On the conjugacy problem for finite-state automorphisms of regular rooted trees

Ievgen V. Bondarenko*, Natalia V. Bondarenko, Said N. Sidki†, Flavia R. Zapata

November 10, 2010

I. V. Bondarenko, National Taras Shevchenko University of Kyiv, Mechanics and Mathematics Department, vul.Volodymyrska 64, 01033, Kyiv, Ukraine
Email: ievgbond@gmail.com

N. V. Bondarenko, Kyiv National University of Construction and Architecture, Geoinformation systems and land management Department, Povitroflotsky Avenue, 31, Kyiv-037, 03680, Ukraine
Email: natvbond@gmail.com

S. N. Sidki, Departamento de Matema’tica, Universidade de Brasí’lia, Campus Universita’rio, 70910-900, Brasí’lia-DF, Brazil
Email: ssidki@gmail.com

F. R. Zapata, Departamento de Matema’tica, Universidade de Brasí’lia, Campus Universita’rio, 70910-900, Brasí’lia-DF, Brazil

Abstract

We study the conjugacy problem in the automorphism group Aut(T) of a regular rooted tree T and in its subgroup FAut(T) of finite-state automorphisms. We show that under the contracting condition and the finiteness of what we call the orbit-signalizer, two finite-state automorphisms are conjugate in Aut(T) if and only if they are conjugate in FAut(T), and that this problem is decidable. We prove that both these conditions are satisfied by bounded automorphisms and establish that the (simultaneous) conjugacy problem in the group of bounded automata is decidable.

Mathematics Subject Classification 2000: 20E08, 20F10

Keywords: automorphism of a rooted tree, conjugacy problem, finite-state automorphism, finite automaton, bounded automaton

*Corresponding author. Email: ievgbond@gmail.com
†The author acknowledges support from the Brazilian Conselho Nacional de Pesquisa and from FAPDF.
1 Introduction

The interconnection between automata theory and algebra produced in the last three decades many important constructions such as self-similar groups and semigroups, branch groups, iterated monodromy groups, self-similar (self-iterating) Lie algebras, branch algebras, permutational bimodules, etc. (see [17, 23, 9, 3, 1, 18] and the references therein).

The connection between groups and automata occurs via a natural correspondence between invertible input-output automata over the alphabet $X = \{1, 2, \ldots, d\}$ and automorphisms of a regular one-rooted d-ary tree T. To present this correspondence let us index the vertices of the tree T by the elements of the free monoid X^*, freely generated by the set X and ordered by $v \leq u$ provided v is a prefix of u. The group $\text{Aut}(T)$ of all automorphisms of the tree T decomposes as the permutational wreath product $\text{Aut}(T) \cong \text{Aut}(T) \wr \text{Sym}(X)$, where $\text{Sym}(X)$ is the symmetric group on the set X.

Using this correspondence with automata one can define several classes of special subgroups of the group $\text{Aut}(T)$. A subgroup $G < \text{Aut}(T)$ is called state-closed or self-similar if all states of every element of G are again elements of G. Self-similar groups play an important role in modern geometric group theory, and have applications to diverse areas of mathematics. In particular, self-similar groups are connected with fractal geometry through limit spaces and also with dynamical systems through iterated monodromy groups as developed by V. Nekrashevych [17]. The set theoretical union of all finitely generated self-similar subgroups in $\text{Aut}(T)$ is a countable group denoted by $\text{RAut}(T)$ called the group of functionally recursive automorphisms [5].

Automorphisms of the tree T which correspond to finite-state automata are called finite-state. More precisely, an automorphism $g \in \text{Aut}(T)$ is finite-state if the set of its states $Q(g)$ is finite. The set of all finite-states automorphisms forms a countable group denoted by $\text{FAut}(T)$. Every finite-state automorphism is functionally recursive, and hence the group $\text{FAut}(T)$ is a subgroup of $\text{RAut}(T)$.

Other natural subgroups of $\text{Aut}(T)$ are the groups $\text{Pol}(n)$ of polynomial automata of degree n for every $n \geq -1$ and their union $\text{Pol}(\infty) = \cup_n \text{Pol}(n)$. These groups were introduced by S. Sidki in [21], who tried to classify subgroups of $\text{FAut}(T)$ by the cyclic structure of the associated automata and by the growth of the number of paths in the automata avoiding the trivial state. Especially important is the group $\text{Pol}(0)$ of bounded automata whose elements are called bounded
automorphisms. A finite-state automorphism \(g \) is \textit{bounded} if the number of paths of length \(m \) in the automaton \(\mathcal{A}(g) \) avoiding the trivial state is bounded independently of \(m \). It is to be noted that most of the studied self-similar groups are subgroups of \(\text{Pol}(0) \). In particular, the Grigorchuk group \([8]\), the Gupta-Sidki group \([12]\), the Basilica \([11]\) and BSV groups \([6]\), the finite-state spinal groups \([3]\), the iterated monodromy groups of post-critically finite polynomials \([17]\), and many others, are generated by bounded automorphisms. Moreover, it is shown in \([4]\) that finitely generated self-similar subgroups of \(\text{Pol}(0) \) are precisely those finitely generated self-similar groups whose limit space is a post-critically finite self-similar set which play an important role in the development of analysis on fractals (see \([13]\)).

In this paper we consider the conjugacy problem and the order problem in the groups \(\text{Aut}(T) \), \(\text{RAut}(T) \), \(\text{FAut}(T) \), \(\text{Pol}(0) \). It is well known that the word problem is solvable in the group \(\text{FAut}(T) \) and hence in all its subgroups, while it is an open problem in the group \(\text{RAut}(T) \). Furthermore, the order and conjugacy problems are open in \(\text{FAut}(T) \) and \(\text{RAut}(T) \). The conjugacy classes of the group \(\text{Aut}(T) \) were described in \([22, 7]\). It is not difficult to construct two finite-state automorphisms which are conjugate in \(\text{Aut}(T) \) but not conjugate in \(\text{FAut}(T) \) (see \([9]\)). At the same time, two finite-state automorphisms of finite order are conjugate in \(\text{Aut}(T) \) if and only if they are conjugate in \(\text{FAut}(T) \) (see \([20]\)). The conjugacy classes of the group \(\text{Pol}(-1) \) of finitary automorphisms were determined for the binary tree in \([5]\) and for the general case in \([19]\).

The conjugacy problem was solved for some well-known finitely generated subgroups of \(\text{Pol}(0) \). In particular, the solution of the conjugacy problem in the Grigorchuk group was given in \([14]\), and it was generalized in \([25, 10]\) to certain classes of branch groups and their subgroups of finite index. Moreover, it was shown in \([15]\) that the conjugacy problem in the Grigorchuk group is decidable in polynomial time. The conjugacy problem for the Basilica and BSV groups was treated in \([11]\). A finitely generated self-similar subgroup of \(\text{FAut}(T) \) with unsolvable conjugacy problem was constructed in a recent preprint \([24]\).

The general approach in considering any algorithmic problem dealing with automorphisms of the tree \(T \) is to reduce the problem to some property of their states. The order and the conjugacy problems lead us to the following definition. For an automorphism \(a \in \text{Aut}(T) \) consider the orbits \(\text{Orb}_a(v) \) of its action on the vertices \(v \) of the tree and define the set

\[
\text{OS}(a) = \{a^m | v \in X^*, m = |\text{Orb}_a(v)|\}
\]

which we call the \textit{orbit-signalizer} of \(a \). It is not difficult to see that the order problem is decidable for finite-state automorphisms with finite orbit-signalizers. We prove that every bounded automorphism has finite orbit-signalizer and hence the order problem is decidable for bounded automorphisms.

We treat the conjugacy problem firstly in the group \(\text{Aut}(T) \). Given two automorphisms \(a, b \in \text{Aut}(T) \) we construct a \textit{conjugator graph} \(\Psi(a, b) \) based on the sets \(\text{OS}(a), \text{OS}(b) \), which portrays the inter-dependence among the different conjugacy subproblems encountered in trying to find a conjugator for the pair \(a, b \), and which leads to the construction of a conjugator if it exists.
Theorem 1. Two finite-state automorphisms \(a, b\) with finite orbit-signalizers are conjugate in \(\text{Aut}(T)\) if and only if they are conjugate in \(\text{RAut}(T)\) if and only if the conjugator graph \(\Psi(a, b)\) is nonempty.

An important class of self-similar groups are contracting groups. This property for groups corresponds to the expanding property in a dynamical system. A finitely generated self-similar group is contracting if the length of its elements asymptotically contracts when applied to their states. A finite-state automorphism is called contracting if the self-similar group generated by its states is contracting. Bounded automorphisms are contracting (see [4]), however in contrast to bounded automorphisms, contracting automorphisms do not form a group. For contracting automorphisms with finite orbit-signalizers, we prove that conjugation is controlled by the group of finite-state automorphisms.

Theorem 2. Two contracting automorphisms with finite orbit-signalizers are conjugate in \(\text{Aut}(T)\) if and only if they are conjugate in \(\text{FAut}(T)\).

We prove a number of results for the conjugacy problem for bounded automorphisms in Section 5, which we collect in the following theorem.

Theorem 3. 1. The (simultaneous) conjugacy problem for bounded automorphisms in \(\text{Aut}(T)\) is decidable.

2. Two bounded automorphisms are conjugate in the group \(\text{Aut}(T)\) if and only if they are conjugate in the group \(\text{FAut}(T)\).

3. The (simultaneous) conjugacy problem in \(\text{Pol}(0)\) is decidable.

4. Two bounded automorphisms are conjugate in the group \(\text{Pol}(\infty)\) if and only if they are conjugate in the group \(\text{Pol}(0)\).

The methods developed in this study provide a construction for possible conjugators whenever the associated conjugacy problems are solved.

The last section presents some examples, which illustrate the solution of the conjugacy problems, and describes the connection between the property of having finite orbit-signalizers and other properties of automorphisms.

2 Preliminaries

The set \(X^*\) is considered as the set of vertices of the tree \(T\) as described in Introduction. The length of a word \(v = x_1x_2\ldots x_n \in X^*\) for \(x_i \in X\) is denoted by \(|v| = n\). The set \(X^n\) of words of length \(n\) forms the \(n\)-th level of the tree \(T\). The vertices \(X^*\) are ordered by the lexicographic order on words induced by the order on the set \(X\).

We are using right actions, so the image of a vertex \(v \in X^*\) under the action of an automorphism \(g \in \text{Aut}(T)\) is written as \(vg\) or \((vg)\), and hence \(vgh = (vg)^h\).

The state \(g|v\) of \(g\) at \(v\), which was defined in Introduction, is the unique automorphism of the tree \(T\) such that the equality \((vw)g = vgh\) holds for all words.
$w \in X^*$. Computation of states of automorphisms is done as follows:

$$(g \cdot h)|_v = g|_v \cdot h|_(v|g), \quad g^{-1}|_v = (g|_(v|g^{-1})^{-1}, \quad g^n|_v = g|_v \cdot g|_(v|g) \cdot \ldots \cdot g|_(v|g^n-1)
$$

for all $g, h \in \text{Aut}(T)$ and $v \in X^*$. Therefore, conjugation is computed by the rules

$$(h^{-1}gh)|_v = (h^{-1})|_v (gh)|_v h^{-1} = (h|_(v|g^{-1})^{-1} g|_(v|g^{-1}) h|_(v|g^{-1}) h^{-1};$$

$$(h^{-1}gh)|_v = (h|_v)^{-1} g|_v h|_(v|g),$$

and if $(v|g = v$ then

$$(h^{-1}gh)|_v = (h|_v)^{-1} g|_v h|_v.$$

The multiplication of two automorphisms expressed as $g = (g|_1, g|_2, \ldots, g|_d)\pi_g, h = (h|_1, h|_2, \ldots, h|_d)\pi_h$ is performed by the rule

$$g \cdot h = (g|_1 h|_(1) g, g|_2 h|_(2) g, \ldots, g|_d h|_(d) g)\pi_g \pi_h.$$

Every permutation $\pi \in \text{Sym}(X)$ can be identified with the automorphism $(e, e, \ldots, e)\pi$ of the tree T acting on the vertices by the rule $(xv)^\pi = x^\pi v$ for $x \in X$ and $v \in X^*$.

The group RAut(T) of functionally recursive automorphisms consists of automorphisms which can be constructed as follows. A finite set of automorphisms g_1, g_2, \ldots, g_m is called functionally recursive if there exist words w_{ij} over $\{g_1^{\pm1}, g_2^{\pm1}, \ldots, g_m^{\pm1}\}$ and permutations $\pi_i \in \text{Sym}(X)$ such that

$$g_1 = (w_{11}, w_{12}, \ldots, w_{1d})\pi_1$$
$$g_2 = (w_{21}, w_{22}, \ldots, w_{2d})\pi_2$$
$$\vdots$$
$$g_m = (w_{m1}, w_{m2}, \ldots, w_{md})\pi_m.$$

This system has a unique solution in the group Aut(T), here the action of each element g_i on the first level of the tree T is given by the permutation π_i, and the action of the state $g_i|_{ij}$ is uniquely defined by the word w_{ij}. An automorphism of the tree is called functionally recursive provided it is an element of some functionally recursive set of automorphisms.

For an automorphism $g \in \text{Aut}(T)$ define the numerical sequence

$$\theta_k(g) = |\{v \in X^k : g|_v \text{ acts non-trivially on } X\}| \quad \text{for } k \geq 0,$$

which describes the activity growth of g. Looking at the asymptotic behavior of the sequence $\theta_k(\cdot)$ we can define different classes of automorphisms of the tree T.

The elements $g \in \text{Aut}(T)$, whose sequence $\theta_k(g)$ is eventually zero, are called finitary automorphisms. In other words, an automorphism g is finitary if there exists k such that $g|_v = 1$ for all $v \in X^k$, and the smallest k with this property is called the depth of g. The set of all finitary automorphisms forms a group denoted by Pol(-1).

5
For a finite-state automorphism \(g \in \text{FAut}(T) \) the sequence \(\theta_k(g) \) can grow either exponentially or polynomially (see [21, Corollary 7]). The set of all finite-state automorphisms \(g \in \text{FAut}(T) \), whose sequence \(\theta_k(g) \) is bounded by a polynomial of degree \(n \), is the group \(\text{Pol}(n) \) of polynomial automata of degree \(n \). In the case \(n = 0 \), when the sequence \(\theta_k(g) \) is bounded, then the automorphism \(g \) is called bounded and the group \(\text{Pol}(0) \) is called the group of bounded automata. We get an ascending chain of subgroups \(\text{Pol}(n) \subset \text{Pol}(n+1) \) for \(n \geq -1 \). The union \(\text{Pol}(\infty) = \cup_n \text{Pol}(n) \) is called the group of polynomial automata. If we replace the condition “\(g|_v \) acts non-trivially on \(X \)” by “\(g|_v \) is non-trivial” in the definition of the sequence \(\theta_k(\cdot) \) then we still get the same groups \(\text{Pol}(n) \).

The bounded and polynomial automorphisms can be characterized by the cyclic structure of their automata as described in [21]. A cycle in an automaton is called trivial if it is a loop at the state corresponding to the trivial automorphism. Then an automorphism \(g \in \text{FAut}(T) \) is polynomial if and only if two different non-trivial cycles in the automaton \(\mathcal{A}(g) \) are disjoint. Moreover, \(g \in \text{Pol}(n) \), when \(n \) is the largest number of non-trivial cycles connected by a directed path. In particular, an automorphism \(g \in \text{FAut}(T) \) is bounded if and only if two different non-trivial cycles in the automaton \(\mathcal{A}(g) \) are disjoint and not connected by a directed path.

We say that \(g \) is circuit if there exists a non-empty word \(v \in X^* \) such that \(g = g|_v \), i.e. \(g \) lies on a cycle in the automaton \(\mathcal{A}(g) \). If \(g \) is a circuit bounded automorphism then the state \(g|_v \) is finitary for every word \(v \), which is not read along the circuit.

3 Conjugation in groups of automorphism of the tree

Let us recall the description of the conjugacy classes in the group \(\text{Aut}(T) \).

Conjugacy classes in \(\text{Aut}(T) \). First, recall that every conjugacy class of the symmetric group \(\text{Sym}(X) \) has a unique (left-oriented) representative of the form

\[
(1, 2, \ldots, n_1)(n_1 + 1, n_1 + 2, \ldots, n_2) \ldots (n_{k-1} + 1, n_{k-1} + 2, \ldots, n_k),
\]

where \(1 \leq n_1 \leq n_2 - n_1 \leq \cdots \leq n_k - n_i - \ldots - n_k - 1 \) and \(n_k = d = |X| \). This observation can be generalized to the group \(\text{Aut}(T) \) (see [22, Section 4.1]). Given an automorphism \(a = (a_1, a_2, \ldots, a_d) \pi_\alpha \) in \(\text{Aut}(T) \) we can conjugate it to a unique (left-oriented) representative of its conjugacy class using the following basic steps.

1. Conjugate the permutation \(\pi_\alpha \in \text{Sym}(X) \) to its unique left-oriented conjugacy representative (1).

2. Consider every cycle \(\tau_i = (n_i + 1, n_i + 2, \ldots, n_{i+1}) \) in the representative (1) of \(\pi_\alpha \) and define

\[
h_{i+1} = (a|_{n_i+1}, e, (a|_{n_i+2})^{-1}, (a|_{n_i+2}a|_{n_i+3})^{-1}, \ldots, (a|_{n_i+2}a|_{n_i+3} \cdots a|_{n_{i+1}-1})^{-1}).
\]

Conjugate \(a \) by the the automorphism \(h = (h_1, h_2, \ldots, h_k) \) to obtain \(h^{-1} a h = (a_1, a_2, \ldots, a_k) \), where

\[
a_i = (e, \ldots, e, a|_{n_i+2} \ldots a|_{n_{i+1}}a|_{n_{i+1}})^{-1} \tau_i.
\]
3. Apply the steps 1 and 2 to the automorphisms \(a|_{n_i+2} \ldots a|_{n_i+1} \).

It is direct to see that an infinite iteration of this procedure produces a well-defined automorphism of the tree which conjugates \(a \) into a representative and that two different representatives are not conjugate in \(\text{Aut}(T) \).

Another approach is based on the fact that two permutations are conjugate if and only if they have the same cycle type. The orbit type of an automorphism \(a \in \text{Aut}(T) \) is the labeled graph, whose vertices are the orbits of \(a \) on \(X^\ast \), every orbit is labeled by its cardinality, and we connect two orbits \(O_1 \) and \(O_2 \) by an edge if there exist vertices \(v_1 \in O_1 \) and \(v_2 \in O_2 \), which are adjacent in the tree \(T \). Then two automorphisms of the tree \(T \) are conjugate if and only if their orbit types are isomorphic as labeled graphs (see [7, Theorem 3.1]). In particular it follows, that the group \(\text{Aut}(T) \) is ambivalent (that is, every its element is conjugate with its inverse). More generally, every automorphism \(a \in \text{Aut}(T) \) is conjugate with \(a^\xi \) for every unit \(\xi \) of the ring \(\mathbb{Z}_m \) of \(m \)-adic integers, where \(m \) is the exponent of the group \(\text{Sym}(X) \) (see [22, Section 4.3]).

Conjugation lemma. We say that an element \(h \) is a *conjugator for the pair* \((a,b)\) if \(h^{-1}ah = b \), and we use the notation \(h : a \rightarrow b \). For \(a, b \in \text{Aut}(T) \) and the permutations \(\pi_a, \pi_b \in \text{Sym}(X) \) induced by the action of \(a \) and \(b \) on \(X \), the set of permutational conjugators for the pair \((\pi_a, \pi_b)\) is denoted by

\[
C\Pi(a,b) = \{ \pi \in \text{Sym}(X) : \pi^{-1}\pi_a\pi = \pi_b \}
\]

(this set can be empty).

The study of the conjugacy problem in the automorphism groups of the tree \(T \) is based on the following standard lemma.

Lemma 1. Let \(a, b, h \in \text{Aut}(T) \).

1. If \(h^{-1}ah = b \) then \(|\text{Orb}_a(v)| = |\text{Orb}_b(v^h)| \) for every \(v \in X^\ast \) and

\[
(h|_v)^{-1}a^m|_vh|_v = b^m|_vh,
\]

where \(m = |\text{Orb}_a(v)| \).

2. Let \(O_1, O_2, \ldots, O_k \) be the orbits of the action of \(a \) on \(X \). If there exists \(\pi \in C\Pi(a,b) \) such that \(a|_{O_i}, v \), and \(b|_{O_i}, v^\pi \) are conjugate in \(\text{Aut}(T) \) for every \(i = 1, 2, \ldots, k \), where \(v \in O_i \) is an arbitrary point, then \(a \) and \(b \) are conjugate in \(\text{Aut}(T) \).

Proof. The first statement follows from the equalities \(h^{-1}a^m h = b^m \), \((v)a^m = v \).

Let \(\text{Orb}_b(v) = \{v_0 = v, v_1, \ldots, v_{m-1}\} \), where \(v_i = (v)a^i \). Put \(u = v^h \), then \(\text{Orb}_b(u) = \{u_0 = u, u_1, \ldots, u_{m-1}\} \), where \(u_i = (u)b^i \) and \(u_i = v_i^h \). Then

\[
\begin{align*}
|_{u_0} & = (h^{-1}ah)|_{v_0} = (h|_{v_0})^{-1}a|_{v_0}h|_{v_1} \\
|_{u_1} & = (h^{-1}ah)|_{u_1} = (h|_{v_1})^{-1}a|_{v_1}h|_{v_2} \\
& \quad \ldots \quad \ldots \\
|_{u_{m-1}} & = (h^{-1}ah)|_{u_{m-1}} = (h|_{v_{m-1}})^{-1}a|_{v_{m-1}}h|_{v_0}
\end{align*}
\]
Multiplying these equations, we get

\[(h|v)^{-1}a^m|v,h|v = (h|v_0)^{-1}(a|v_0a|v_1 \ldots a|v_{m-1}) h|v_0 = b|u_0.b|u_1 \ldots b|u_{m-1} = b^m|u].\]

In particular

\[(h|v_i)^{-1}a^m|v_i h|v_i = (h|v_i)^{-1}(a|v_i a|v_{i+1} \ldots a|v_{i-1}) h|v_i = b|u_i b|u_{i+1} \ldots b|u_{i-1} = b^m|u_i,\]

\[h|v_i = (a|v_0 \ldots a|v_{i-2} a|v_{i-1})^{-1} h|v_0 (b|u_0 \ldots b|u_{i-2} b|u_{i-1}) = (a^i|v)|^{-1} h|u b^i|u]. \quad (2)\]

If \(a\) and \(b\) are finite-state automorphisms (we need this only for the word problem), Lemma 1 suggests a branching decision procedure for the conjugacy problem in \(\text{Aut}(T)\). We call this procedure by CP and remark that it may not stop in general.

The order problem in Aut(T). The problem of finding the order of a given element of \(\text{Aut}(T)\) can be handled in a manner similar to the above. The next observation gives a simple condition used in many papers to prove that an automorphism has infinite order.

Lemma 2. Let \(a \in \text{Aut}(T)\).

1. Let \(\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_k\) be the orbits of the action of \(a\) on \(X\). Define \(a_i = a^{m_i}|x_i\) for every \(i = 1, 2, \ldots, k\), where \(m_i = |\mathcal{O}_i|\) and \(x_i \in \mathcal{O}_i\) is an arbitrary point. The automorphism \(a\) has finite order if and only if all the states \(a_i\) have finite order. Moreover, in this case, the order of \(a\) is equal to

\[|a| = \text{lcm}(m_1|a_1|, m_2|a_2|, \ldots, m_k|a_k|).\]

2. Suppose \(a_i = a\) for some choice of \(x_i \in \mathcal{O}_i\). If \(m_i > 1\) then \(a\) has infinite order. If \(m_i = 1\) then \(a\) has finite order if and only if \(a_j\) has finite order for all \(j \neq i\), in which case we can remove the term \(m_i|a_i|\) from the right hand side of the above equality.

If \(a\) is a finite-state automorphism, then the word problem \(a_i = a\) can be effectively solved and Lemma 2 suggests a branching procedure to find the order of \(a\). We call this procedure by OP and remark that it may not stop in general. Such a procedure is implemented in the program packages \([2, 16]\).

Lemmas 1 and 2 lead us to define the orbit-signalizer of an automorphism \(a \in \text{Aut}(T)\) as the set

\[\text{OS}(a) = \{a^m|v \mid v \in X^*, m = |\text{Orb}_a(v)|\},\]

which contains all automorphisms that may appear in the procedures OP and CP. For automorphisms with finite orbit-signalizers one can model the procedures OP and CP by finite graphs.
Order graph. Consider an automorphism \(a \in \text{Aut}(T) \) which has finite orbit-signalizer. We construct a finite graph \(\Phi(a) \) with the set of vertices \(\text{OS}(a) \), called the order graph of \(a \), which models the branching procedure OP. The edges of this graph are constructed as follows. For every \(b \in \text{OS}(a) \) consider all orbits \(\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_k \) of the action of \(b \) on \(X \) and let \(x_i \in \mathcal{O}_i \) be the least element in \(\mathcal{O}_i \). It is easy to see that \(b^{m_i}|_{x_i} \in \text{OS}(a) \) for \(m_i = |\mathcal{O}_i| \), and we introduce the labeled edge \(b \xrightarrow{m_i} b^{m_i}|_{x_i} \) in the graph \(\Phi(a) \) for every \(i = 1, \ldots, k \). Then Lemma 2 can be reformulated as follows.

Proposition 4. Let \(a \in \text{Aut}(T) \) has finite orbit-signalizer. Then \(a \) has finite order if and only if all edges in the directed cycles in the order graph \(\Phi(a) \) are labeled by 1.

Moreover, in this case we can compute the order of \(a \) using the graph \(\Phi(a) \). Remove every directed cycle in \(\Phi(a) \). Then the only dead vertex of \(\Phi(a) \), i.e. the vertex without outgoing edges, is the trivial automorphism, which has order 1. Then inductively, for \(b \in \text{OS}(a) \) consider all outgoing edges from \(b \), and let \(m_1, m_2, \ldots, m_k \) be the edge labels and \(b_1, b_2, \ldots, b_k \) be the corresponding end vertices, whose order we already know. Then by Lemma 2 the order of \(b \) is equal to the least common multiple of \(m_i/b_i \). We illustrate the construction of the order graph and the solution of the order problem in Example 2 of Section 5.

Conjugator graph. Consider automorphisms \(a, b \in \text{Aut}(T) \) both of which have finite orbit-signalizers. We construct a finite graph \(\Psi(a, b) \), called the conjugator graph of the pair \((a, b) \), modeled after the branching procedure CP of Lemma 1. The vertices of the graph \(\Psi(a, b) \) are the triples \((c, d, \pi)\) for \(c \in \text{OS}(a) \), \(d \in \text{OS}(b) \), and \(\pi \in \text{CP}(c, d) \) whenever this last set is nonempty. The edges are constructed as follows.

Let \(\mathcal{O}_i(c) \) for \(1 \leq i \leq k \) be the orbits of \(c \) in its action on \(X \) and let \(x_i(c) \) denote the least element in each \(\mathcal{O}_i(c) \). We will simplify the notation by writing instead \(\mathcal{O}_i \) and \(x_i \) with the understanding that these refer to \(c \in \text{OS}(a) \) under consideration.

For any vertex \((c, d, \pi)\), if one of the sets \(\text{CP}(c^m|_{x_i}, d^m|_{x_i}, \tau) \) with \(m = |\mathcal{O}_i| \) is empty, then the triple \((c, d, \pi)\) is a dead vertex. Otherwise we introduce in the graph the edge

\[
(c, d, \pi) \xrightarrow{x_i} (c^m|_{x_i}, d^m|_{x_i}, \tau) \quad \text{with} \quad m = |\mathcal{O}_i|
\]

for every \(\tau \in \text{CP}(c^m|_{x_i}, d^m|_{x_i}, \tau) \) and \(i = 1, \ldots, k \). Notice that \(c^m|_{x_i} \in \text{OS}(a) \), \(d^m|_{x_i} \in \text{OS}(b) \), and hence the triple \((c^m|_{x_i}, d^m|_{x_i}, \tau)\) is indeed a vertex of the graph.

We simplify the graph obtained above using the following reductions. Remove the vertex \((c, d, \pi)\) which does not have an outgoing edge labeled by \(x_i \) for some \(i \). Also, remove all edges leading to these deleted vertices. We repeat the reductions as long as possible to reach the graph \(\Psi(a, b) \).

If the graph \(\Psi(a, b) \) is empty, then the automorphisms \(a \) and \(b \) are not conjugate. Otherwise they are conjugate and every conjugator \(h : a \to b \) can be constructed level by level by as follows. Choose any vertex \((a, b, \pi)\) in \(\Psi(a, b) \) and
define the action of h on the first level by $x^h = x^\pi$ for $x \in X$. There is an outgoing edge from (a, b, π) labeled by $x_i^h = x_i(a)$, as explained previously. Choose an edge for every x_i and let (c_i, d_i, π_i) be the corresponding end vertex. We define the action of the state $h|_x$ by the rule $(x)^{h|_x} = x^{\pi_i}$ for $x \in X$. All the other states of h on the vertices of the first level are uniquely defined by the formula (2) in Lemma 1, and thus we get the action of h on the second level. Similarly, we proceed further with the vertices (c_i, d_i, π_i) and construct the action of h on the third level, and so on. Notice that even if the same vertex (c, d, π) appears at different stages of the definition of h we still have a freedom to choose different outgoing edges from (c, d, π) in each stage of the construction.

Basic conjugators. Let us construct certain conjugators, called basic conjugators for the pair (a, b), by making as few choices as possible, in the sense that if we arrive at a triple (c, d, π) at some stage of the construction then we choose the same permutation $\pi \in C\Pi(c, d)$ whenever the pair (c, d) reappears further down. Thus, for every two vertices (c, d, π_1) and (c, d, π_2) obtained under construction we insist to have $\pi_1 = \pi_2$. More precisely every basic conjugator can be defined using special subgraphs of the conjugator graph $\Psi(a, b)$. Consider the subgraph Γ of $\Psi(a, b)$, which satisfies the following properties:

1. The subgraph Γ contains some vertex (a, b, π) for $\pi \in C\Pi(a, b)$.
2. For every vertex (c, d, π) of Γ and every letter x_i, there exists precisely one outgoing edge from (c, d, π) labeled by x_i. In particular, the graph is deterministic, and the number of outgoing edges at the vertex (c, d, π) of the graph Γ is equal to the number of orbits of c on X.
3. For every $c \in OS(a)$ and $d \in OS(b)$ there is at most one vertex of the form $(c, d, *)$ in the graph Γ. In other words, if (c, d, π_1) and (c, d, π_2) are vertices of Γ then $\pi_1 = \pi_2$.

If the graph $\Psi(a, b)$ is nonempty, there always exist subgraphs of $\Psi(a, b)$, which satisfy the properties 1-3. For every such a subgraph Γ we construct the basic conjugator $h = h(\Gamma)$ as follows. We construct a functionally recursive system involving every conjugator $h_{(c, d)} : c \rightarrow d$, where (c, d, π) is a vertex of Γ and thus in particular, we construct $h = h_{(a, b)}$. First, we define the action of the conjugator $h_{(c, d)}$ on the first level by the rule $x^{h_{(c, d)}} = x^\pi$ for $x \in X$, where the permutation $\pi \in C\Pi(c, d)$ is uniquely defined such that the triple (c, d, π) is a vertex of Γ. For every edge $(c, d, \pi) \xrightarrow{\pi} (c', d', \pi')$ we define the states of the conjugator $h_{(c, d)}$ on the letters from the orbit $O = \{x, (x)c, (x)c^2, \ldots, (x)c^{m-1}\}$ of x under c recursively by the rule

$$h_{(c, d)}|_x = h_{(c', d')} \quad \text{and} \quad h_{(c, d)}|(x)c^i = (c^i|x)^{-1} \cdot h_{(c', d')}(d^i|x^\pi),$$

for $i = 1, \ldots, m - 1$. These rules completely define the automorphisms $h_{(c, d)}$. By Lemma 1 every constructed automorphism $h_{(c, d)}$ is indeed a conjugator for the pair (c, d). Since the graph Γ is finite, and the automorphisms a, b are finite-state,
we get a functionally recursive system which uniquely defines the basic conjugator
\(h = h_{(a,b)} \) given by the subgraph \(\Gamma \).

We have proved the following theorem.

Theorem 5. Let \(a, b \in \text{FAut}(T) \) have finite orbit-signalizers, and let \(\Psi(a,b) \) be the corresponding conjugator graph. Then \(a \) and \(b \) are conjugate in \(\text{Aut}(T) \) if and only if they are conjugate in \(\text{RAut}(T) \) if and only if the graph \(\Psi(a,b) \) is nonempty.

In particular, the conjugacy problem for finite-state automorphisms with finite orbit-signalizers is decidable in the groups \(\text{Aut}(T) \) and \(\text{FAut}(T) \). We present examples of the construction of the conjugator graph and basic conjugators in Example 3 of Section 5.

The same method works for the simultaneous conjugacy problem, which given automorphisms \(a_1, a_2, \ldots, a_k \) and \(b_1, b_2, \ldots, b_k \) asks for the existence of an automorphism \(h \) such that \(h^{-1}a_i h = b_i \) for all \(i \). We again consider the permutations \(\pi \) such that \(\pi^{-1} a_i \pi = \pi b_i \) for all \(i \). Take an orbit \(O_i \) of \(a_i \) on \(X \), let \(x_i \in O_i \) be the least element and \(m_i = |O_i| \). Then the problem reduces to the simultaneous conjugacy problem for \(a^{m_1} x_1, a^{m_2} x_2, \ldots, a^{m_k} x_k \) and \(b^{m_1} x_1, b^{m_2} x_2, \ldots, b^{m_k} x_k \).

If automorphisms \(a_1 \) and \(b_1 \) are finite-state and have finite orbit-signalizers, then we can similarly construct the associated conjugator graph so that Theorem 5 holds.

Conjugation of contracting automorphisms. A self-similar subgroup \(G < \text{Aut}(T) \) is called contracting if there exists a finite set \(N \subset G \) with the property that for every \(g \in G \) there exists \(n \in \mathbb{N} \) such that \(g^v \in N \) for all words \(v \) of length \(\geq n \). The smallest set \(N \) with this property is called the nucleus of the group. An automorphisms \(f \in \text{Aut}(T) \) is called contracting if the self-similar group generated by all states of \(f \) is contracting. It follows from the definition that contracting automorphisms are finite-state.

Theorem 6. Two contracting automorphisms \(a, b \in \text{Aut}(T) \) with finite orbit-signalizers are conjugate in the group \(\text{Aut}(T) \) if and only if they are conjugate in the group \(\text{FAut}(T) \).

Proof. We will prove that all the basic conjugators for the pair \((a,b) \) are finite-state. We need a few lemmata, which are interesting in themselves.

Lemma 3. Let \(G \) be a contracting self-similar group, and let \(H \) be a finite subset of \(G \). Then the set of all possible elements of the form

\[
((h_1|x_1 \cdot h_2)|x_2 \cdot h_3)|x_3 \cdot \ldots \cdot h_n)|x_n, \quad (h_n \cdot \ldots \cdot (h_3 \cdot (h_2 \cdot h_1|x_1)|x_2)|x_3 \ldots)|x_n,
\]

where \(h_i \in H \) and \(x_i \in X \), is finite.

Proof. The statement is a reformulation of Proposition 2.11.5 in [17]. We sketch the proof for completeness.

We can assume that the set \(H \) is self-similar, i.e. \(h_v \in H \) for all \(h \in H \) and \(v \in X^* \) (all the elements are finite-state), and contains the nucleus \(N \) of the group \(G \). There exists a number \(k \) such that \(H^2_v \subset N \subset H \) for all words \(v \) of length
\[\geq k. \] Then \(H^{2n} \subseteq H^n \) for all \(v \in X^k \) and \(n \geq 1 \). It is sufficient to prove that there are finitely many elements of the form
\[
(((h_1|_{v_1} \cdot h_2)|_{v_2} \cdot h_3)|_{v_3} \ldots \cdot h_n)|_{v_n}
\]
for \(h_i \in H^k \) and \(v_i \in X^k \). Then \(h_1|_{v_1} \in H^k \) and \((h_1|_{v_1} \cdot h_2)|_{v_2} \in H^{2k} \subseteq H^k \).
Inductively we get that all the above elements belong to \(H^k \).

The next lemma is similar to Corollary 2.11.7 in [17], which states that different self-similar contracting actions with the same virtual endomorphism are conjugate via a finite-state automorphism.

Lemma 4. Let \(G \) be a contracting self-similar group. Then for any collection \(H = \{h_x, h'_x\}_{x \in X} \subseteq G \), and a permutation \(\pi \in \text{Sym}(X) \) the automorphism defined by the recursion
\[
g = (h_{x_1}g'_{x_1}, h_{x_2}g'_{x_2}, \ldots, h_{x_d}g'_{x_d})\pi
\]
is finite-state.

Proof. For an arbitrary word \(x_0x_1x_2 \ldots x_n \in X^* \) we have
\[
g|_{x_0x_1x_2 \ldots x_n} = (h_{x_0}g'_{x_0})|_{x_1x_2 \ldots x_n} = (((h_{x_1}h_{x_2})|_{x_3} \ldots \cdot h_{x_n})|_{x_n}) \cdot g \cdot (3)
\]
where \(h_i, h'_i \) are some elements in \(H \), and \(y_i \in X \). By Lemma 3 the above products assume a finite number of values, and hence \(g \) is finite-state.

Notice that in the previous lemma we only need that the groups generated by all states of \(h \) and separately by all states of \(h' \) be contracting, while together they may generate a non-contracting group.

Lemma 5. Let \(F \subseteq \text{Aut}(T) \) be a finite collection of automorphisms. Suppose that there exist two contracting self-similar groups \(G_1, G_2 \) and finite subsets \(H_1 \subseteq G_1, H_2 \subseteq G_2 \) with the condition that for every \(g \in F \) and every letter \(x \in X \) there exist \(h_1 \in H_1, h_2 \in H_2 \) and \(g' \in F \) such that \(g|_x = h_1g'h_2 \). Then all the automorphisms in \(F \) are finite-state.

Proof. The proof is the same as in Lemma 4. The only difference is that on the right hand side of Equation (3) instead of \(g \) may appear any element of the finite set \(F \).

To finish the proof it is sufficient to notice that all the basic conjugators for the pair \((a, b) \) satisfy Lemma 5, and hence all of them are finite-state.

Example 4 of Section 5 shows that we cannot drop the assumption about orbit-signalizers in the theorem.

The finiteness of orbit-signalizers can be used to prove that certain automorphisms are not conjugate in the group \(\text{FAut}(T) \).

Proposition 7. Let \(f, g \in \text{Aut}(T) \) be conjugate in \(\text{FAut}(T) \). Then \(f \) has finite orbit-signalizer if and only if \(g \) does.
Proof. Let $h^{-1}fh = g$ for a finite-state automorphism h, and suppose f has finite orbit-signalizer. Then $m = |\text{Orb}_f(v)| = |\text{Orb}_g(v^h)|$ for every $v \in X^*$ and

$$g^m|_{v^h} = (h|_v)^{-1}f^m|h_v \in (h|_v)^{-1}\text{OS}(f)h|_v \subset Q(h)^{-1}\text{OS}(f)Q(h),$$

which is finite, here $Q(h)$ is the set of states of h.

\section{Conjugation of bounded automorphisms}

How to check that a given finite-state automorphism has finite orbit-signalizer is yet another algorithmic problem. Let us show that some classes of automorphisms satisfy this condition. Every finite-state automorphism a of finite order has finite orbit-signalizer. Here the set $\text{OS}(a)$ is bounded by the number of all states of all powers of a, which is finite. In particular, if a finite-state automorphism has infinite orbit-signalizer, then it has infinite order.

Proposition 8. Every bounded automorphism has finite orbit-signalizer.

Proof. Let a be a bounded automorphism, and choose a constant C so that the number of non-trivial states $a|_v$ for $v \in X^n$ is not greater that C for every $n \geq 0$. Then for every vertex $v \in X^*$ the state $a^m|_v$, with $m = |\text{Orb}_a(v)|$ is a product of no more than C states of a, which is a finite set.

In particular, the procedure CP solves the conjugacy problem for bounded automorphism in $\text{Aut}(T)$, and the procedure OP finds the order of a bounded automorphism.

Corollary 9.

(1). The order problem for bounded automorphisms is decidable.

(2). The (simultaneous) conjugacy problem for bounded automorphisms in $\text{Aut}(T)$ is decidable.

Theorem 10. Two bounded automorphisms are conjugate in the group $\text{Aut}(T)$ if and only if they are conjugate in the group $F\text{Aut}(T)$.

Proof. The bounded automorphisms are contracting by [4] and have finite orbit-signalizers by Proposition 8, hence we can apply Theorem 6.

Corollary 11. Let a be a bounded automorphism. Then a and a^{-1} are conjugate in $F\text{Aut}(T)$.

Corollary 12. Let a bounded automorphism f and a contracting automorphism g be conjugate in $\text{Aut}(T)$. Then f and g are conjugate in $F\text{Aut}(T)$ if and only if g has finite orbit-signalizer.

Conjugation of bounded automorphisms in the group $\text{Pol}(-1)$. Consider the conjugacy problem for bounded automorphisms in the group $\text{Pol}(-1)$ of finitary automorphisms. One of the approaches is to restrict the depth of a possible finitary conjugator. Let a, b be two bounded automorphisms and suppose they are conjugate in $\text{Pol}(-1)$. Choose the finitary conjugator h for the pair (a, b) of
the least possible depth. Every state \(h|_x \) for \(x \in X \) is a finitary conjugator for the pair \((a^m|_x, b^m|_x)\) with \(m = |\text{Orb}_a(x)| \), and it has less depth than \(h \). However, it is possible that every pair \((a^m|_x, b^m|_x)\) for \(x \in X \) with \(m = |\text{Orb}_a(x)| \) is conjugate via a finitary conjugator of depth \(\leq d \), while \((a, b)\) are not conjugate via a finitary conjugator of depth \(\leq d + 1 \). Hence we still do not get a bound on the depth of \(h \) even if we know the bound on the depth of a finitary conjugator for every pair \((a^m|_x, b^m|_x)\). The problem is that we need to find a finitary conjugator \(h|_x \) for the pair \((a^m|_x, b^m|_x)\) so that all elements \(h|_{(x)}a^i = (a^i|_x)^{-1} \cdot h|_x \cdot b^i|_x \) for \(i = 0, \ldots, m - 1 \) are finitary. To overcome this difficulty we introduce configurations of orbits, which describe these dependencies.

Fix a conjugator \(h \) for the pair \((a, b)\) and for every orbit \(O \) of the action of \(a \) on \(X^* \), let \(v \) be the least element in the orbit and let \(m = |O| \). The configuration of the orbit \(O \) (with respect to the chosen conjugator \(h \)) is the set \(C = \{(a^m|_v, b^m|_v), DP_C\} \), where \((a^m|_v, b^m|_v)\) is the main pair of \(C \) and the set \(DP_C \) remembers the dependencies as follows

\[
DP_C = \{ (a^i|_v, b^i|_v) \}, \quad i = 0, \ldots, m - 1.
\]

Notice that the pair \((a, b)\) itself appears as the main pair of the configuration \(C = \{(a, b), DP_C = \{(1, 1)\}\} \) when \(v \) is the empty word \(\emptyset \).

For a bounded automorphism \(a \) the number of different sets \(\{a^i|_v\}, \quad 0 \leq i < |\text{Orb}_a(v)|, \quad v \in X^* \), is finite (the proof is the same as of Proposition 8). Hence the number of configurations for a pair of bounded automorphisms is finite. In particular, we don’t need to refer to a conjugator \(h \) in the definition of a configuration.

Now return to the problem of existence of a finitary conjugator. We say that a finitary automorphism \(h \) satisfies the configuration \(C \) if \(h \) is a conjugator for the main pair of \(C \) and all the elements \(c^{-1}hd \) for \((c, d) \in DP_C \) are finitary. In particular, the automorphisms \(a, b \) are conjugate in \(\text{Pol}(-1) \) if and only if the configuration \(C = \{(a, b), DP_C = \{(1, 1)\}\} \) is satisfied by a finitary automorphism. Let us show that it is decidable whether a given configuration \(C \) can be satisfied by a finitary automorphism. Suppose there is a finitary automorphism \(h \) for \(C \) and we choose \(h \) so that the maximum of depths of \(c^{-1}hd \) for \((c, d) \in DP_C \) is the least possible; this number we call the depth of the configuration \(C \). Let \((\alpha, \beta)\) be the main pair of \(C \), so here \(h \) is a conjugator for \((\alpha, \beta)\). As before, consider an orbit \(O \) of the action of \(\alpha \) on \(X \), and let \(x \) be the least element in \(O \) and \(m = |O| \). Then \((h|_x)^{-1}a^m|_xh = \beta^n|_x \) and the next formulas show how the other states of \(c^{-1}hd \) for \((c, d) \in DP_C \) depend on the state \(h|_x \):

\[
(c^{-1}hd)|_y = (c|_{\alpha y})^{-1}h|_{(x)\alpha y}d|_{(x)\alpha y} = ((\alpha^i|_x)^{-1} \cdot h|_x \cdot (\beta^i|_x))\alpha^i|_x
\]

for \((c, d) \in DP_C\), where \(y = (x)\alpha^i|_c \) and \(i = 0, 1, \ldots, m - 1 \). The associated set \(C' = \{ (\alpha^m|_x, \beta^m|_x), DP_{C'} \} \), where

\[
DP_{C'} = \{ ((\alpha^i|_x), (\beta^i|_x)), \quad (c, d) \in DP_C \text{ and } i = 0, \ldots, m - 1 \},
\]

is a configuration for the pair \((a, b)\). Indeed, if \(C \) is the configuration corresponding to the orbit of the vertex \(v \), then it is not difficult to see that \(C' \) is the configuration corresponding to the vertex \(vx \) (one can also specify an appropriate conjugator).
The state $h|_x$ satisfies the configuration C'. Hence the configurations C' for every orbit of c on X have less depth than C. And vise versa, if all these configurations have depth $\leq d$, then the configuration C has depth $\leq d + 1$. Since the number of configurations is finite, we get a bound on the depth of a possible conjugator for the configuration C, which makes the problem decidable. In particular, the conjugacy problem for bounded automorphisms is decidable in the group $\text{Pol}(-1)$.

Instead of just running through all finitary automorphisms with a given bound on the depth, the algorithm can be realized as follows. First, we can find the conjugators for the pair (a, b), which makes the problem decidable. We will show two approaches.

First approach: by using cyclic structure of bounded automata. Let a and b be two bounded automorphisms, which are conjugate in $\text{Pol}(0)$ but not conjugate in $\text{Pol}(-1)$. For a bounded automorphism h consider the words $u \in X^*$ such that $h|_u$ is circuit and non-trivial but $h|_v$ is not circuit for any prefix v of u, and let $l(h)$ be the sum of the lengths of all such words u. Let h be a bounded conjugator for the pair (a, b) with the smallest possible number $l(h)$. If h is not circuit, then every state $h|_u$ for $|u| \geq 1$ is a conjugator for some pair (c, d) for $c \in \text{OS}(a)$, $d \in \text{OS}(b)$ different from (a, b), otherwise we would get a conjugator with a smaller number $l(h)$. Since the sets $\text{OS}(a)$ and $\text{OS}(b)$ are finite, we get a bound on the number $l(h)$.

Hence we can assume that there exists a circuit bounded conjugator h, and we choose h having a circuit of the shortest length. Let u be the word which is read along the circuit, so here $h|_u = h$. Now consider two cases.

If $u^a = u$ then the states of h along the circuit do not have dependencies, and we have a freedom to change these states without changing other states of the same level. Suppose there are two states $h|_{v_1}$ and $h|_{v_2}$ along the circuit (let $|v_1| < |v_2|$ so v_1 is a prefix of v_2), which solve the same conjugacy problem $(a|_{v_1}, b|_{v'_1}) = (a|_{v_2}, b|_{v'_2})$. Define the automorphism g by the rules $g|_{v_1} = h|_{v_2}$, $g|_{v} = h|_{v}$ for $v \in X^{[v_1]}, v \neq v_1$, and the action of g on $X^{[v_1]}$ is the same as the action of h. Then g is a circuit bounded conjugator for the pair (a, b) and it has smaller circuit length; we arrive at contradiction. Hence, the states of h along the circuit solve different conjugacy problems, and we find a bound on the length of a circuit, which makes the problem decidable.

If $u^a = v \neq u$ then $h|_v = (a|_u)^{-1}h|_u b|_{u^b}$ is finitary and it is a conjugator for the pair $(a^m|_v, b^n|_{u^b})$. And vice versa, if $h|_v$ is finitary then $a|_u h|_v (b|_{u^b})^{-1}$ is a bounded conjugator for (a, b). Since the conjugacy problem for bounded automorphisms is decidable in the group $\text{Pol}(-1)$, the last problem is also decidable.

Instead of just running through all bounded automorphisms with a given bounds, the algorithm can be realized as follows. First, we distinguish the configu-
rations which can be satisfied by a finitary automorphism. Then we consequently distinguish the pairs from \(\text{OS}(a) \times \text{OS}(b) \), which are conjugate by a bounded automorphism using the second case above, and then using the first case. Finally, we treat the pairs whose conjugacy problem reduces to already distinguished pairs.

Second approach: by calculation of active states. Every conjugator for the pair \((a, b)\) can be constructed level by level as described in Section 3, by choosing the conjugating permutation for every orbit of \(a\). The number of orbits may grow when we pass from one level to the next, and consequently the number of choices grows. However the number of configurations of orbits is finite, and it is easy to see (and also follows from the previous method) that if \(a\) and \(b\) are conjugate in \(\text{Pol}(0)\) then there exists a bounded conjugator such that for all orbits of the same level and of the same configuration the corresponding states of \(h\) are the same. Hence it is sufficient to choose a conjugating permutation only for configurations. We will show how to count the number of active states depending on our choice.

Suppose we have constructed a conjugator \(h\) up to the \(n\)-th level. Consider an orbit \(\mathcal{O}\) of the action of \(a\) on \(X^n\) and let \(\mathcal{C} = \{(\alpha, \beta); DP_C\}\) be its configuration and \(v\) be the least element in \(\mathcal{O}\). The set \(DP_C\) remembers only the pairs \((c, d)\) which appear in the formula \(h_{(v)a^i} = c^{-1}h_{i}d\), here \(c = a^i|_v\) and \(d = b^{i}|_v\) for \(i = 0, \ldots, |\mathcal{O}| - 1\); however the number of states of “type” \((c, d)\) is lost in this way.

To preserve this information we introduce the nonnegative integer column-vector \(u_C\) of dimension \(|DP_C|\), where \(u_C(c, d)\) for \((c, d)\in DP_C\) is equal to the number of \(i\) such that \(c = a^i|_v\) and \(d = b^i|_v\). When we pass to the next level, we choose some permutation \(\pi \in \text{CII}(\alpha, \beta)\) and define \(x^{h|_v} = x^{\pi}\) for \(x \in X\). Then we check which states of \(h\) on the vertices from the orbit \(\mathcal{O}\) are active and which are not: the state \(h_{(v)a^i}\) of “type” \((c, d)\) is active if the permutation \(\pi_{c^{-1}\pi d}\) is non-trivial.

We store this information in the row-vector \(\theta_{C, \pi}\) of dimension \(|DP_C|\) by making \(\theta_{C, \pi}(c, d) = 1\) if \(\pi_{c^{-1}\pi d} \neq 1\) and \(\theta_{C, \pi}(c, d) = 0\) otherwise. Hence, when we choose the permutation \(\pi\) then the number of active states of \(h\) along the orbit \(\mathcal{O}\) is equal to \(\theta_{C, \pi} \cdot u_C = \sum \theta_{C, \pi}(c, d)u_C(c, d)\).

Let \(\Lambda\) be the set of all configurations for the pair \((a, b)\). Let \(\Pi = \prod_{C \in \Lambda} \text{CII}_C\), where \(\text{CII}_C = \text{CII}(\alpha, \beta)\) and \(\alpha, \beta\) is the main pair of \(C\). We view \(\Pi\) as the set of choices, so that when we choose \(\pi \in \Pi\) we have chosen a conjugating permutation for every configuration. The sets \(\Lambda\) and \(\Pi\) are finite. For \(\pi = (\pi_C)_{C \in \Lambda}\) define \(\theta_{\pi} = (\theta_{C, \pi_C})_{C \in \Lambda}\). When we choose \(\pi \in \Pi\) every configuration \(C \in \Lambda\) induces certain configurations \(C'\) on the next level by Equation \((5)\), and every pair \((c, d) \in DP_C\) induces certain pairs \((c', d')\) by Equation \((4)\). We store this information in the square nonnegative integer matrix \(A_{\pi}\) of dimension \(\sum_{C \in \Lambda} |DP_C|\), where the entry of \(A_{\pi}\) corresponding to the pairs \((c, d), (c', d')\) and configurations \(C, C'\) is equal to the number of all the pairs \((c', d')\) induced by the pair \((c, d)\). Then if we have a column-vector \(u = (u_C)\), where \(u_C(c, d)\) is the number of pairs \((c, d)\) that we have at certain level, and we choose \(\pi \in \Pi\), then the number of pairs of each configuration on the next level is given by the vector \(A_{\pi}u\). Put \(M = \{A_{\pi} : \pi \in \Pi\}\).

Now consider all orbits of \(a\) on \(X^n\), take their configurations and define the column-vector \(u = (u_C)_{C \in \Lambda}\), where \(u_C(c, d)\) for \((c, d) \in DP_C\) is equal to the number of all states of “type” \((c, d)\) over all orbits with configuration \(C\). To define the
action of h on the $(n+1)$-st level we choose $\pi = (\pi_C)_{C \in \Lambda} \in \Pi$, and for every orbit with configuration C we define the action of the states of h along this orbit using permutation π_C as written above (we choose a permutation for every configuration even if not all configurations appear on the n-th level). In this way the conjugator h is defined up to the $(n+1)$-st level. Then the number of active states of h on the n-th level is equal to $\theta_\pi \cdot u$. The vector $v = (v_C)_{C \in \Lambda}$, where $v_C(c, d)$ is equal to the number of all states of “type” (c, d) over all orbits of a on X^{n+1} with configuration C, is equal to $v = A_\pi u$.

The process starts at the zero level, where we have the vector $u_0 = (u_C)$ such that $u_C(1, 1) = 1$ for the configuration $C = \{(a, b); DP_C = \{(1, 1)\}$, which corresponds to the pair (a, b), and $u_C(c, d) = 0$ for all other pairs and configurations. Then we make choices $\pi_0, \pi_1, \ldots, \pi_n, \ldots$ from Π and construct the conjugator h. It follows from the above discussion that the activity of h can be calculated by the following rules:

$$\theta_n(h) = \theta_{\pi_n} u_n \quad \text{and} \quad u_{n+1} = A_{\pi_n} u_n$$

for all $n \geq 0$. If there is a choice such that the sequence $\theta_n(h)$ is bounded, then there will be an eventually periodic choice, and hence the constructed conjugator h will be finite-state and bounded.

Hence the automorphisms a and b are conjugate in the group $\text{Pol}(0)$ if and only if there exists a sequence $A_n \in \mathbb{M}$ such that the corresponding sequence $\theta_{A_n} u_n$ is bounded. The last problem is solvable and can be deduced from a result of Raphael Jungers (private communication), who proved that for a finite set of nonnegative integer matrices \mathbb{M} and a nonnegative integer vector u_0 one can decide whether there exist a sequence $A_n \in \mathbb{M}$ such that the sequence of vectors $u_{n+1} = A_n u_n$ is bounded.

In this method we don’t need to solve the auxiliary conjugacy problems in $\text{Pol}(-1)$ as in the previous method, but the problem reduces to certain matrix problem which should also be solved, while the previous method was direct. We demonstrate both approaches in Examples 5 and 6 of Section 5.

We note that both approaches also solve the respective simultaneous conjugacy problems. We have proved the following theorem.

Theorem 13. The (simultaneous) conjugacy problem in the group of bounded automata is decidable.

The above methods not only solve the studied conjugacy problems but also provide a construction for a possible conjugator.

Similarly, one can solve the conjugacy problem for bounded automorphisms in every group $\text{Pol}(n)$. However, we have a stronger statement.

Proposition 14. Two bounded automorphisms are conjugate in the group $\text{Pol}(\infty)$ if and only if they are conjugate in the group $\text{Pol}(0)$.

Proof. Let a and b be two bounded automorphisms, which are conjugate in $\text{Pol}(n)$ for $n \geq 1$. We proceed as in the first method above. Again the problem reduces to the case when a conjugator $h \in \text{Pol}(n)$ lies on a circuit. Let u be the word which is read along the circuit so that $h|_u = h$. We consider the same two cases as above.

17
If \(u^a = v \neq u \) then the state \(h_u \) should be in \(\text{Pol}(n - 1) \). But then, \(h = h_u = a_u h_v b_{|w|}^{-1} \in \text{Pol}(n - 1) \). Hence, \(a \) and \(b \) are conjugate in \(\text{Pol}(n - 1) \). The same arguments work if \(w^a \neq w \) for some word \(w \) of the form \(uu \ldots u \).

Suppose \(w^a = w \) for every word \(w \) of the form \(uu \ldots u \). Then \(h^{-1} a_u h = b_{w^a} \).

If \(a_w = 1 \) (and hence \(b_{|w|} = 1 \)) then define the automorphism \(g \) by the rules \(g_{|w|} = 1, g_v = h_v \) for all \(v \in X^{|w|}, v \neq w \), and the action of \(g \) on \(X^{|w|} \) is the same as that of \(h \). Then \(g \) belongs to \(\text{Pol}(n - 1) \) and it is a conjugator for \((a, b) \).

If \(a_w \neq 1 \) for every word \(w = uu \ldots u \), then some state \(a_w \) is a circuit automorphism and \(a_v = a_w \) for some word \(v \) of the form \(uu \ldots u \). Without loss of generality we can suppose that \(a_u = a \) and \(b_{|w|} = b \). Then the states \(a_v \) and \(b_{|w|} \) are finitary for all \(v \in X^{|w|}, v \neq u \). Consider every orbit \(O \) of the action of \(a \) on \(X^{|w|} \setminus u \), let \(v \in O \) be the least element in \(O \) and \(m = |O| \). Then the finitary automorphisms \(a^m \) and \(b^m \) are conjugate in \(\text{Aut}(T) \), and hence they are conjugate in \(\text{Pol}(1) \). Define the automorphism \(g \) by the rules: the action of \(g \) on \(X^{|w|} \) is the same as that of \(h \). \(g_v = g, g_v = a \) is a finitary conjugator for the pair \((a^m, b^m) \), and \(g_v = (a^m)^{-1} g_v b^m \) (also finitary) for every \(i = 1, \ldots, m - 1 \) and every orbit \(O \). Then \(g \) is a bounded conjugator for the pair \((a, b) \).

Inductively we get that \(a \) and \(b \) are conjugate in \(\text{Pol}(0) \). \(\square \)

5 Examples

All examples will be over the binary alphabet \(X = \{0, 1\} \).

We will frequently use the automorphism \(a \in \text{Aut}(T) \) given by the recursion \(a = (e, a) \sigma \), where \(\sigma = (0, 1) \in \text{Sym}(X) \) is a transposition, which is called the (binary) adding machine. The automorphism \(a \) has infinite order, and acts transitively on each level \(X^n \) of the tree \(T \). In particular, every automorphism which acts transitively on \(X^n \) for all \(n \), is conjugate with \(a \) in the group \(\text{Aut}(T) \).

In the next example we investigate the interplay between such properties as being finite-state, contracting, bounded, polynomial, having or not a finite orbit-signalizer.

Example 1. The adding machine \(a \) is a bounded automorphism, hence it is contracting and has finite orbit-signalizer, here \(\text{OS}(a) = \{a\} \).

The automorphism \(b \) given by the recursion \(b = (a, b) \) is finite-state, \(\text{Q}(b) = \{e, a, b\} \), \(b \) belongs to \(\text{Pol}(1) \setminus \text{Pol}(0) \), and \(\text{OS}(b) = \{a, b\} \). However \(b \) is not contracting, because all elements \(b^n \) for \(n \geq 1 \) are different and would belong to the nucleus.

The automorphisms \(b = (a, c) \sigma, c = (a, b) \) belong to \(\text{Pol}(1) \setminus \text{Pol}(0) \), but they have infinite orbit-signalizers. All elements \(a^{2n}b \) for \(n \geq 0 \) are different and belong to the set \(\text{OS}(b) \). At the same time, \(b \) and \(c \) are contracting, for the self-similar group generated by \(a, b, c \) has nucleus \(\mathcal{N} = \{e, a^\pm 1, b^\pm 1, c^\pm 1, (a^{-1} b)^\pm 1, (a^{-1} c)^\pm 1, (b^{-1} c)^\pm 1\} \).

The automorphism \(b = (b, b) \sigma \) is non-polynomial, contracting, and has finite orbit-signalizer, here \(\text{OS}(b) = \{e, b\} \).

The automorphism \(b = (b, b^{-2}) \sigma \) is contracting, the nucleus of the group \(\langle b \rangle \) is \(\mathcal{N} = \{e, b^{\pm 1}, b^{\pm 2}, b^{\pm 3}\} \). At the same time, the group \(\langle a, b \rangle \) is not contracting; for
Figure 1: The order graphs $\Phi(b)$ (on the left) and $\Phi(c)$ (on the right)

$ba = (ba, b^{-2})$ and its powers $(ba)^n$ are different and would be in the nucleus.

The automorphism $b = (a, b^2)$ is functionally recursive but not finite-state. Hence the automorphism $c = (b, b^{-1})\sigma$ is functionally recursive, not finite-state, and has finite orbit-signalizer, here $\text{OS}(c) = \{e, c\}$.

In the next example we illustrate the solution of the order problem.

Example 2. Consider the automorphisms $b = (a, b)$ and $a = (1, a)\sigma$. The order graph $\Phi(a)$ is a subgraph of $\Phi(b)$ shown in Figure 1. There is a cycle labeled by 2, hence a and b have infinite order.

The order graph $\Phi(c)$ for the automorphism $c = (b, \sigma)$ is shown in Figure 1. There are no cycles with labels >1, hence c has finite order, here $|c| = 2$.

Let us illustrate the construction of the conjugator graph and basic conjugators.

Example 3. Consider the conjugacy problem for the trivial automorphism e with itself. Here $\text{OS}(e) = \{e\}$ and $\text{CPI}(e, e) = \text{Sym}(X) = \{\varepsilon, \sigma\}$. The conjugator graph $\Psi(e, e)$ is shown in Figure 2. There are two defining subgraphs of the graph $\Psi(e, e)$, each consists of the one vertex (e, e, π) with loops in it for $\pi \in \{\varepsilon, \sigma\}$. The corresponding basic conjugators are $h_1 = (h_1, h_1) = e$ and $h_2 = (h_2, h_2)\sigma$.

Consider the conjugacy problem for the adding machine $a = (e, a)\sigma$ and its inverse $a^{-1} = (a^{-1}, e)\sigma$. Here $\text{OS}(a) = \{a\}$, $\text{OS}(a^{-1}) = \{a^{-1}\}$, and $\text{CPI}(a, a^{-1}) = \{\varepsilon, \sigma\}$. There is one orbit of the action of a on $\{0, 1\}$, $a^0|_0 = a$ and $a^{-2}|_0 = a^{-1}$ for every $\pi \in \{\varepsilon, \sigma\}$. The conjugator graph $\Psi(a, a^{-1})$ is shown in Figure 2. There are two defining subgraphs of the graph $\Psi(a, a^{-1})$, each consists of the one vertex (a, a^{-1}, π) with loop in it for $\pi \in \{\varepsilon, \sigma\}$. The corresponding basic conjugators are $h_1 = (h_1, h_1a^{-1})$ and $h_2 = (h_2, h_2)\sigma$.

Consider the conjugacy problem for the adding machine $a = (e, a)\sigma$ and the automorphism $b = (e, b^{-1})\sigma$. Here $\text{OS}(a) = \{a\}$, $\text{OS}(b) = \{b, b^{-1}\}$, and $\text{CPI}(a, b) = \text{CPI}(a, b^{-1}) = \{\varepsilon, \sigma\}$. There is one orbit of the action of a on $\{0, 1\}$, $a^2|_0 = a$, $b^2|_0 = b^{-1}$, and $b^{-2}|_0 = b$ for every $\pi \in \{\varepsilon, \sigma\}$. The conjugator graph $\Psi(a, b)$ is shown in Figure 2. There are four defining subgraphs of the graph $\Psi(a, b)$, each consists of the two vertices (a, b, π_1) and (a, b^{-1}, π_2) with the induced edges for $\pi_1, \pi_2 \in \{\varepsilon, \sigma\}$. The corresponding basic conjugators h_1, h_2, h_3, h_4 are defined as
follows

$$h_1 = (g_1, g_1) \quad h_2 = (g_2, g_2) \quad h_3 = (g_3, a g_3) \sigma \quad h_4 = (g_4, a g_4) \sigma$$

$$g_1 = (h_1, h_1 b) \quad g_2 = (h_2, h_2) \sigma \quad g_3 = (h_3, h_3 b) \quad g_4 = (h_4, h_4) \sigma,$$

where g_1, g_2, g_3, g_4 are actually the basic conjugators for the pair (a, b^{-1}).

The next example shows that the condition of having finite orbit-signalizers cannot be dropped in Theorem 6, and that Theorem 10 does not hold for polynomial automorphisms.

Example 4. Consider the automorphisms $b = (a, c) \sigma, c = (a, b)$ defined in Example 1. Inductively one can prove that the state $b^{2^n} |_{0^n}$ is active for every n, and hence the automorphism b acts transitively on X^n for every n. Thus b is conjugate with a in the group $\text{Aut}(T)$. Both a and b are contracting, however, b has infinite orbit-signalizer, and hence it is not conjugate with a in the group $\text{FAut}(T)$, by Proposition 7.

Finally, we illustrate the solution of the conjugacy problem in the group of bounded automata.

Example 5. Consider the conjugacy problem for the adding machine $a = (e, a) \sigma$ and its inverse $a^{-1} = (a^{-1}, e) \sigma$ in the group of bounded automata.

There are two configuration for the pair (a, a^{-1}):

$$C_1 = \{(a, a^{-1}), DP_1 = \{(e, e)\}\}, \quad C_2 = \{(a, a^{-1}), DP_2 = \{(e, e), (e, a^{-1})\}\}.$$

Neither of them is satisfied by the trivial automorphism, and hence by a finitary automorphism. In particular, a and a^{-1} are not conjugate in the group $\text{Pol}(-1)$. The bounded conjugator cannot be constructed by the second case of the first
method, because there are no pairs in \(\text{OS}(a) \times \text{OS}(a^{-1}) \) that are conjugate in \(\text{Pol}(-1) \). The first case is not possible, because \(a \) has no fixed vertices. Hence, \(a \) and \(a^{-1} \) are not conjugate in the group \(\text{Pol}(\infty) \).

For the second method we get the choice set \(\Pi = \{(e, \varepsilon), (e, \sigma), (\sigma, \varepsilon), (\sigma, \sigma)\} \). The configuration \(C_1 \) induces the configuration \(C_2 \) on the next level when we choose the conjugating permutation \(\varepsilon \); here the pair \((e, e)\) induces one pair \((e, e)\) and one pair \((e, a^{-1})\). For the choice \(\sigma \), the configuration \(C_1 \) induces \(C_1 \), and the pair \((e, e)\) gives two pairs \((e, e)\) and \((e, a^{-1})\). For the choice \(\varepsilon \), the configuration \(C_2 \) induces \(C_2 \), here the pair \((e, e)\) induces one pair \((e, e)\) and one pair \((e, a^{-1})\), and the pair \((e, a^{-1})\) gives two pairs \((e, a^{-1})\). For the choice \(\sigma \), the configuration \(C_2 \) induces \(C_2 \), here the pair \((e, e)\) gives two pairs \((e, e)\), and the pair \((e, a^{-1})\) gives one pair \((e, e)\) and one pair \((e, a^{-1})\). We get the following set of matrices \(A_{\pi} \) and vectors \(\theta_{\pi} \):

\[
A_{(e, \varepsilon)} = \begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 2
\end{pmatrix}, \quad A_{(e, \sigma)} = \begin{pmatrix}
0 & 0 & 0 \\
1 & 2 & 1 \\
1 & 0 & 1
\end{pmatrix},
\]
\[
A_{(\sigma, \varepsilon)} = \begin{pmatrix}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 2
\end{pmatrix}, \quad A_{(\sigma, \sigma)} = \begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{pmatrix}.
\]

\[
\theta_{(e, \varepsilon)} = (0, 0, 1), \quad \theta_{(e, \sigma)} = (0, 1, 0), \quad \theta_{(\sigma, \varepsilon)} = (1, 0, 1), \quad \theta_{(\sigma, \sigma)} = (1, 1, 0).
\]

The initial vector is \(u_0 = (1, 0, 0)^t \) and on \(n \)-th step we get \(u_{n+1} = A_{\pi} u_n \) and \(\theta_n = \theta_{\pi_n} u_n \) when we choose \(\pi_n \in \Pi \). For any choice \(\{\pi_n\}_{n \geq 0} \subset \Pi \) the sequence \(\theta_n \) has exponential growth, and hence \(a \) and \(a^{-1} \) are not conjugate in the group \(\text{Pol}(\infty) \) of polynomial automata.

Example 6. Consider the conjugacy problem for the bounded automorphisms \(b = (\sigma, b) \) and \(c = (c, \sigma) \). Notice that the pairs \(\sigma, c \) and \(b, \sigma \) are not conjugate in \(\text{Aut}(T) \). Hence, only \(\sigma \) may appear as the action on \(X \) of a possible conjugator, and we take \(\text{CII}(b, c) = \{\sigma\} \). Here \(\text{OS}(b) = \{e, \sigma, b\} \) and \(\text{OS}(c) = \{e, \sigma, c\} \), \(\text{CII}(\sigma, \sigma) = \{e, \sigma\} \). The configurations for the pair \((b, c)\) are the following:

\[
C_1 = \{(b, c), DP_1 = \{(e, e)\}\}, \quad C_2 = \{(\sigma, \sigma), DP_2 = \{(e, e)\}\},
\]
\[
C_3 = \{(e, e), DP_3 = \{(e, e)\}\}.
\]

The configurations \(C_2 \) and \(C_3 \) are satisfied by the trivial automorphism, while \(C_1 \) is not satisfied by a finitary automorphism, and hence \(b \) and \(c \) are not conjugate in \(\text{Pol}(-1) \). In the first case of the first method we are looking for a conjugator \(h \) such that \(h|_1 = h \) and \(h|_0 \) satisfies \(C_2 \). Taking \(h|_0 = e \) we get the bounded conjugator \(h = (e, h)\sigma \), and hence \(b \) and \(c \) are conjugate in the group \(\text{Pol}(0) \).

For the second method, we take for the choice set \(\Pi = \{(\sigma, \varepsilon), (\sigma, \sigma, \varepsilon), (\sigma, \varepsilon, \sigma), (\sigma, \sigma, \sigma)\} \). All matrices \(A_{\pi} \) are the same for \(\pi \in \Pi \). The vectors \(\theta_{\pi} \) are as follows

\[
A_{\pi} = \begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2 & 2
\end{pmatrix}, \quad \theta_{(\sigma, \varepsilon, \varepsilon)} = (1, 0, 0), \quad \theta_{(\sigma, \sigma, \varepsilon)} = (1, 1, 0),
\]
\[
\theta_{(\sigma, \varepsilon, \sigma)} = (1, 0, 1), \quad \theta_{(\sigma, \sigma, \sigma)} = (1, 1, 1).
\]
The initial vector is $u_0 = (1, 0, 0)^t$ and $u_n = A^n u_0 = (1, 1, 2^n - 2)$ independently of our choice. If we choose $\pi_n = (\sigma, \varepsilon, \varepsilon)$ for all $n \geq 0$ then the sequence $\theta_n = (1, 0, 0) \cdot u_n = 1$ is bounded. Hence b and c are conjugate in the group $\text{Pol}(0)$. The conjugator corresponding to our choice is the adding machine a.

References

