -0.3 \text{ rad/s}$]. The mode-transition-probability matrix used for the simulation is $T = \begin{pmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.8 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{pmatrix}$. The diagonal elements show that the target is more probable to be in the same mode. It can practically be achieved through the utilization of higher sampling rates.

The position-tracking performance of an IMMPDAF is shown in Fig. 5(a), while the orientation-tracking performance is shown in Fig. 5(b). It is interesting to consider the segments B-C and D-E, where there are no curbs present. The expanded B-C and D-E segments with uncertainty ellipses of the estimated vehicle and curb positions are shown in Fig. 5(c) and (d). During these periods, the IMM simply predicts without updating. It can be noted in Fig. 5(e) that the LLRs of both the right-hand and left-hand side curbs start to decrease after reaching position “B” by performing track termination. Although the tracks are being terminated (LLR bellow T1), the IMM simply predicts the states until there are observations fall within the validation gate. Once it finds an observation, a tentative track is initiated, and an LLR is calculated for the confirmation, as seen from position “C” of Fig. 5(e). Once the LLR exceeds the threshold T2, the track is confirmed as originating from a true target. A similar explanation can be given for the segment D-E, however, with only the right-hand track being terminated, while the left-hand track is a confirmed track. Fig. 5(f) and (g) shows the mode probabilities calculated in the IMMPDAF, which correctly resembles each road segment.

B. Experimental Results

The robustness of the IMMPDAF algorithm for curb tracking was evaluated experimentally using a carlike vehicle [12] equipped with onboard computers, a looking-down 2-D LMS, four-wheel encoders, one steering-wheel encoder, a GPS, and a gyroscope. The speed V in (1) and steering angle γ in (1) were determined by the wheel and steering encoders, respectively, and were known quantities. The sampling time was 100 ms. The vehicle was driven at a speed of 4 m s^{-1} at a hilly test site, which had straight-road segments, a bend, right road branching, and an x-intersection.
Fig. 9 shows the curb-tracking results using the IMMPDAF in various road scenarios including straight-road segments, a bend, right road branching, and an x-intersection. Fig. 10(a) shows consecutive laser data corresponding to the window W1 in Fig. 9(a), which is a straight-road segment. In the plot, data in between $y = 4 \text{ m}$ and $y = -4 \text{ m}$ correspond to the road surface and curbs. On the left side of the road is a bank, and scatter data on the right-hand side is due to trees, poles, and other man-made structures. The data corresponding to the road surface forms a “V” shape due to the cylindrical nature of the road surface.

Fig. 10(b) shows the laser data corresponding to the window W2 of Fig. 9(a), which is a right turn. Window W3 in Fig. 9(a) corresponds to a right road branching, and laser data is shown in Fig. 10(c). In this portion of the road, the right-hand side track is terminated (see Fig. 9) due to low LLR. Then, the IMMPDAF simply predicts the states until a new observation is available. Once it receives an observation, it goes through a series of filters, namely, the orientation filter, neighborhood filter, and road-width filter [12], before a tentative track is initiated. Then, SPRT is carried out for track confirmation. Fig. 10(d) shows the laser data referring to the window W4 in Fig. 9(a). It corresponds to an x-intersection, where there are no curbs present on both sides of the road. As shown in Fig. 9, both tracks are being deleted during the x-intersection, and both were reinitiated after the x-intersection showing the robustness to target loss and reappearing.

V. CONCLUSION

In this paper, we have proposed a method of extracting and tracking of road boundaries using curbs. The tracking problem becomes nontrivial due to the utilization of a moving observer (vehicle), presence of clutter, and maneuvering nature of the target with disappearances and reappearances. The tracking problem has been successfully solved with an IMMPDAF framework. Track initiation, confirmation, and deletion were handled using SPRT. Extensive simulation studies showed that the IMMPDAF is superior to that of IMMNNF. The experimental results on a campus environment showed that the proposed methodology is robust in all the tested road scenarios including straight segments, bends, loss and reappearing of curbs due to road branching, and x-intersections. Temporary obstruction of curbs by passing vehicles can be successfully handled as in road branching or x-intersections. It can be concluded that the road-boundary tracking via curb tracking is viable and effective.

REFERENCES

K. R. S. Kodagoda received the B. Sc.Eng.Hons. degree in electrical engineering from the University of Moratuwa, Moratuwa, Sri Lanka, in 1995 and the M.Eng. and Ph.D. degrees from Nanyang Technological University, Singapore, in 2000 and 2004, respectively.

He was a Design and Sales Engineer with Toroid International Pty. Ltd., from 1996 to 1998. From 2000 to 2002, he was a Research Associate in the project “Development of an autonomous navigation system for an outdoor autonomously guided vehicle—(Australian Research Council 3/95),” with Nanyang Technological University, contributing to the design and development of the automated guided vehicle. In 2004, he was a Research Associate at the National University of Singapore, working on intelligent control of unmanned vehicles. He is currently working as a lecturer with the Faculty of Engineering, University of Technology, Sydney, Australia. His current research interests are on environment perception, intelligent-transportation systems, and unmanned ground vehicles.

Dr. Kodagoda is a member of the IEE and Associate Member of the Institution of Engineers, Sri Lanka. His biography is published in Who’s Who in Science and Engineering (New Providence, NJ: Marquis, 7th ed., 2003). He is a reviewer of the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY and IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS.
Shuzhi Sam Ge (S’90–M’92–SM’99–F’06) received the B.Sc. degree from the Beijing University of Aeronautics and Astronautics, Beijing, China, in 1986 and the Ph.D. degree and the Diploma of Imperial College from the Imperial College of Science, Technology, and Medicine, London, U.K., in 1993.

He is a Full Professor with the Department of Electrical and Computer Engineering, the National University of Singapore, Singapore. He has (co)authored three books: Adaptive Neural Network Control of Robotic Manipulators (World Scientific, 1998), Stable Adaptive Neural Network Control (Kluwer, 2001), and Switched Linear Systems: Control and Design (Springer-Verlag, 2005). He has over 200 international journal and conference papers and has coinvented three patents. His current research interests are in adaptive neural-network control, hybrid systems, intelligent vehicles, and system development.

Dr. Ge is a registered PEng in Singapore. He served/serves as an Associate Editor for the IEEE TRANSACTIONS ON AUTOMATIC CONTROL, the IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, Automatica, the IEEE TRANSACTIONS ON NEURAL NETWORKS, Corresponding Editor for Asia and Australia IEEE Control Systems Magazine, and Editor of International Journal of Control, Automation, and Systems.

Wijerupage Sardha Wijesoma (M’99) received the B.Sc.Eng.Hons. degree in electronics and telecommunication engineering from the University of Moratuwa, Moratuwa, Sri Lanka, in 1983 and the Ph.D. degree in robotics from Cambridge University, Cambridge, U.K., in 1990.

He was the Head of the Department of Computer Science and Engineering, University of Moratuwa. He is currently an Associate Professor with the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, where he is also the Program Director for Mobile Robotics of the Center for Intelligent Machines. His research interests are in autonomous land and underwater vehicles, with emphasis on problems related to navigation and perception.

Dr. Wijesoma is a member of the British Computer Society and a Chartered Information Systems Engineer of the Engineering Council of the U.K. He is a founding committee member of the IEEE Systems, Man, and Cybernetics Society Chapter, Singapore, Committee Member of IEEE Oceanic Engineering Society Chapter, Singapore, and Technical Cochair of OCEANS’06 Asia Pacific IEEE Conference, Singapore.

Arjuna P. Balasuriya (S’95–M’90) received the B.Sc. (with honors) degree in engineering and Master of Philosophy degree in electrical and electronic engineering from the University of Peradeniya, Peradeniya, Sri Lanka, in 1992 and 1994, respectively, and the Doctor of Engineering degree from the University of Tokyo, Tokyo, Japan, in 1998.

He was a Japan Society for the Promotion of Science (JSPS) Research Fellow during 1998–1999 and a Visiting JSPS Fellow during 1999–2002 at the University of Tokyo. He was an Assistant Professor at the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, during 1999–2005. Currently, he is a Research Scientist with the Massachusetts Institute of Technology, Cambridge. He was the Consultant on autonomous navigation for the undersea-defense project Cassiopeia in Singapore. His current research interests include robotics and automation, artificial intelligence, computer vision, embedded systems, real-time systems, and underwater robotics. He has published more than 100 journal and conference papers and has coauthored two book chapters.

Dr. Balasuriya is a Reviewer of the International Journal of Engineering Applications in Artificial Intelligence (Elsevier Science, New York and Amsterdam) and IEEE Intelligent Systems Magazine. He is the Chapter Chair of IEEE Oceanic Engineering Society Singapore and General Cochair for the OCEANS’06 Asia Pacific IEEE conference.
A Propagation-Measurement-Based Evaluation of Channel Characteristics and Mod Expansion of Mobile Radio Systems to Frequencies Beyond 2 GHz
Bultitude, R.J.C.; Schenk, T.C.W.; den Kamp, N.A.A.O.; Adnani, N.
Page(s): 382-388
Digital Object Identifier 10.1109/TVT.2006.889566
AbstractPlus | References | Full Text: PDF (279 KB)
Rights and Permissions

A Wideband Spatial Channel Model for System-Wide Simulations
Page(s): 389-403
Digital Object Identifier 10.1109/TVT.2007.891463
AbstractPlus | References | Full Text: PDF (693 KB)
Rights and Permissions

A General Bivariate Ricean Model and Its Statistics
Mendes, J.R.; Yacoub, M.D.
Page(s): 404-415
Digital Object Identifier 10.1109/TVT.2007.891464
AbstractPlus | References | Full Text: PDF (277 KB)
Rights and Permissions

Prediction of State Transitions in Rayleigh Fading Channels
Sharma, P.; Chandra, K.
Page(s): 416-425
Digital Object Identifier 10.1109/TVT.2007.891421
AbstractPlus | References | Full Text: PDF (292 KB)
Rights and Permissions

A Reconfigurable Stacked Microstrip Patch Antenna for Satellite and Terrestrial Lin
Ali, M.; Sayem, A.T.M.; Kunda, V.K.
Page(s): 426-435
Digital Object Identifier 10.1109/TVT.2007.891412
AbstractPlus | References | Full Text: PDF (283 KB)
Rights and Permissions
A Compact Broadband MEMS-Integrated Diversity System
Cetiner, B.A.; Jofre, L.; Jiangyuan Qian; Sunan Liu; Li, G.P.; De Flaviis, F.
Page(s): 436-444
Digital Object Identifier 10.1109/TVT.2007.891418

Minimizing Spectral Leakage of Nonideal LINC Transmitters by Analysis of Compo
Choffrut, A.; Van Veen, B.D.; Booske, J.H.
Page(s): 445-458
Digital Object Identifier 10.1109/TVT.2006.889564

Modeling and Simulation of Various Hybrid-Electric Configurations of the High-Mot
Antoniou, A.I.; Komyathy, J.; Bench, J.; Emadi, A.
Page(s): 459-465
Digital Object Identifier 10.1109/TVT.2007.891490

Freeway Traffic Control Using Iterative Learning Control-Based Ramp Metering and
Zhongsheng Hou; Jian-Xin Xu; Hongwei Zhong
Page(s): 466-477
Digital Object Identifier 10.1109/TVT.2007.891431

IMMPDAF Approach for Road-Boundary Tracking
Kodagoda, K.R.S.; Ge, S.S.; Wijesoma, W.S.; Balasuriya, A.P.
Page(s): 478-486
Digital Object Identifier 10.1109/TVT.2007.891426

An Autonomous Vehicle for Video Surveillance of Indoor Environments
Micheloni, C.; Foresti, G.L.; Piciarelli, C.; Cinque, L.
Page(s): 487-498
Digital Object Identifier 10.1109/TVT.2007.891478

Medium Access Control Protocol Design for Vehicle–Vehicle Safety Messages
Qing Xu; Mak, T.; Jeff Ko; Sengupta, R.
Page(s): 499-518
Digital Object Identifier 10.1109/TVT.2007.891482

Advanced Fault-Tolerant Control of Induction-Motor Drives for EV/HEV Traction Ap
Conventional to Modern and Intelligent Control Techniques
Benbouzid, M.E.H.; Diallo, D.; Zeraouilia, M.
Page(s): 519-528
Digital Object Identifier 10.1109/TVT.2006.889579
A Genetic Fuzzy Controller for Vehicle Automatic Steering Control
Cai, L.; Rad, A.B.; Wai-Lok Chan
Page(s): 529-543
Digital Object Identifier 10.1109/TVT.2006.889576

State-of-Charge Estimation for Electric Scooters by Using Learning Mechanisms
Der-Tsai Lee; Shaw-Ji Shiah; Chien-Ming Lee; Ying-Chung Wang
Page(s): 544-556
Digital Object Identifier 10.1109/TVT.2007.891433

Modeling of a Series Hybrid Electric High-Mobility Multipurpose Wheeled Vehicle
Ducusin, M.; Gargies, S.; Chunting Mi
Page(s): 557-565
Digital Object Identifier 10.1109/TVT.2006.889575

High-Sensitivity GPS Data Classification Based on Signal Degradation Conditions
Jau-Hsiung Wang; Yang Gao
Page(s): 566-574
Digital Object Identifier 10.1109/TVT.2007.891492

A Turbo Detection and Sphere-Packing-Modulation-Aided Space-Time Coding Scheme
Alamri, O.R.; Yeap, B.L.; Hanzo, L.
Page(s): 575-582
Digital Object Identifier 10.1109/TVT.2006.889571

Scattering-Model-Based Methods for TOA Location in NLOS Environments
Al-Jazzar, S.; Caffery, J.; Heung-Ryeol You
Page(s): 583-593
Digital Object Identifier 10.1109/TVT.2007.891491

A Soft Combining Hybrid-ARQ Technique Applied to Throughput Maximization With Networks
Chiti, F.; Fantacci, R.
Page(s): 594-604
Digital Object Identifier 10.1109/TVT.2007.891483

Blind Adaptive and Iterative Algorithms for Decision-Feedback DS-CDMA Receivers Selective Channels
de Lamare, R.C.; Sampaio-Neto, R.
Page(s): 605-618
Digital Object Identifier 10.1109/TVT.2006.889561