Quantum interactive proofs with short messages

Salman Beigi∗ Peter W. Shor† John Watrous‡

∗Institute for Quantum Information
California Institute of Technology

†Department of Mathematics
Massachusetts Institute of Technology

‡Institute for Quantum Computing and School of Computer Science
University of Waterloo

April 6, 2010

Abstract

This paper considers three variants of quantum interactive proof systems in which short (meaning logarithmic-length) messages are exchanged between the prover and verifier. The first variant is one in which the verifier sends a short message to the prover, and the prover responds with an ordinary, or polynomial-length, message; the second variant is one in which any number of messages can be exchanged, but where the combined length of all the messages is logarithmic; and the third variant is one in which the verifier sends polynomially many random bits to the prover, who responds with a short quantum message. We prove that in all of these cases the short messages can be eliminated without changing the power of the model, so the first variant has the expressive power of QMA and the second and third variants have the expressive power of BQP. These facts are proved through the use of quantum state tomography, along with the finite quantum de Finetti theorem for the first variant.

1 Introduction

The interactive proof system model extends the notion of efficient proof verification to an interactive setting, where a computationally unrestricted prover tries to convince a computationally bounded verifier that an input string satisfies a particular fixed property. They have been studied extensively in computational complexity theory since their introduction roughly 25 years ago [GMR85, GMR89, Bab85, BM88], and as a result much is known about them. (See [AB09] and [Go08], for instance, for further discussions of classical interactive proof systems.)

Quantum interactive proof systems are a natural quantum computational extension of the interactive proof system model, where the prover and verifier can perform quantum computations and exchange quantum information. The expressive power of quantum interactive proofs is no different from classical interactive proofs: it holds that QIP = PSPACE = IP, and therefore any problem having a quantum interactive proof system also has a classical one [JJUW09, LFKN92, Sha92]. However, quantum interactive proof systems may be significantly more efficient than classical interactive proofs in terms of the number of messages they require, as every problem in PSPACE has a quantum interactive proof system requiring just three messages to be exchanged.
between a prover and verifier \[\text{KW00}\]. This is not possible classically unless \(\text{AM} = \text{PSPACE} \), which implies the collapse of the polynomial-time hierarchy \[\text{BM88, GS89}\].

In this paper we consider quantum interactive proof systems in which some of the messages are short, by which we mean that the messages consist of a number of qubits that is logarithmic in the input length. Three particular variants of quantum interactive proofs with short messages are considered. The first variant is one in which the verifier sends a short message to the prover, and the prover responds with an ordinary, or polynomial-length, message. We prove that this model has the expressive power of QMA. The second variant is one in which any number of messages can be exchanged between the prover and verifier, but where the combined length of all the messages is logarithmic. We prove that this model has the expressive power of BQP. The third variant is one in which the verifier sends polynomially many random bits to the prover, who responds with a short quantum message. We prove that this model also has the expressive power of BQP. Thus, in each of these three cases, logarithmic-length messages are effectively worthless and can be removed without changing the power of the model.

One possible application of our work is to the design of new quantum algorithms or QMA verification procedures. Although we do not yet have interesting examples, we believe it is possible that an intuition about quantum interactive proof systems with short messages may lead to new problems being shown to be in BQP or QMA, based on characterizations of the sort we prove.

The remainder of this paper has the following organization. Section 2 discusses some of the background information needed for the rest of the paper, including background on the Choi-Jamiołkowski representation of quantum channels, quantum state tomography, and quantum interactive proof systems. Sections 3, 4, and 5 then discuss the three variants of quantum interactive proof systems with short messages described above.

2 Background

We assume the reader is familiar with quantum information and computation, including the basic quantum complexity classes BQP and QMA, simple properties of mixed states, measurements, channels, and so on. The purpose of the present section is to highlight background knowledge on three topics, represented by the three subsections below, that are particularly relevant to this paper. These topics are: the Choi-Jamiołkowski representation of quantum channels, quantum state tomography, and quantum interactive proof systems.

Before discussing these three topics, it is appropriate to mention a few simple points of notation and terminology. Throughout this paper we let \(\Sigma = \{0,1\} \) denote the binary alphabet, and for each \(k \in \mathbb{N} \) we write \(\mathbb{C}(\Sigma^k) \) to denote the finite-dimensional Hilbert space of vectors indexed by \(\Sigma^k \) (i.e., the Hilbert space associated with a \(k \)-qubit quantum register). The Dirac notation is used to describe vectors in spaces of this sort.

For a given space \(Q = \mathbb{C}(\Sigma^k) \), we write \(L(Q) \) to denote the space of all linear mappings from \(Q \) to itself, which is associated with the space of all complex matrices with rows and columns indexed by \(\Sigma^k \) in the usual way. The subsets of this space representing the positive semidefinite operators and density operators on \(Q \) are denoted \(\text{Pos}(Q) \) and \(\text{D}(Q) \), respectively. A standard inner product on \(L(Q) \) is defined as \(\langle X, Y \rangle = \text{Tr}(X^*Y) \) for all \(X, Y \in L(Q) \) (where \(X^* \) denotes the adjoint, or conjugate-transpose, of \(X \)). The trace norm of an operator \(X \in L(Q) \) is defined as

\[
\| X \|_1 = \text{Tr} \sqrt{X^*X},
\]

and the spectral (or operator) norm of \(X \) is denoted \(\| X \| \).
2.1 Quantum channels and the Choi-Jamiołkowski representation

A quantum channel from a k-qubit space $Q = C(\Sigma^k)$ to an l-qubit space $R = C(\Sigma^l)$ is a completely positive and trace-preserving linear mapping of the form $\Phi : L(Q) \rightarrow L(R)$. We will write $C(Q, R)$ to denote the set of all such quantum channels. For any quantum channel $\Phi \in C(Q, R)$ one defines the (normalized) Choi-Jamiołkowski representation of Φ as

\[
\rho = \frac{1}{2^k} \sum_{y, z \in \Sigma^k} \Phi(|y\rangle \langle z|) \otimes |y\rangle \langle z|.
\]

In other words, this is the $l + k$ qubit state that results from applying Φ to one-half of k pairs of qubits in the $|\phi^+\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ state.

The action of the mapping Φ can be recovered from its normalized Choi-Jamiołkowski representation in the following way that makes use of post-selection. Suppose that Q and Q_0 are k-qubit registers and R is an l-qubit register, that the pair (R, Q_0) is initialized to the state ρ as defined by Φ in (1), and that Q is in an arbitrary quantum state (and is possibly entangled with additional registers not including Q_0 and R). Consider the following procedure:

1. Measure each qubit of Q together with its corresponding qubit in Q_0 with respect to the Bell basis.
2. If every one of these k measurements results in an outcome corresponding to the Bell state $|\phi^+\rangle$, then output “success,” else output “failure.”

This procedure gives the outcome “success” with probability 4^{-k}, and conditioned on success the register R is precisely as it would be had it resulted from the channel Φ being applied to Q. (The registers Q and Q_0 can safely be discarded if the procedure succeeds.) To see this, assume first that the joint state of (R, Q_0, Q) is $\rho \otimes \xi$ before the measurement takes place. Then the (unnormalized) state of R after the measurements are performed, assuming the end result is “success,” is

\[
\frac{1}{2^k} \sum_{y, y', z, z' \in \Sigma^k} \Phi(|y\rangle \langle z|) \langle y'|y\rangle \langle z|z'\rangle \langle y'|z'\rangle = \frac{1}{4^k} \sum_{y, z \in \Sigma^k} \Phi(|y\rangle \langle y| \xi \langle z|z\rangle) = \frac{1}{4^k} \Phi(\xi).
\]

The probability of success is therefore 4^{-k}, and conditioned on this outcome the process implements the channel Φ. The fact that this process implements the channel Φ exactly for all density operators ξ implies that it also operates correctly in the case that Q is entangled with additional registers.

2.2 Quantum state tomography

Quantum state tomography is the process by which an approximate description of an unknown quantum state is obtained by measurements on many independent copies of the unknown state. To be more precise, let $Q = C(\Sigma^k)$ denote the space corresponding to a k-qubit register, and suppose that X_1, \ldots, X_N are k-qubit quantum registers independently prepared in an unknown k-qubit state $\rho \in D(Q)$. The purpose of quantum state tomography is to obtain an explicit description of a k-qubit state that closely approximates ρ.

One way to perform quantum state tomography is through the use of an information-complete measurement. A measurement $\{P_a : a \in \Gamma\}$ on k-qubit registers is information-complete if and only
if the set \(\{ P_a : a \in \Gamma \} \) spans the entire \(4^k \)-dimensional space \(\mathcal{L}(\mathcal{Q}) \). When such a measurement is performed on a \(k \)-qubit state \(\rho \), each measurement outcome is obtained with probability

\[
p(a) = \langle P_a, \rho \rangle.
\]

Based on the assumption that \(\{ P_a : a \in \Gamma \} \) is information-complete, this vector \(p \) of probabilities uniquely determines the state \(\rho \). A close approximation of \(p \), which may be obtained by sufficiently many independent measurements, leads to an approximate description of \(\rho \).

The accuracy of an approximation based on the process just described naturally depends on the choice of an information-complete measurement as well as the specific notion of approximation that is considered. Our interest will be on the trace distance \(\| \rho - \sigma \|_1 \) between the approximation \(\sigma \) and the true state \(\rho \). To describe the “quality” of an information-complete measurement, it is appropriate to describe the specific process that is used to reconstruct \(\rho \) from the vector of probabilities \(p \).

For any spanning set \(\{ P_a : a \in \Gamma \} \) of \(\mathcal{L}(\mathcal{Q}) \), there must exist at least one choice of a set \(\{ M_a : a \in \Gamma \} \) in \(\mathcal{L}(\mathcal{Q}) \) that satisfies

\[
\sum_{a \in \Gamma} M_a \langle P_a, X \rangle = X
\]

for every \(X \in \mathcal{L}(\mathcal{Q}) \). (One may find such a set \(\{ M_a : a \in \Gamma \} \) by solving a system of linear equations.) The set \(\{ M_a : a \in \Gamma \} \) is uniquely determined when \(\{ P_a : a \in \Gamma \} \) has exactly \(4^k \) elements (i.e., is a basis), and hereafter we will restrict our attention to this case. If \(q \) is a probability vector that represents an approximation to the vector of probabilities \(p \), it holds that

\[
\left\| \sum_{a \in \Gamma} p(a) M_a - \sum_{a \in \Gamma} q(a) M_a \right\|_1 \leq \sum_{a \in \Gamma} |p(a) - q(a)| \| M_a \|_1 \leq \| p - q \|_1 \max_{a \in \Gamma} \| M_a \|_1.
\]

It is therefore desirable that the maximum trace norm over the set \(\{ M_a : a \in \Gamma \} \) determined by the measurement \(\{ P_a : a \in \Gamma \} \) is as small as possible.

There is one additional consideration that is sometimes relevant, which is that the approximation

\[
\sum_{a \in \Gamma} q(a) M_a
\]

may fail to be positive semidefinite, and therefore fail to represent a valid quantum state. In this situation one can find a quantum state near to the approximation by renormalizing the positive part of the approximation. For the applications of tomography in this paper, however, this issue may safely be disregarded, as non-positive approximations of density operators will still provide valid approximations to the quantities we are interested in.

An example of an information-complete measurement on a single qubit is given by the following matrices:

\[
P_0 = \begin{pmatrix} 2 + \sqrt{2} & 1 + i \\ 1 - i & 2 - \sqrt{2} \end{pmatrix}, \quad P_1 = \begin{pmatrix} 2 - \sqrt{2} & 1 - i \\ 1 + i & 2 + \sqrt{2} \end{pmatrix},
\]

\[
P_2 = \begin{pmatrix} 2 + \sqrt{2} & -1 - i \\ -1 + i & 2 - \sqrt{2} \end{pmatrix}, \quad P_3 = \begin{pmatrix} 2 - \sqrt{2} & -1 + i \\ -1 - i & 2 + \sqrt{2} \end{pmatrix}.
\]
This is not an optimal information-complete measurement, but it has the advantage of being simple to describe and can be implemented exactly by a quantum circuit composed of Hadamard, controlled-not, and \(\pi/8 \)-phase gates. The corresponding set \(\{ M_0, M_1, M_2, M_3 \} \) described above is given by

\[
M_0 = \begin{pmatrix}
\frac{1 + \sqrt{2}}{2} & 1 + i \\
1 - i & \frac{1 - \sqrt{2}}{2}
\end{pmatrix}, \\
M_1 = \begin{pmatrix}
\frac{1 - \sqrt{2}}{2} & 1 - i \\
1 + i & \frac{1 + \sqrt{2}}{2}
\end{pmatrix},
\]

\[
M_2 = \begin{pmatrix}
\frac{1 + \sqrt{2}}{2} & -1 - i \\
-1 + i & \frac{1 - \sqrt{2}}{2}
\end{pmatrix}, \\
M_3 = \begin{pmatrix}
\frac{1 - \sqrt{2}}{2} & -1 + i \\
-1 - i & \frac{1 + \sqrt{2}}{2}
\end{pmatrix}.
\]

It holds that \(\| M_a \|_1 = \sqrt{10} < 4 \) for \(a \in \{0, 1, 2, 3\} \).

An information-complete measurement for \(k \) qubits may be obtained by taking tensor products of the above matrices. More specifically, for each \(x \in \Gamma^k \), let us define \(2^k \times 2^k \) matrices \(P_x \) and \(M_x \) as

\[
P_x = P_{x_1} \otimes \cdots \otimes P_{x_k} \quad \text{and} \quad M_x = M_{x_1} \otimes \cdots \otimes M_{x_k}.
\]

Then \(\{ P_x : x \in \Gamma^k \} \) is an information-complete measurement, and \(\{ M_x : x \in \Gamma^k \} \) is its corresponding inverse measurement set. By the multiplicativity of the trace norm, it holds that \(\| M_x \|_1 = 10^{k/2} < 4^k \) for every \(k \).

Now, let us suppose that \(\rho \) is a quantum state on \(k \) qubits, and tomography (using the measurements just described) is performed on \(N \) copies of \(\rho \). More precisely, the measurement \(\{ P_x \} \) is performed independently on each of the \(N \) copies of \(\rho \), a probability distribution \(q : \Gamma^k \rightarrow [0, 1] \) is taken to be the frequency distribution of the outcomes, and an approximation

\[
H = \sum_{x \in \Gamma^k} q(x) M_x
\]

to \(\rho \) is computed. We require a bound on the accuracy of this approximation. Of course, nothing can be said in the worst case, as any sequence of measurement outcomes could occur with very small probability in general. However, for any choice of \(\epsilon > 0 \), taking \(N \geq 2^{10k/\epsilon^3} \) (for instance) will guarantee that with probability at least \(1 - \epsilon \), the estimate \(H \) satisfies \(\| \rho - H \|_1 < \epsilon \).

The notion of quantum process tomography has also been considered, where a quantum measurement or channel is approximated through many independent evaluations of an appropriate sort. In this paper, however, it is not necessary to consider this sort of tomography as being any different from state tomography. Specifically, we will approximate channels (and measurements, modeled as channels) by evaluating them on maximally entangled states, followed by ordinary quantum state tomography on the normalized Choi-Jamiolkowski representations that result.

2.3 Quantum interactive proofs

Quantum interactive proof systems are a natural quantum analogue of ordinary, classical interactive proof systems, where the prover and verifier may process and exchange quantum information. We will only consider quantum interactive proof systems having an even number of messages in this paper, so for simplicity we will restrict our discussion to this case.
For t being a function of the form $t : \mathbb{N} \to \mathbb{N}$, we define a t-round (or $(2t)$-message) quantum verifier V to be a polynomial-time generated collection of quantum circuits

$$V = \{ V_{x,j} : x \in \Sigma^*, \ 0 \leq j \leq t(|x|) \}.$$

We will generally write t rather than $t(|x|)$ hereafter in this paper, keeping in mind that t might vary with the input length. We assume that the verifier’s circuits are composed of standard unitary quantum gates (controlled-not, Hadamard, and $\pi/8$-phase gates, let us say), as well as ancillary and erasure gates. Included in the description of these circuits is a specification of which input and output qubits are to be considered \textit{private memory qubits} and which are considered \textit{message qubits}. The message qubits refer to qubits that are sent to or received from a prover (to be described shortly). The following properties are required of the circuits describing a verifier:

1. For each x, the circuit $V_{x,0}$ takes no input qubits, and the circuit $V_{x,t}$ produces a single output qubit (called the \textit{acceptance qubit}).
2. There exist functions v_1, v_2, \ldots such that $V_{x,j-1}$ outputs $v_j(|x|)$ private memory qubits and $V_{x,j}$ inputs $v_j(|x|)$ private memory qubits for $1 \leq j \leq t$.
3. There exist functions q_1, q_2, \ldots and r_1, r_2, \ldots that specify the number of message qubits the verifier sends to or receives from the prover on each round, for a given input length. More precisely, each circuit $V_{x,j-1}$ outputs $q_j(|x|)$ message qubits and each circuit $V_{x,j}$ inputs $r_j(|x|)$ message qubits, for $1 \leq j \leq t$.

Similar to the function t, we will often omit the argument $|x|$ from the functions v_j, q_j, and r_j for the sake of readability. When it is convenient, we will refer to the message qubits sent from the verifier to the prover as \textit{question qubits} and qubits sent from the prover to the verifier as \textit{response qubits}.

A t-round (or $(2t)$-message) prover is defined in a similar way to a t-round verifier, but no computational restrictions are made. Specifically, a t-round prover is a collection of quantum channels

$$P = \{ P_{x,j} : x \in \Sigma^*, \ 1 \leq j \leq t(|x|) \}.$$

Again, the input and output qubits of these channels are specified as private memory qubits or message qubits. When a particular prover P is considered to interact with a given verifier V, one naturally assumes that they agree on the number of messages and the numbers of qubits sent in each message, as suggested by Figure [1]. Although the number of private memory qubits used by the prover could in principle be unbounded, it is not difficult to prove that for any choice of a verifier there is an optimal prover that uses at most a polynomial number of private memory qubits.

Now, on a given input string x, the prover P and verifier V have an interaction by composing their circuits/channels as described in Figure [1]. The \textit{maximum acceptance probability} for a given verifier V on an input x refers to the maximum probability for the circuit $V_{x,t}$ to output 1, assuming it is measured in the standard basis, over all choices of a compatible prover P. It is always the case that a maximal probability is achieved by some prover.

Classes of promise problems may be defined by quantum interactive proof systems in a variety of ways. We will delay the definitions of the classes we consider to the individual sections in which they are discussed.
Figure 1: An illustration of an interaction between a prover and verifier in a quantum interactive proof system. In the picture it is assumed that $t = 3$. The labels v_j, p_j, q_j and r_j on the arrows refer to the number of qubits represented by each arrow.

3 Two-message quantum interactive proofs with short questions

The first specific variant of quantum interactive proof systems we consider are those in which just a single round of communication takes place, with the first message being short (at most logarithmic length) and the second message being normal (at most polynomial length). In particular, let us say that a 1-round verifier V is a $[\log,\text{poly}]$ quantum verifier if the number of question qubits it sends during the first and only round of communication satisfies $q(n) = O(\log n)$. For functions of the form $a, b : \mathbb{N} \rightarrow [0, 1]$ we define $\text{QIP}([\log,\text{poly}], a, b)$ to be the class of all promise problems $B = (B_{\text{yes}}, B_{\text{no}})$ for which there exists a $[\log,\text{poly}]$ quantum verifier V with completeness and soundness probability bounds a and b, respectively. In other words, V satisfies the following properties:

1. For every string $x \in B_{\text{yes}}$, there exists a prover P compatible with V that causes V to accept x with probability at least $a(|x|)$.

2. For every string $x \in B_{\text{no}}$, and every prover P compatible with V, it holds that P causes V to accept x with probability at most $b(|x|)$.

For a wide range of choices of a and b, these classes coincide with QMA as the following theorem states.

Theorem 1. Let $a, b : \mathbb{N} \rightarrow (0, 1)$ be polynomial-time computable functions such that $a(n) - b(n) \geq 1/p(n)$ for some polynomial p. Then $\text{QIP}([\log,\text{poly}], a, b) = \text{QMA}$.

Proof. It is clear that $\text{QMA} \subseteq \text{QIP}([\log,\text{poly}], a, b)$ for any choice of a and b that satisfy the conditions of the theorem, so our goal is to prove the reverse containment.

Let $B = (B_{\text{yes}}, B_{\text{no}})$ be a promise problem in $\text{QIP}([\log,\text{poly}], a, b)$, and let V be a $[\log,\text{poly}]$ verifier that witnesses this fact. We write q (as above) to denote the number of question qubits the verifier V sends, and write r to denote the number of response qubits V receives. As V is a $[\log,\text{poly}]$ verifier it holds that $q(n) = O(\log n)$. For a fixed input x, we will write $Q = C(\Sigma')$ to denote the question space and $R = C(\Sigma')$ to denote the response space for V, corresponding to the question and response qubits in the obvious way.

Our goal is to prove that $B \in \text{QMA}$, and to do this we will define a verification procedure (to be referred to as *Arthur*) that demonstrates this fact. Suppose P is a prover that interacts with V.

See the rest of the text for further details on quantum interactive proofs and their properties.
For a fixed input string x, the action of P may be identified with a quantum channel $\Phi \in \mathcal{C}(\mathcal{Q}, \mathcal{R})$, and any such channel defines a quantum state $\rho \in \mathcal{D}(\mathcal{R} \otimes \mathcal{Q})$ according to its normalized Choi-Jamiołkowski representation Π. We will define Arthur so that he expects to receive many independent copies of this state. He will check its validity using quantum state tomography, and will use the state to apply the mapping Φ himself through post-selection.

More specifically, we define Arthur so that he performs the following actions:

1. Input $N + m$ registers $(R_1, Q_1), \ldots, (R_{N+m}, Q_{N+m})$, where N and m are polynomials in the input length n to be specified below.
2. Randomly permute the pairs $(R_1, Q_1), \ldots, (R_{N+m}, Q_{N+m})$, according to a uniformly chosen permutation $\pi \in S_{N+m}$, and discard all but the first $N + 1$ pairs.
3. Perform quantum state tomography on the registers (Q_2, \ldots, Q_{N+1}), and reject if the resulting approximation is not within trace-distance $\delta/2$ of the completely mixed state $1/2^q$, for δ to be specified below.
4. Simulate the original protocol (P, V) by post-selection using the register pair (R_1, Q_1). Reject if the post-selection fails, and otherwise accept or reject as the outcome of the proof system dictates.

To specify N, m and δ, we first set

$$
\varepsilon = \frac{1}{p4^q+1}
$$

for p being the polynomial whose reciprocal separates the completeness and soundness probability bounds a and b. Now set

$$
\delta = \frac{\varepsilon^2}{4}, \quad N = \frac{2^{10q}}{(\delta/2)^3} \quad \text{and} \quad m = \frac{2N4^q}{\varepsilon}.
$$

Given that q is logarithmic, it holds that N, m, $1/\varepsilon$ and $1/\delta$ are polynomially bounded.

Suppose first that $x \in B_{\text{yes}}$, which implies that there exists a prover P that causes V to accept x with probability at least a. Let Φ denote the quantum channel that describes the behavior of P, and let ρ be the normalized Choi-Jamiołkowski representation of Φ as described in Π. Then for each of the register pairs (R_i, Q_i) being prepared independently in the state ρ, it holds that Arthur rejects in step 3 with probability at most $\delta/2$, and accepts in step 4 with probability at least $a/4^q$ (conditioned on not having rejected in step 2). Arthur therefore accepts with probability at least

$$
\left(1 - \frac{\delta}{2}\right) \frac{a}{4^q} > \frac{a}{4^q} - \varepsilon.
$$

Now let us suppose that $x \in B_{\text{no}}$. We first consider the situation in which the state of the registers (Q_1, \ldots, Q_{N+1}) at the beginning of step 3 has the form

$$
\zeta^{\otimes (N+1)}
$$

for some density operator $\zeta \in \mathcal{D}(\mathcal{Q})$. There are two cases to consider: one is that $\|\zeta - 1/2^q\|_1 < \delta$ and the other is that $\|\zeta - 1/2^q\|_1 \geq \delta$. If it is the case that $\|\zeta - 1/2^q\|_1 < \delta$, then by the Fuchs-van de Graaf inequalities $[\text{FvdG00}]$ there must exist a state $\rho \in \mathcal{D}(\mathcal{R} \otimes \mathcal{Q})$ satisfying $\text{Tr}_R(\rho) = 1/2^q$ that is within trace distance ε of the state of (R_1, Q_1). Given that $x \in B_{\text{no}}$, the state ρ would cause
acceptance in step 4 with probability at most $b/4^q$, and therefore acceptance may occur in the case at hand with probability at most $b/4^q + \varepsilon$. If, on the other hand, it holds that $\|\xi - 1/2^q\|_1 \geq \delta$, then rejection must occur in step 3 with probability at least $1 - \delta/2$, so Arthur accepts with probability at most $\delta/2$ (which of course is smaller than $b/4^q + \varepsilon$). Thus, in both cases, acceptance occurs with probability at most $b/4^q + \varepsilon$. It follows that if the registers (Q_1, \ldots, Q_{N+1}) are, at the beginning of step 3, in any state of the form

$$\sum_j p_j \xi_j^{t(N+1)}$$

(i.e., a convex combination of states of the form just discussed), acceptance may occur with probability at most $b/4^q + \varepsilon$. Finally, by the finite quantum de Finetti theorem [KR05, CKMR07] it holds that the state of (Q_1, \ldots, Q_{N+1}) is within trace-distance ε of a state of the form (2) after steps 1 and 2 have been performed, and therefore the probability of acceptance is at most $b/4^q + 2\varepsilon$ in the general case.

Given that $a/4^q - \varepsilon$ and $b/4^q + 2\varepsilon$ are efficiently computable and separated by the reciprocal of a polynomial, it holds that B is in QMA as claimed. \qed

4 Quantum interactive proofs with only short messages

Next we consider quantum interactive proof systems restricted so that the total number of qubits exchanged by the prover and verifier is logarithmic. We prove that any problem having such a quantum interactive proof system is contained in BQP. This fact represents a significant generalization of the equality $\text{QMA}_\text{log} = \text{BQP}$ proved in [MW05]. Like the result of the previous section, our proof of this fact is based on quantum state tomography. In addition we will make use of the quantum games framework of [GW07].

It is clear that any quantum interactive proof system allowing at most a logarithmic number of qubits to be exchanged can be simulated by one in which a logarithmic number of single qubit messages are permitted, because any number of these messages could consist of meaningless “dummy” qubits that are interspersed with the qubits sent by the other party. To be more precise, let $t(n) = O(\log n)$ and consider a t-round quantum interactive proof system in which each message consisting of a single qubit (i.e., $q_1 = r_1 = \cdots = q_t = r_t = 1$). We will write $\text{QIP}_\text{log}(a, b)$ to denote the class of problems having quantum interactive proof systems of this sort having completeness and soundness probability bounds a and b, respectively. As the following theorem states, this model offers no computational advantage over BQP.

Theorem 2. Let $a, b : \mathbb{N} \to (0, 1)$ be polynomial-time computable functions such that $a(n) - b(n) \geq 1/p(n)$ for some polynomial p. Then $\text{QIP}_\text{log}(a, b) = \text{BQP}$.

Proof. It is clear that $\text{BQP} \subseteq \text{QIP}_\text{log}(a, b)$, and so it remains to prove the reverse containment. To this end let $B = (B_{\text{yes}}, B_{\text{no}})$ be a promise problem in $\text{QIP}_\text{log}(a, b)$, and let V be a verifier that witnesses this fact. As above, let $t(n) = O(\log n)$ denote the number of rounds of communication this verifier exchanges with any compatible prover. For a fixed input string x, we will write Q_1, \ldots, Q_t to denote copies of the Hilbert spaces $C(\Sigma)$ associated with the t single-qubit messages that V sends to a given prover P, and we will write R_1, \ldots, R_t to denote copies of the same space $C(\Sigma)$ corresponding to the response qubits of P.

The action of V, on a given input string x, is determined by $t + 1$ quantum circuits $V_{x,0}, \ldots, V_{x,t}$ as defined in Section 2. Figure 2 illustrates an interaction between V and a prover P for the case
that \(t = 4 \). Now consider the channel \(\Phi \) obtained from the circuits \(V_{x,0}, \ldots, V_{x,t} \) by setting all of the response qubits the verifier receives from the prover as input qubits and setting all of the question qubits sent by the verifier to the prover as output qubits. More precisely, \(\Phi \) maps states on the space \(\mathcal{R}_1 \otimes \cdots \otimes \mathcal{R}_t \) to states on the space \(\mathcal{A} \otimes \mathcal{Q}_1 \otimes \cdots \otimes \mathcal{Q}_t \), where \(\mathcal{A} \) denotes the single-qubit space associated with the acceptance qubit. Figure 3 illustrates this channel for the protocol pictured in Figure 2.

Next, let

\[
\rho = \frac{1}{2^t} \sum_{y,z \in \Sigma'} \Phi(|y\rangle \langle z|) \otimes |y\rangle \langle z|
\]

be the normalized Choi-Jamiołkowski representation of \(\Phi \). The state \(\rho \) is obviously efficiently preparable given a description of \(V \). By independently preparing \(N = 2^{10(2t+1)} / \varepsilon^3 \) copies of \(\rho \), for \(\varepsilon > 0 \) to be specified later, and performing quantum state tomography, one obtains a Hermitian operator \(H \) on \(\mathcal{A} \otimes \mathcal{R}_1 \otimes \cdots \otimes \mathcal{R}_t \otimes \mathcal{Q}_1 \otimes \cdots \otimes \mathcal{Q}_t \) that satisfies \(\| H - \rho \|_1 < \varepsilon \) with probability at least \(1 - \varepsilon \). Let us also define

\[
\rho_1 = (|1\rangle \otimes 1) \rho (|1\rangle \otimes 1) \quad \text{and} \quad H_1 = (|1\rangle \otimes 1) H (|1\rangle \otimes 1)
\]

to denote the portion of these operators that correspond to the acceptance qubit \(\mathcal{A} \) giving the result 1 (accept).

Now, using the methods of [GW07], it can be shown that the maximum probability with which
V can be made to accept is given by the semidefinite program

$$\begin{align*}
\text{maximize:} & \quad 2^t \langle \rho_1, X \rangle \\
\text{subject to:} & \quad X \in S_t
\end{align*}$$

where $S_t \subset \text{Pos}(\mathcal{R}_1 \otimes \cdots \otimes \mathcal{R}_t \otimes \mathcal{Q}_1 \otimes \cdots \otimes \mathcal{Q}_t)$ is defined recursively as $S_0 = 1$ and

$$S_j = \left\{ X \geq 0 : \text{Tr}_{\mathcal{R}_j}(X) = Y \otimes 1_{\mathcal{Q}_j}, Y \in S_{j-1} \right\}$$

for $j \geq 1$. (In other words, the set of operators S_t represents the valid strategies for the prover.) It is clear that $\text{Tr}(X) = 2^t$ for every $X \in S_t$, and therefore

$$2^t \langle \rho_1, X \rangle - 2^t \langle H_1, X \rangle \leq 2^t \| X \| \| \rho_1 - H_1 \|_1$$

for every $X \in S_t$. By taking

$$\epsilon = \frac{1}{4^{t+1}p}$$

for instance, one may therefore distinguish the cases $x \in B_{\text{yes}}$ and $x \in B_{\text{no}}$ with probability $1 - \epsilon$ by performing tomography, substituting the resulting approximation H_1 for ρ_1, and solving the semidefinite program described above.

We note that precisely the same argument allows one to conclude that quantum refereed games, as defined in [GW07], allowing for at most a logarithmic number of qubits of communication offer no computational power beyond BQP. In other words, QRG$^\log$ = BQP, for QRG$^\log$ defined appropriately. The details are left to the reader.

5 Two-message quantum interactive proofs with short answers

In light of the results of Section 3, one may ask if two-message quantum interactive proofs with short answers (as opposed to short questions) have the power of QMA or even BQP. If this is true it is likely to be difficult to show: the graph non-isomorphism problem, which is not known to be in QMA, has a simple and well-known classical protocol [GMW91] requiring polynomial-length questions and constant-length answers. (Indeed, every problem in QSZK has a two-message quantum interactive proof system with a constant-length message from the prover to the verifier, for any choice of constant completeness and soundness errors [Wat02].)

We can show, however, that public-coin quantum interactive proofs in which the verifier sends polynomially many random bits to the prover, followed by a logarithmic-length quantum message response from the prover, have only the power of BQP. (An analogous result for classical interactive proof systems is obvious.)

Following a similar terminology to the classical case, we refer to a quantum interactive proof system in which the verifier’s messages to the prover consist of uniformly-generated random bits as quantum Arthur–Merlin games. Let us write QAM([poly, log], a, b) to denote the class of promise problems having two-message quantum Arthur–Merlin games with completeness and soundness probability bounds a and b, in which Merlin’s response to Arthur has logarithmic length.

Theorem 3. Let $a, b : \mathbb{N} \to (0, 1)$ be polynomial-time computable functions such that $a(n) - b(n) \geq 1/p(n)$ for some polynomial-bounded function p. Then QAM([poly, log], a, b) = BQP.
Sketch of proof. Assume B is a promise problem in QAM([poly, log], a, b), and consider a choice of Arthur that witnesses this fact. For $r(n) = O(\log n)$, and for any choice of an input string x, Arthur chooses a random string y with length polynomial in $|x|$, and then measures $r = r(|x|)$ qubits send by Merlin with respect to some binary-valued measurement $\{P_0^{x,y}, P_1^{x,y}\}$ that depends on x and y. This measurement may of course be described as a quantum channel

$$\Phi_{x,y}(\sigma) = \langle P_0^{x,y}, \sigma \rangle |0\rangle\langle 0| + \langle P_1^{x,y}, \sigma \rangle |1\rangle\langle 1|,$$

which is easily implemented given a description of Arthur.

Now, to prove $B \in \text{BQP}$, we consider a quantum algorithm that operates as follows:

1. Randomly choose y uniformly (just as Arthur does).
2. Let

 $$\varepsilon = \frac{1}{2^{r+2p}} \quad \text{and} \quad N = \frac{2^{10(r+1)}}{\varepsilon^3}.$$

 Prepare N copies of the state ρ, defined to be the normalized Choi-Jamiołkowski representation of $\Phi_{x,y}$, and perform quantum state tomography of ρ. Let H denote the result.
3. Compute the value

 $$\alpha = 2^r \| (|1\rangle \otimes \mathbb{1}) H (|1\rangle \otimes \mathbb{1}) \|.$$

 If $\alpha \geq 1$ then accept. Otherwise, accept with probability α and reject otherwise.

This procedure has acceptance probability within $1/(4p)$ of the maximum acceptance probability of Arthur, and therefore $A \in \text{BQP}$.

References

