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Approximately two-thirds of children with acute myeloid leukemia (AML) are cured with
intensive multi-agent chemotherapy. However, refractory and relapsed AML remains a
significant source of childhood cancer mortality, highlighting the need for new therapies.
Further therapy intensification with traditional cytotoxic chemotherapy in pediatric AML is
not feasible given the risks of both short-term and long-term organ dysfunction. Substan-
tial emphasis has been placed upon the development of molecularly targeted therapeutic
approaches for adults and children with high-risk subtypes of AML with the goal of improv-
ing remission induction and minimizing relapse. Several promising agents are currently in
clinical testing or late preclinical development for AML, including monoclonal antibodies
against leukemia cell surface proteins, kinase inhibitors, proteasome inhibitors, epigenetic
agents, and chimeric antigen receptor engineered T cell immunotherapies. Many of these
therapies have been specifically tested in children with relapsed/refractory AML in Phase
1 and 2 trials with a smaller number of new agents under Phase 3 evaluation for children
with de novo AML. Although successful identification and implementation of new drugs
for children with AML remain a formidable challenge, enthusiasm for novel molecular ther-
apeutic approaches is great given the potential for significant clinical benefit for children
who do not have other curative options.

Keywords: acute myeloid leukemia, clinical trial, demethylating agents, monoclonal antibodies, pediatric, precision
medicine, tyrosine kinase inhibitors, targeted therapy

INTRODUCTION
Acute myeloid leukemia (AML) is a group of genetically hetero-
geneous diseases that account for approximately 20% of pedi-
atric leukemias with approximately 800 newly diagnosed chil-
dren and adolescents annually in the United States (U.S.) (1,
2). Current intensive cytotoxic chemotherapy regimens achieve
long-term cure in only 60–70% of patients, however, and relapsed
AML accounts for more than half of childhood leukemia-related
deaths (3). Identification of specific genetic subgroups within
AML and correlation with relapse-free and overall survival (RFS
and OS, respectively) rates have allowed risk stratification of
many patients and have decreased use of adjuvant hematopoi-
etic stem cell transplantation (HSCT) for favorable risk group
patients (1, 2). Nonetheless, chemotherapy regimens for AML have
remained largely unchanged for the past four decades. Relapsed
and chemotherapy-refractory AML is thus an area of unmet clini-
cal need and presents opportunities for the development of novel
targeted therapeutic approaches. New treatments for children
with AML are clearly indicated to decrease relapse and improve
cure rates.

Given the higher incidence of AML in adult patients and
the limited success of conventional chemotherapy in maintain-
ing long-term remission in this population, various new agents
are under active investigation in early-phase clinical trials con-
ducted within predominantly adult cooperative groups. Many of
these novel agents aim to target genetic and molecular alterations

hypothesized to be involved in leukemogenesis and/or therapy
resistance. However, progress in the development and success-
ful implementation of new therapies has been limited by the
underlying biologic heterogeneity of AML, the ability of older
patients to tolerate intensive therapy, patients’ associated medical
co-morbidities, and rapid disease progression at time of relapse.

There is burgeoning evidence that the inherent biology of
AML differs between children and adults, as suggested by the
discordant incidences of leukemia-associated genetic alterations,
patterns of epigenetic changes, and rates of remission induc-
tion (4–8). A comprehensive review of the biologic features and
genomic landscape of pediatric AML will be published separately
in this series. The relatively higher response rates of children to
induction chemotherapy may be partially attributable to host fac-
tors, such as the generally superior ability of children to tolerate
intensive multi-agent therapy, their lower prevalence of medical
co-morbidities, and intensive supportive care measures. Nonethe-
less, primary chemorefractory disease and post-remission relapses
remain significant sources of morbidity and mortality for children
with AML, and re-induction attempts are frequently unsuccess-
ful (2, 3). In addition, infectious complications and end-organ
dysfunction sequelae of intensive chemotherapy occur frequently.
Given these issues, investigation of new agents for high-risk child-
hood AML remains a high priority. Emphasis has been placed upon
the development of molecularly targeted agents for childhood
AML that will increase rates of successful remission induction,
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decrease relapse by targeting leukemia-initiating cells, and mini-
mize therapy-associated complications. Our review highlights the
current landscape of novel molecular therapeutic approaches for
childhood AML (excluding acute promyelocytic leukemia, APL)
in clinical or late preclinical testing (Table 1).

ANTIBODY THERAPEUTICS
Approximately 80% of childhood AML cases express CD33, a
glycosylated sialic acid-binding transmembrane receptor protein
of the lectin family. High CD33 surface expression is associ-
ated with worse outcomes in children and adults with AML
(9–12). The potent humanized anti-CD33 monoclonal anti-
body/calicheamicin conjugate gemtuzumab ozogamicin (GO) has
been studied extensively in adults with AML, including APL. Three
Phase 2 multi-center trials initially demonstrated second com-
plete remission (CR2) rates of 30% and a favorable safety profile
in adults with relapsed AML treated with GO monotherapy (13).
These data resulted in accelerated approval of GO in 2000 by the
U.S. Food and Drug Administration (FDA) for adults with AML,
and other groups have reported similar findings (14, 15).

Gemtuzumab ozogamicin has been specifically studied in
pediatric AML via the Children’s Oncology Group (COG) and
other consortia. Initial testing of GO monotherapy in the
relapsed/refractory setting demonstrated similar pharmacokinet-
ics to those in adult patients and morphologic remission rates of
28–54%, allowing many children to undergo successful subsequent
HSCT (16–21). Studies from the St. Jude Children’s Research Hos-
pital (SJCRH) also demonstrated favorable molecular responses
in GO-treated children with relapsed/refractory AML treated on
the AML02 trial with 13 of 17 patients achieving flow cytometric
minimal residual disease levels <0.1% (22). Pilot testing of GO
with cytotoxic chemotherapy in children with relapsed/refractory
AML also demonstrated the safety and tolerability of combination
approaches, and complete remission (CR) was attained in nearly
half of these high-risk patients in two independent studies (22, 23).

Based upon these data in the relapse setting, GO and
chemotherapy combination regimens were subsequently evalu-
ated in children with de novo AML. In the COG pilot trial
AAML03P1, CR rates >80% were achieved in children treated
with GO and chemotherapy in the induction and post-induction
setting (24). In the NOPHO-AML 2004 study, post-consolidation
addition of GO to chemotherapy was well-tolerated, but did not
alter rates of relapse or OS (25). Most recently, children with
de novo AML treated with chemotherapy and GO in induction
and post-induction on the COG Phase 3 trial AAML0531 expe-
rienced decreased rates of relapse and increased event-free sur-
vival (EFS) in comparison to children treated with chemotherapy
alone (26). Although induction mortality did not differ between
treatment arms, a difference in cumulative treatment-related mor-
tality (TRM) approached, but did not reach, statistical signifi-
cance at rates of 8.6± 2.5% for GO/chemotherapy and 5.9± 2%
for chemotherapy (p= 0.09). This increase in TRM was associ-
ated with a larger fraction of GO patients with prolonged time
to neutrophil recovery in intensification II. Furthermore, this
increase in TRM offset gains from the improved relapse rate, and
thus no difference in OS was observed between the treatment
arms in analyses of all patients. On subgroup analysis, high-risk

patients had improved OS and decreased relapse risk (26). Chil-
dren with CD33-high AML treated with GO and chemotherapy on
AAML0531 had disease-free survival rates similar to children with
CD33-low AML, suggesting that GO treatment ameliorated the
negative outcomes generally associated with high CD33 expres-
sion (27). These data highlight the potential for improved treat-
ment efficacy with CD33-targeted agents for certain subgroups
of patients, particularly in the setting of high CD33 antigen
expression.

Gemtuzumab ozogamicin was withdrawn voluntarily from
the U.S. market in 2010 due to concerns for increased induc-
tion mortality and lack of efficacy based upon preliminary data
from the SWOG-106 trial. Later analyses noted unusually low
control arm induction mortality and discordant anthracycline
doses between the treatment arms, however, prompting questions
regarding the validity of the decision for GO withdrawal (28, 29).
More recent mature clinical trial data demonstrate improved out-
comes with GO treatment in children and adults with de novo
AML, particularly in those with favorable cytogenetic charac-
teristics (26, 30–32). As above, GO-treated children treated on
AAML0531 did not experience higher induction or overall toxic
mortality in comparison to non-GO-treated children (26). A
compassionate-use trial for adults and children (≥3 months of
age) with relapsed/refractory AML or APL is currently open in
the U.S. (NCT01869803) (33). While GO may return to the ther-
apeutic armamentarium in the U.S. for pediatric and adult AML,
additional evaluation will likely be required to determine its most
appropriate implementation (29, 34).

Alternative anti-CD33 humanized antibody-drug conjugates,
such as SGN-CD33A, are under current Phase 1 evaluation in
adults with AML given very promising data from initial preclin-
ical testing (NCT01902329) (33). SGN-CD33A is conjugated to
a pyrrolobenzodiazepine dimer via a protease-cleavable linker,
which has been reported to provide greater drug delivery and sta-
bility. Preclinical testing of SGN-CD33A in vitro in AML cell lines
and in vivo in murine xenotransplantation models demonstrated
superior leukemia cytotoxicity in comparison to GO. In addition,
SGN-CD33A induced greater inhibition of leukemia proliferation
and induction of apoptosis in xenograft models of drug-resistant
AML (35).

Additional non-drug conjugate antibody approaches in pre-
clinical and clinical testing for cancer include bispecific T cell
engaging (BiTE) antibodies, which bind autologous T cells and
redirect them specifically against tumor cell antigens. Such
approaches have proven successful in early-phase testing for chil-
dren and adults with leukemia, including the CD19/CD3 BiTE
antibody blinatumomab (MT103) for B-precursor ALL (36, 37).
Preclinical evaluation of the CD33/CD3 BiTE antibody AMG 330
demonstrated efficient in vitro lysis of CD33+ AML cell lines
and primary blasts in the presence of human T cells, as well
as in vivo efficacy in human AML xenograft models. Combina-
tion of AMG 330 with epigenetic-targeted therapies may have
additional therapeutic efficacy. In preclinical studies, in vitro incu-
bation of AML cells with panobinostat or azacitidine increased
their CD33 expression, thereby increasing AMG 330-mediated
cytotoxicity (38–40). BiTE antibodies for AML are not yet under
clinical investigation.
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Table 1 | Molecular therapeutic agents for pediatric acute myeloid leukemia (AML) in current clinical testing or late preclinical development and

related trials for adult AML.

Target(s) Phase of testing Clinical trial number

(pediatric)

Clinical trial number

(adult)

MONOCLONAL ANTIBODIES

Brentuximab vedotin CD30 1, 2 Not applicable NCT01830777, NCT01461538

Gemtuzumab ozogamicin CD33 1, 2, 3 (with

chemotherapy)

NCT00476541,

NCT00372593,

NCT00070174 (completed)

NCT00091234,

NCT00766116, NCT00893399

CD33 Compassionate use NCT01869803 NCT01869803

SGN-CD33A CD33 1 Not applicable NCT01902329

AMG 330 CD33 Not applicable Not applicable Not applicable

Lintuzumab-Ac225 (HuM195) CD33 1, 2 Not applicable NCT01756677, NCT00672165

90Y-BC8 CD45 1, 2 (with HSCT) NCT00119366 (≥16 years) NCT01300572, NCT00119366

IGN-523 CD98 1 Not applicable NCT02040506

CSL362 CD123 1 Not applicable NCT01632852

Ipilimumab CTLA-4 1 Not applicable NCT01757639

KB004 EphA3 1, 2 Not applicable NCT01211691

TYROSINE KINASE INHIBITORS

Lestaurtinib JAK2, FLT3, TrkA Not applicable Not applicable Not applicable

Midostaurin (PKC412) CSFR1, FLT3, KIT, PDGFR 1, 2 (with chemotherapy) NCT00866281 NCT01830361,

NCT01883362, NCT01093573,

NCT01846624, NCT01477606

Sorafenib FLT3, Raf kinases,

PDGFR, VEGFR

1, 2 (with chemotherapy

or post-HSCT)

SJCRH RELHEM

(NCT00908167)

NCT01861314, NCT01398501,

NCT01534260

3 COG AAML1031

(NCT01371981)

Sunitinib CSF1R, FLT3, KIT,

PDGFR, Raf kinases,

RET, VEGFR

2 Not applicable NCT01620216

KW-2449 FLT3 Not applicable Not applicable Not applicable

Quizartinib CSFR1, FLT3, KIT, PDGFR 1, 2, 3 NCT01411267 (completed) NCT02039726

PLX3397 CSFR1, FLT3, KIT 1, 2 Not applicable NCT01349049

Linifanib (ABT-869) FLT3, VEGFR Not applicable Not applicable Not applicable

Crenolanib FLT3, PDGFR 2 Not applicable NCT01522469, NCT01657682

ASP2215 FLT3 1, 2 Not applicable NCT02014558

Sirolimus mTOR 1, 2 (with chemotherapy) Not applicable NCT01822015, NCT01869114,

NCT00544999

Temsirolimus mTOR 2 (with chemotherapy) Not applicable NCT01611116

Everolimus mTOR 1 (with chemotherapy) Not applicable NCT01154439

Alisertib (MLN8237) AURKA 1 Not applicable NCT01779843

AMG 900 Pan-Aurora kinases 1 Not applicable NCT01380756

AT9283 Pan-Aurora kinases 1 NCT01431664 Not applicable

(Continued)
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Table 1 | Continued

Target(s) Phase of testing Clinical trial number

(pediatric)

Clinical trial number

(adult)

PROTEOSOME INHIBITORS

Bortezomib Proteasome 1, 2, 3 (with

chemotherapy)

COG AAML1031

(NCT01371981)

NCT01127009, NCT01371981,

NCT01861314, NCT01137747,

NCT01204164, NCT01075425,

NCT00410423

Carfilzomib Proteasome 1 Not applicable NCT01137747, NCT01204164

EPIGENETIC/DEMETHYLATING AGENTS

Decitabine Methyltransferases 1, 2 (with chemotherapy) NCT01853228 Numerous

Azacitidine (5-azacytidine) Methyltransferases 1 (with chemotherapy) TACL T2011-002

(NCT01861002)

Numerous

Vorinostat Histone deacetylases 1, 2 NCT01422499 Numerous

Panobinostat Histone deacetylases 1 TACL T2009-012

(NCT01321346)

Numerous

EPZ-5676 DOT1L methyltransferase 1 Not applicable NCT01684150

JQ1 Brd4 Not applicable Not applicable Not applicable

OXT015 Brd2/3/4 1 Not applicable NCT01713582

SELECTIVE INHIBITORS OF NUCLEAR EXPORT

KPT-330 CRM1 1 Not applicable NCT01607892

CHIMERIC ANTIGEN RECEPTOR T CELL IMMUNOTHERAPY

CART33 CD33 1, 2 NCT01864902 NCT01864902

CART123 CD123 Not applicable Not applicable Not applicable

Anti-Lewis-Y chimeric antigen receptor Lewis-Y 1 Not applicable NCT01716364

AURKA, aurora kinase A; COG, Children’s Oncology Group; HSCT, hematopoietic stem cell transplantation; SJCRH, St. Jude Children’s Research Hospital; TACL,

Therapeutic Advances in Childhood Leukemia; NCT, ClinicalTrials.gov identifier.

Other antibody-based approaches for AML in early-phase clin-
ical testing include targeting of surface proteins CD30, CD45,
CD98, CD123, CTLA-4, or EphA3 (NCT01830777, NCT01756677,
NCT02040506, NCT01632852, NCT01757639, NCT01211691)
(33). Some of these approaches involve use of radiolabeled
antibodies to increase leukemia cytotoxicity (NCT00672165,
NCT01300572, NCT01756677) (33, 41). To our knowledge, such
strategies have not been specifically evaluated in pediatric AML
patients.

TYROSINE KINASE/FLT3 INHIBITORS
Somatic internal tandem duplication of the gene encoding the
fms-like tyrosine kinase receptor-3 (FLT3-ITD) with a high
mutant:wild-type allelic ratio (>0.4) or point mutations in the
FLT3 activation loop of the tyrosine kinase domain (FLT3-TKD)
occur in 15–20% of pediatric AML patients (42). Similar to adults,
children with FLT3-ITD AML respond poorly to conventional
chemotherapy and have OS of 25–30% even with HSCT (42, 43).
Salvage rates of patients with relapsed/refractory FLT3-ITD AML
are particularly poor with 5-year OS <10% (44). Interestingly,
FLT3-TKDs do not appear to confer worse outcomes in adults or
children with AML (42, 45).

FLT3-ITD alterations disrupt the negative regulatory func-
tion of the FLT3 protein and facilitate constitutive kinase activa-
tion, resulting in perturbed Ras/MAPK, PI3K/Akt/mTOR, and/or
JAK/STAT signal transduction and arrest of apoptosis (46, 47).
Preclinical studies demonstrate preferential sensitivity of FLT3-
ITD AML to tyrosine kinase inhibitors (TKIs) that target the FLT3
receptor. In the clinic, TKIs targeting mutant FLT3 have been stud-
ied primarily in early-phase trials in adult patients. Modest efficacy
of first-generation FLT3 inhibitors (e.g., lestaurtinib, midostau-
rin, sorafenib, sunitinib) in adults with relapsed AML has been
reported, both as monotherapy and in conjunction with cytotoxic
chemotherapy (48–52). Many of these first-generation inhibitors
are known to target other kinases and wild-type FLT3 protein to
some degree and were not designed to inhibit FLT3 preferentially
(50, 53–55). Subsequently, TKIs targeting FLT3 more specifically
(e.g., KW-2449, PLX3397, quizartinib, linifanib) were developed
and are in various stages of preclinical and clinical evaluation as
described below (48, 56–59). However, resistance to TKI therapy is
well-described and has been attributed to a variety of mechanisms,
including development of mutations that interfere structurally
with drug binding, alterations in cell survival and signaling path-
ways, and bone marrow microenvironment factors promoting
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leukemic survival (60–62). Consequently, third-generation FLT3
TKIs (e.g., crenolanib, ASP2215) have been designed to overcome
resistance and have demonstrated preclinical efficacy in drug-
resistant FLT3-ITD AML with acquired mutations (63–65). These
selective FLT3 TKIs are also in early-phase clinical testing for adults
with AML (NCT01522469, NCT01657682, NCT02014558) (33).
Despite their favorable pharmacokinetic and pharmacodynamic
(PD) properties, the majority of next-generation FLT3 TKIs have
thus far demonstrated relatively limited anti-AML clinical efficacy
as monotherapy and will likely require combination with cytotoxic
chemotherapy to achieve maximal therapeutic benefit (55, 66–69).

FLT3 inhibition strategies remain incompletely elucidated and,
to date, have undergone relatively limited evaluation in children.
Initial preclinical studies demonstrated preferential cytotoxicity
of pediatric FLT3-ITD AML specimens incubated in vitro with
lestaurtinib (formerly CEP-701) (70). Lestaurtinib has been bet-
ter studied clinically in infants with de novo MLL-rearranged
B-precursor acute lymphoblastic leukemias (ALLs), which over-
express the wild-type FLT3 receptor (71, 72). Lestaurtinib remains
under investigation for infant ALL in the current COG Phase
3 trial AALL0631 (NCT00557193) (33, 73). The multi-kinase
inhibitor sorafenib was initially evaluated in the COG Phase 1 trial
ADVL0413 in children with advanced solid tumors and leukemias;
two children with relapsed/refractory FLT3-ITD AML achieved
≥CR2 with sorafenib monotherapy on this trial and subsequently
underwent HSCT (74). In an institutional case series, three chil-
dren with relapsed/refractory AML treated with sorafenib and
cytotoxic chemotherapy also achieved remission (75). Similarly,
8 of 11 children with relapsed/refractory AML (5 FLT3-ITD and 3
FLT3-wild-type) treated on a Phase 1 trial at SJCRH with sorafenib,
clofarabine, and cytarabine achieved CR or CR with incomplete
blood count recovery (CRi) (76).

Recent studies have demonstrated tolerability and improved
induction remission in younger adults with de novo FLT3-ITD
AML treated with sorafenib and chemotherapy, although OS did
not differ between the chemotherapy and chemotherapy/sorafenib
arms (77). Similarly, a Study Alliance Leukemia trial recently
demonstrated no improvement in EFS or OS with sorafenib addi-
tion to induction and consolidation chemotherapy for elderly
patients with AML (78). However, given the earlier promising
clinical data specifically in pediatric AML, the combination of
sorafenib and cytotoxic chemotherapy for children with FLT3-
ITD AML is currently under prospective investigation in the COG
Phase 3 trial AAML1031 (NCT01371981) (33). In this trial, chil-
dren with FLT3-ITD AML are non-randomly assigned to treat-
ment with sorafenib in combination with standard chemotherapy
for assessment of feasibility (stage 1) and efficacy (stage 2), then
taken to HSCT with the best available donor. Interim analyses
of AAML1031 data have demonstrated the feasibility and safety
of sorafenib with chemotherapy in stage 1, and stage 2 efficacy
studies are now underway. A 1-year sorafenib maintenance phase
for patients post-HSCT (or post-chemotherapy completion for
non-transplanted patients) is underway in AAML1031 based in
part upon safety and outcome data from a multi-institutional
pilot study (33, 79). Similar sorafenib maintenance studies for
adult AML patients are also in progress in the U.S. and in
Europe (NCT01398501, NCT01578109, and JA Pollard, personal

communication) (33). Although not under current clinical investi-
gation, sorafenib’s c-kit inhibition properties may also have utility
for children with KIT -mutant AML, which comprises 30% of
pediatric core binding factor AML (80).

Studies of the more FLT3-selective second-generation FLT3
TKIs, particularly quizartinib (formerly AC220), have garnered
considerable attention for treatment of adults with FLT3-ITD
AML. Recent Phase 1 and 2 studies of quizartinib in adults with
relapsed/refractory AML demonstrated acceptable toxicity pro-
files and preferential responses of FLT3-ITD patients (44, 81).
A first-in-children Phase 1 study of quizartinib with chemother-
apy for children with relapsed/refractory leukemias was recently
conducted via the Therapeutic Advances in Childhood Leukemia
(TACL) consortium Phase 1 trial TACL 2009-004 (NCT01411267)
(33, 82). The combination regimen was well-tolerated at all doses
of quizartinib studied, and near-complete inhibition of phospho-
rylated FLT3 was observed via PD assays. Three of the six children
with FLT3-ITD AML achieved CR or CRi, and one of the eight
children with FLT3-wild-type AML achieved CR (82).

Based upon promising preclinical data in leukemia and clinical
testing in solid tumor patients with platelet-derived growth fac-
tor receptor (PDGFR) mutations (65, 83), a Phase 2 study of the
third-generation FLT3/PDGFR inhibitor crenolanib in adults with
AML is also in progress (NCT01522469) (33). Early PD analyses
of blood samples from patients enrolled on this trial demonstrate
potent FLT3 inhibition with crenolanib treatment (64). Preclin-
ical data also suggest that crenolanib may have efficacy against
resistance-conferring FLT3 point mutations that emerge during
TKI therapy, including FLT3 D835 point mutations. Limited pre-
clinical evaluation of crenolanib incubated with primary leukemia
specimens from children with TKI-resistant FLT3-ITD/FLT3 D835
AML demonstrated moderate in vitro anti-leukemic activity (63).
Most recently, the third-generation FLT3 inhibitor ASP2215 is
under Phase 1/2 evaluation in adults with relapsed/refractory AML
(NCT02014558) (33). Crenolanib and ASP2215 have not been
evaluated clinically in children at this time.

Other TKI approaches for poor-risk adult AML are also under
clinical investigation (84). Constitutive activation of the phos-
phatidylinositide 3-kinase/protein kinase B/mammalian target of
rapamycin (PI3K/Akt/mTOR) signal transduction cascade has
been well-documented in AML, and PI3K/Akt/mTOR signaling
activation often occurs as a downstream sequela of FLT3-ITD
alterations (85–87). Development of new approaches to inhibit
aberrant PI3K pathway signaling is of intense preclinical and clini-
cal interest for AML biologists and clinicians. The mTOR inhibitor
rapamycin (also known as sirolimus) and its derivatives are directly
cytotoxic to primary AML samples in vitro and have proven syn-
ergistic with AML-directed cytotoxic chemotherapy in vivo in
mouse models (88–90). Several early-phase clinical trials in the
U.S. and Europe are currently evaluating mTOR inhibition (e.g.,
sirolimus, temsirolimus, everolimus) in combination with cyto-
toxic chemotherapy in adults with de novo AML (NCT01611116,
NCT01154439, NCT01822015, NCT01869114) (33). Although
mTOR inhibition in combination with cytotoxic chemotherapy
for children with relapsed ALL is under investigation via various
consortia (NCT01403415, NCT01523977, NCT01614197) (33),
such regimens have not been evaluated in pediatric AML.
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Inhibition of the Aurora family of kinases is also under study
in patients with relapsed/refractory leukemias. Aurora kinases are
critical proteins involved in normal cellular mitosis. Aurora kinase
overexpression has been documented in AML and hypothesized
to contribute to leukemogenesis (91, 92). Preclinical testing has
demonstrated preferential sensitivity of AML cell lines and pri-
mary AML specimens to Aurora A and Aurora B kinase inhibitors
(91, 92). These agents may have particular therapeutic relevance
for patients with acute megakaryoblastic leukemia (AMKL) based
upon preclinical data demonstrating increased megakaryocyte
polyploidization and AMKL cytotoxicity in vitro and in vivo with
the Aurora kinase A inhibitor alisertib (MLN8237) (93). Clini-
cal trials are in progress to evaluate the safety and/or efficacy of
Aurora kinase inhibition as monotherapy or in conjunction with
chemotherapy in adults with AML (NCT01779843) (33). Early-
phase trial investigation of Aurora kinase inhibitors in children
with relapsed/refractory leukemias is also underway in the United
Kingdom and the U.S. (NCT01431664, NCT01154816) (33).

PROTEASOME INHIBITORS
The proteasome inhibitor bortezomib has been investigated in
the treatment of various malignancies and has demonstrated
single-agent efficacy in multiple myeloma. Bortezomib is hypoth-
esized to deplete selectively leukemia-initiating cells and may also
augment effects of cytotoxic chemotherapeutic agents (94, 95).
Bortezomib has been evaluated specifically in adults with AML
in the relapse and de novo settings, where it has been reasonably
well-tolerated and has demonstrated efficacy in combination with
other agents (96–98). Bortezomib and other proteasome inhibitors
(e.g., carfilzomib) are under active investigation for adult AML in
combination with cytotoxic or demethylating agents in several cur-
rent clinical trials (NCT01127009, NCT01371981, NCT01861314,
NCT01137747, NCT01204164) (33).

Bortezomib was first studied in children with relapsed/refractory
solid tumors and leukemia in the COG and TACL consortia
(99–102). The subsequent COG Phase 2 trials AALL07P1 and
AAML07P1 evaluated bortezomib with intensive re-induction
chemotherapy specifically in children with relapsed/refractory
ALL and AML, respectively (103, 104). These studies demon-
strated safety and tolerability of combination regimens in children
with relapsed/refractory leukemias. Among the 38 children with
AML treated on AAML07P1 and evaluable for efficacy, 11 CR,
3 CR with incomplete platelet recovery (CRp), and 5 CR with
incomplete neutrophil recovery (CRi) were achieved, although OS
was not improved with bortezomib addition in comparison to
survival data from historical controls (104). Bortezomib in com-
bination with standard AML chemotherapy is currently under
investigation for children with de novo AML vs. standard AML
chemotherapy in the randomized COG Phase 3 trial AAML1031
(NCT01371981) (33).

EPIGENETIC/DEMETHYLATING AGENTS
Genes that regulate DNA methylation and demethylation (e.g.,
DNMT3A, IDH1 and IDH2, TET2) are commonly mutated in
adult AML and myelodysplastic syndromes (MDS), although
the frequency of these mutations appears much lower in
pediatric AML (105–109). DNA methyltransferase inhibitors

(e.g., decitabine, azacitidine/5-azacytidine) are in clinical test-
ing for adults with AML and MDS, and a recent trial demon-
strated improved response rates in adults with DNMT3A-mutant
AML who were treated with decitabine (110). Initial testing
of demethylating agents in children with relapsed/refractory
AML was performed through the COG, and a recent single-
institution study also reported CRs in three of eight children
with relapsed/refractory AML treated with decitabine monother-
apy (111, 112). Phase 1 studies of azacitidine or decitabine
with chemotherapy for children with relapsed/refractory acute
leukemias are planned (NCT01861002, NCT01853228) (33).

An additional promising epigenetic strategy for pediatric
AML involves inhibition of the DOT1L histone methyltrans-
ferase. Preclinical studies of MLL-rearranged leukemias have
demonstrated a critical role of this enzyme for leukemogene-
sis, as well as preferential leukemia cytotoxicity with DOT1L
inhibition (e.g., EPZ004777) (113–115). A first-in-human Phase
1 study of the DOT1L inhibitor EPZ-5676 for adults with
relapsed/refractory MLL-rearranged leukemias recently opened
for accrual (NCT01684150) (33).

Another epigenetic strategy involves inhibition of histone
deacetylases with agents such as valproic acid, vorinostat, or
panobinostat. Vorinostat has proven potentially promising in
combination with cytotoxic chemotherapy via early-phase clin-
ical trials for adults with de novo AML or MDS (116, 117). A Phase
1/2 study of vorinostat in children with relapsed/refractory cancer,
including leukemia, is in progress in Europe (NCT01422499) (33).
A Phase 1 study of vorinostat with azacitidine and chemotherapy
for children with relapsed ALL is underway via the TACL con-
sortium (NCT01483690) (33), but this combination is not under
current investigation in pediatric AML. Early clinical data from
adults with AML or MDS treated with vorinostat and demethy-
lating agents demonstrate excellent hematologic responses in
many patients (118–121). In one study, clinical responses of
patients treated with vorinostat and azacitidine correlated with
high pre-treatment methylation levels and demethylation and
acetylation during therapy, while patients without evidence of
basal hypermethylation or post-treatment demethylation did not
respond (119). A Phase 1 trial of panobinostat for children with
relapsed/refractory hematologic malignancies is also underway via
TACL (NCT01321346) (33). The role of such epigenetic therapies
for children with AML remains to be elucidated fully, but early
clinical data in adults and children with AML appear encouraging.

The bromodomain and extra-terminal (BET) family of proteins
recognize acetylated lysine residues of histone proteins and mod-
ulate gene expression via recruitment of transcriptional regulators
(122). Inhibition of BET proteins, particularly of Brd4, has demon-
strated remarkable anti-tumor activity in a variety of human
cancers. Preclinical evaluation of the Brd4 inhibitor JQ1 in AML
demonstrated potent in vitro and in vivo inhibition of leukemia
proliferation and elimination of leukemia-initiating cells, likely via
suppression of MYC (123, 124). Combination approaches of Brd4
inhibition with TKIs, HDAC inhibitors, or cytotoxic chemother-
apy have demonstrated preclinical efficacy in subtypes of AML and
remain under active study (125, 126). The preclinical efficacy of the
BRD2/3/4 inhibitor OXT015 in AML was also recently reported.
In vitro incubation of primary AML cells with OXT015 resulted in
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cell cycle arrest and induction of apoptosis (127). A Phase 1 trial
of OTX015 for adults with hematologic malignancies is ongoing
in Europe (NCT01713582) (33).

SELECTIVE INHIBITORS OF NUCLEAR EXPORT
Localization of cytosolic proteins to the nucleus is critical for nor-
mal cellular function. However, the acquired ability of malignant
cells to export key nuclear proteins to the cytoplasm is hypothe-
sized to be a major mechanism of treatment resistance. Selective
inhibitors of nuclear export, particularly agents targeting the chro-
mosome region maintenance 1 export protein (CRM1, also known
as XPO1), have been evaluated in the preclinical setting for various
hematologic malignancies, including AML (128, 129). Testing of
the CRM1 inhibitors KPT-185 and KPT-251 demonstrated in vitro
activity against human AML cell lines harboring various genetic
alterations and in vivo efficacy in AML cell line xenotransplan-
tation models, likely via G1 cell cycle arrest and induction of
apoptosis (128, 130). A Phase 1 study of the CRM1 inhibitor
KPT-330 is in progress for adults with advanced hematologic
malignancies (NCT01607892) (33).

CHIMERIC ANTIGEN RECEPTOR T CELL IMMUNOTHERAPY
Rapid progress has been made recently in the development of
cancer immunotherapy using human T cells genetically engi-
neered with synthetic chimeric antigen receptors (CARs) to target
tumor antigens (131). Current immunotherapeutic approaches
for childhood leukemias, including CAR T cell therapy, have
been specifically delineated by our colleagues elsewhere in this
review series (132). While particular preclinical and early clinical
progress has been made with anti-CD19 CAR T cell strategies for
B-cell malignancies (133–135), development of anti-AML CAR
T cell immunotherapies for the clinic has proven more diffi-
cult. Similar to monoclonal antibody therapies for AML (e.g.,
GO), the paucity of well-characterized, truly leukemia-specific
surface antigens in AML has necessitated consideration of CAR
T cell AML-targeting strategies that will likely deplete normal
hematopoietic cells via “on target/off tumor” effects. Careful con-
sideration of both the leukemia cytotoxicity and the potential for
CAR T cell-mediated myeloablation is essential prior to trans-
lation of these approaches to the clinic for adults and children
with AML.

To date, several candidate AML-associated antigens for CAR
T cell approaches have been selected for investigation, including
CD33, CD44, CD123, and Lewis-Y (136–141). Preclinical studies
of the various anti-AML CAR T cells have generally demon-
strated potent in vitro cytotoxicity against human AML cell lines
and primary specimens (138, 141). Some groups have further
observed in vivo efficacy of anti-AML CARs using human AML
xenograft models (138, 140, 141). However, some reports have
noted depletion of normal CD34+ hematopoietic cells by the
anti-AML CAR T cells, highlighting the myeloablative poten-
tial of such immunotherapeutic approaches for AML (139–141).
CAR T cell therapy approaches for AML remain primarily in
the preclinical testing phase in the U.S. and Europe, although
Phase 1 trials of anti-CD33 CAR T cell therapy (NCT01864902;
children ≥5 years of age eligible) and anti-Lewis-Y CAR T cell
therapy (NCT01716364; patients ≥18 years of age) for patients

with relapsed/refractory AML were recently opened in China and
Australia, respectively (33).

TOWARD PRECISION MEDICINE FOR PEDIATRIC AML
Despite intensive multi-agent chemotherapy, more than one-third
of children with AML will die of chemorefractory or relapsed
disease. Further therapy intensification with traditional cyto-
toxic drugs is unlikely to be tolerated given the current dose
intensity of AML chemotherapy. Therefore, new molecular ther-
apeutic approaches that target the AML stem cell responsible
for leukemia initiation and progression and that have minimal
impact upon normal tissues are needed. Implementation of such
targeted strategies will be more likely successful when used in
rationally selected combination regimens, which may allow for
lower drug dosing (thereby minimizing overlapping toxicities),
decrease acquired drug resistance, and increase potential for addi-
tive or synergistic cytotoxicity. At a genomics level, significant
collaborative efforts are ongoing via the SJCRH–Washington Uni-
versity Pediatric Cancer Genome Project, the National Cancer
Institute’s therapeutically applicable research to generate effec-
tive treatments (TARGET) AML Project, and other consortia to
delineate more precisely various genetic subgroups of pediatric
AML and to identify “actionable” lesions for molecularly targeted
therapies (8, 142, 143).

One important consideration will be the degree to which results
should be extrapolated from adult clinical trial data for children
with AML given the inherent, but incompletely understood, dif-
ferences in biology and in therapeutic responses. Results from
early-phase clinical trials of new agents and the number of novel
drugs in preclinical development are encouraging, but significant
challenges persist in drug development for pediatric oncology.
Evaluation of new agents in children with relapsed leukemia in
early-phase clinical trials remains particularly challenging given
the limited availability of novel drugs for pediatric studies. More-
over, study accrual can be challenging due to rapid disease pro-
gression in this population that hinders enrollment. Evaluation of
meaningful responses in this setting is also difficult given the use
of stringent disease response definitions that limit the number of
cycles of therapy administered despite drug mechanisms that may
require multiple courses of treatment to achieve optimal response.
Given the relative rarity of childhood AML, its biologic hetero-
geneity, and the prospect of tailored therapeutics for ever-smaller
genetic subgroups, collaborative trials across pediatric oncology
trial consortia may be a more efficient means by which to identify
new molecularly targeted agents for children with specific bio-
logic subtypes of AML. Nonetheless, investigation of promising
new therapies is essential to decrease relapse and improve cure for
children with AML, and enthusiasm remains high for the devel-
opment of molecularly targeted approaches in this emerging era
of precision medicine.
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