A Multi View based Traceability Management Method

Hamid EL GHAZI,
Centre de Recherche Informatique 90, rue de Tolbiac 75013 Paris - France
Hamid.el-ghazi@mailx.univ-paris1.fr
Said ASSAR
Institut Telecom Sud Paris,
9, rue Charles Fourier 91011 Evry – France
said.assar@int-evry.fr

Abstract— The approach presented in this work aims to guide the companies in their design of requirements traceability models adapted to the context of their projects. This is achieved by allowing the construction of a model based on trace fragments adapted to each phase of the development process or to a specific situation. Furthermore, the approach guides the users to use the traceability model in a requirement management tool. And help them capture and manage the evolution of the traceability data.

I. INTRODUCTION

Requirements traceability (RT) helps organisations to control and manage the evolution of the system requirement within a project. It's a requirements management activity where requirements are traced back to their original higher-level requirement sources. This ensures that all higher-level requirements are being met by detailed requirements. It also ensures that lower-level requirements have a higher-level source and have not been arbitrarily added to the scope of the project.

Gotel and Finkelstein [1] express the concept in a more complete way: RT refers to the ability to describe and follow the life of a requirement, in both a forwards and backwards direction (i.e., from its origins, through its development and specification, to its subsequent deployment and use, and through all periods of on-going refinement and iteration in any of these phases.)

This definition has become the common definition of RT. They make explicit that in order to follow (i.e., to trace) the life of a requirement you have to describe it. Two important aspects of requirements tracing are used to extend their definition. The first one is the ability to capture the traces we want to follow, and the other is the idea that traces should be viewed as natural occurrences, naturally produced.

Previous research works on RT focus on different aspects of this domain [2] [1] [3] [4] [5]. They have been classified on two categories [1]: pre-traceability and post-traceability. Pre-traceability refers to those aspects of a requirement's life before it is included in the requirements specification and is focused on enabling a better understanding of the requirement. Post-traceability, on the other hand refers to those aspects of a requirement's life from the point in time when it has been included in the requirements specification and is focused on enabling a better understanding and acceptance of the current system/software.

The proposed method, capture particular types of traceability information, like links relations, contributions or rationales, etc. And, the existing commercial tools focus on the persistent recording and the maintenance of trace information [6] [7] [8]. In contrast to the above research contributions, they define only a few generic information types, which can be specialized by the user of the system [3].

Thus, the companies still find difficulties in integrating the traceability in their project activities. They also consider this activity an expensive exercise compared to the benefit that it generates.

Indeed, the current techniques for tracing requirements are not adapted to the context of a global development project and do not take into account the different disciplines and points of view in a project. This problem is due to (1) the multi perspectives nature of traceability (ie requiring the capture of several categories of information), (2) and the fact that it is linked to various System Engineering disciplines (requirements engineering, design methods, strategy for project management, development, testing and validation, etc.).

If we take for example the approach of [1], the model obtained after the application of its method is focused on the network of the people which take part in a project. The approach distinguishes various roles and relations between contributors and artefacts produced. Contributors are essential aspects in RT, but it is not sufficient. Thus, a model must take into account the trace of all the deliverables (product and process) as well as other additional information (decision, management, etc). Although, we can re-use the Gotel model as a trace model fragment in order to manage the types of the relations between stakeholders.
In order to trace all the requirements in all the phases of the development cycle, we propose an approach which makes it possible to build a trace model for all the phases of a project and which assists the traceability engineers in the construction of this model.

The approach is a traceability management method for modelling traceability with Multi perspectives View (MV). Our approach is based on the concept of model integration, because we found that in the traceability domain, models address only a specific aspect of traceability (or perspective). So, to build a generic model we need some existing model best suited for a given situation. The method is composed of a Meta model to describe traceability information which is supported by a process that guides the system engineers in the traceability management.

Section 2 presents the concepts and formalisms used in the method description. It also explains the Meta model of the MV-TMM approach. Section 3 describes the process of the method with an example of an application. Finally, Sect. 4 presents our conclusions and outlines ongoing further work.

II. OVERVIEW OF THE MV-TMM METHOD

A. MV-TMM method

The method MV-TMM is divided on two principle phases: (a) modeling the traceability information in the context of a development project, and (b) guiding the users in the conception and use of a traceability model. In the modeling part, we propose an approach for the identification of traceability needs in a project. The approach allows the consideration of different category of traceability information and also the guidance of users, by a methodological process. The two phases compose our generic approach that defines the life cycle of a traceability management in projects.

The diagram below (Figure 1) gives an overview of the method. The method engineer begins with the capture of traceability needs. Then, it uses our Meta model MV-TMM to describe the traceability model suitable for the project. The process of construction and description of the model is based on the MAP model (see next section). And to guide the use and maintenance of the resulting traceability model, system engineer applies the process part for capture and use of information traceability.

B. The MAP Formalism

The proposed process in our approach is based on the MAP process meta-model [9] [10].

The MAP model allows an intentional representation of processes. It rests on a declarative and flexible ordering of intentions and strategies. An intention is an objective which can be achieved by the execution of one or more process. We add that each MAP model has two particular intentions, Start and Stop, to begin and finish the execution of a process. A strategy is an approach, a manner or a means to carry out an intention. A section is a triplet made up of a source goal, a target goal and a strategy. A section expresses the realization of the target goal by using the strategy once the source goal was carried out.

The MAP chart is represented by a directed and labelled graph. The intentions are represented by the nodes and strategies by the arcs. The directed nature of the graph translates the flow of the intention source to the target intention via the strategy (for more detail sees the MV-TMM process of our approach).

C. Multi Perspectives Traceability

Our work proposes a generic Meta model (MV-TMM) which manages multiple forms of traceability encountered in a project; it also integrates the various concepts used in the existing approaches. The Meta model is multi perspective, in other words, taking into account the different perspectives associated with requirements traceability, and represents traceability information respecting the peculiarity of each one.

The concept of multi-perspective has been applied in other areas [11] [12] [13] [14]. The Multi-Perspective Modelling (MPM) techniques allow one to present and analyze organizational knowledge from different perspectives, which in turn allows the knowledge to be used for different purposes [15]. In a MPM initiative, several different modeling languages are normally used to describe the different aspects of the same knowledge domain.

Further, the thesis of MPM is that for any "knowledge
asset” to be represented adequately, it’s necessary to represent a number of different perspectives on its knowledge - and, possibly, to represent the asset at multiple different levels of decomposition (Figure 2). These ideas are based on those of the Zachman framework [16], and are embodied in various knowledge modelling methods, notably the CommonKADS methodology for knowledge engineering [17].

D. Resulting Meta model

The Figure 3 illustrates the Meta model MV-TMM and its various components using UML language. The following sections provide more details on the different perspectives addressed in the Meta model, as well as the different points of view to take into account in the design of a traceability model of a project.

![Fig. 3. MV-TMM Meta model](image)

Meta model perspectives

-- Actors perspectives
The element Actors Structure of the meta-model describes the traceability information which represents the roles of those people involved in a project, as well as their commitment to the artifacts produced. In other words the role of this actors element is to represent the social environment and its impact on the traceability model [1].

-- Product Perspectives
This element describes the structure of the different deliverables produced by application of formal and non-formal methods in the specification and design of a system. For example, the product of an Entity / Relationship (E / R) based method, comprises entity and the various relationships between the entities.

We can extend the Product element by the meta-model of product used in the definition of modular methods [28]. It allows to capture more detailed traceability information about products. We note that our definition of the product element is not limited to methods, but extends to all types of deliverables in a project.

-- Process Perspectives
The process element records information on the activities giving rise to the creation or the development of a deliverable in a project. Existing methods define such guidance to the actors involved in system development to guide them in defining the process steps and their order. For example, the Entity-Relation (ER) process provides specific guidelines to create, modify, and delete ER diagrams, entities and relationships between entities.

The process engineering field [29] [9] also provides method for modeling process. We can reuse one of these models to capture traceability information related to process through our meta-model MV-TMM. Our work is not centered on the definition of processes, but the use of existing work in this area for tracing process.

-- Evolution Perspectives
Products and processes will change with the progress of the project. However, the traceability links evolve in parallel and new links appear or disappear because of a change or an evolution. It is therefore necessary to manage traceability link evolution and the reasoning behind their evolution [18] [19] [20].

The evolution element of our meta-model MV-TMM cares about the traceability of artifacts developed and it’s links relation evolution. We have identified two specialization of this element: (i) the rational element and (ii) configuration element.

(i) Configuration Perspectives: The configuration element represents aspects of configuration management and change impact analysis in a project, in particular the traceability links configuration.

The role of this element is data status maintains of the identified configuration units (ie, the traceability information), and the data analysis and changes control.

(ii) Rational Perspectives (or justification): This element records information covered by argument and decision following a change or an evolution. Thus, it allows drawing the issues and conflicts generated by the actors in the specification and design work [2].

-- Traceability Link Perspectives

A traceability system can be seen as a semantic network in which nodes are traceability elements of the meta-model MV-TMM and connections between elements are represented by the traceability links. The traceability links describe a temporal relationship in the case of a change between versions of artifacts.

The various elements of our meta-model traceability MV-TMM are inter-related at a higher level of abstraction. They represent the different types of possible relations between the elements of the meta-model. The instantiation of these links types can generate other types of links specific to the traceability model of a project. Some of the properties or attributes can be associated with links [21] [22] to characterize them with additional details.

(a) Satisfaction Link Types

The satisfaction links type represents the satisfaction kind of relationships between artifacts of a project, for example, satisfaction links between requirements and the system
components that meet requirements. The degree of satisfaction of a requirement can be regarded as a property of satisfaction links type.

(b) Dependency Link Types

Most traceability models explicitly represent dependencies between different artifacts. A dependency link is a relationship between source artifacts that depends on target artifacts. For example, the software requirements of a system depend on hardware requirements that implement them.

Several research publications have focused on the study and characterization of the degree of dependency. We cite as an example the work of Hauser and Clausing [23] proposing a scheme to assign for a dependency a quantitative and qualitative weight. In their approach the degree of dependency is called the "dependency strength" (which is the measure of how much an object affects another). It could be measured (for example, high, medium, light, etc.) or quantitative (e.g., between 1-10 or in a rating scale of 10). Yu and Mylopoulos [24] have adapted another scheme in their framework i* and suggest a type of dependency between actors in an organization.

(c) Evolution Link Types

The Evolution links-type can be used as part of an evolution of artifact over time, in other words, in the order of their creation or modification. The order gives information about the origin of the artifacts as well as trace of evolution history.

(d) Rationales Link Types

The Rational link (or justification link) helps to represent the context in which the artifacts are produced. The context includes all the tools and processes used for the justification of an artifact. Mails and meeting minutes are examples of justifying means of an artifact.

(e) Containment Link Types

Content relations describe a different way of representation of the relationship between artifacts. Such relations deal such as referrals to another artifact, keyword or definition. They provide as a result a new structure and additional forms of traceability.

(g) Contribution Link Types

The term contribution link is used to describe any relationship between an agent (or an actor) and an artifact. It's a two-way relationship because an agent contributes to one or more artifacts and an artifact is produced by one or more actors.

The contribution link may have several levels of granularity depending on the size and nature of an actor against an artifact. We can describe it in simple terms as "contribute to". However, it does not give much information about the nature of this contribution that differentiates actor's responsibilities towards artifacts. The work of Gotel & al. [1] is a reusable reference in this kind of relationship.

View Point Analysis

A View Point can be defined as "the description of a part of the information on a particular topic with different perspective" [25].

In the area of requirements traceability we consider that a View Point represents an aspect of traceability that cares about the capture of a particular category of traceability information. It represents a form of traceability among others, which describes only a part of traceability model.

We can classify the views into four basic categories to take into account the various forms of traceability in a project, namely: management, engineering, quality and maintenance views. The classification is deduced from a study of different maturity process of the systems engineering standards [26] [27].

The four categories of the meta-model are basic view points. They are related to each phase of a project and to the various activities carried out. The description of these view points is as follows:

• The management view point: represents traceability information from the management view point. The management aspect in a project includes for example, project management, requirements management, and in general all management activity carried out within a project and particularly in each phases.

• The engineering view point: The engineering activities include information such as the analysis methods and design, requirement engineering methods, the testing and validation procedures, and in general all formal or informal practices used by engineers in their design and specifications within a project.

• The quality view point: The quality ensures the maturity of project deliverables, and the assuring of the activities quality. Thus, it helps control completeness of the deliverables produced by different actors in a project. A traceability model must also capture the data required by the quality, for example, the information for risk analysis, and compliance with the standards.

• The maintenance view point: The efforts to develop a system have as objective the delivery of a product that meets the user's requirements. However, once the whole or part of product is delivered, it is very likely undergoing changes or developments. Thus, a maintenance phase starts and new requirements emerge. The traceability process must trace the changes and justifications throughout this phase.

III. MV-TMM PROCESS

Our approach defines a process which describes diverse steps to capture the traceability needs of a project and also describing the construction process of a traceability model.

We propose two process models to guide traceability managers in their tasks. The first model guides the identification of organization needs and the traceability model construction. The second model guide users to capture and use traceability information.
A. Strategies for traceability model construction

The construction process of the traceability model is decomposed into two phases (Figure 4):

(i) The capture of the traceability needs
The table 1 shows an example of strategies identifying the context and environment in a project.

<table>
<thead>
<tr>
<th>Strategies</th>
<th>Resulting information</th>
</tr>
</thead>
<tbody>
<tr>
<td><I1,S1,11></td>
<td>Are users who contribute to the different artifacts in a project and create links between them (analyst, architect)</td>
</tr>
<tr>
<td><I1,S3,11></td>
<td>Identifies period of time (phases) in a project to define deliverables expected in each period. Requirements Analysis, Development, Maintenance are examples of phases of the project.</td>
</tr>
<tr>
<td><I1,S2,11></td>
<td>The departments of an organization that could use traceability in their internal process or as part of a project.</td>
</tr>
</tbody>
</table>

(ii) The construction of a traceability model
The model construction process is inspired from the research work of methods engineering domain [28]. Our approach thus will guide the construction with existing approaches by applying strategies like S12, S11, or either by model fragments composition (strategies S10 or S9). Each model fragment must respond to a view point of project traceability needs. The views are described by applying the strategy S5. Thus the model will be built to meet the needs of the project according to several points of view.

Case study:

By implementing strategies S1 and S3 we get for example, the requirements engineering process of the Figure 5. It is composed of three phases: goals capture phase, the requirements capture phase and requirements analysis phase.

Fig. 5. A Simple RE Process

We can build a traceability model adapted to this process according to several view points by applying the strategy S5.

The Figure 6 shows an example of view point model corresponding to the requirements capture and analysis phases. We note that the four main views will be decomposed to identify other viewpoints. The traceability model fragments of the two phases must include traceability information corresponding to each view.

This example will be analysed in more detail by implementation of the strategies S9, S10, and S11, to build a model fragments traceability specific to the viewpoint. The traceability model fragments will be integrated to build a generic model for the whole project.

The Figure 7 shows a simple example of traceability model fragment through instantiation of the Product element.
IV. CONCLUSION

The multi perspective modelling approach has been adopted to describe a requirement traceability method. We found this approach suitable and often necessary when such a complicated domain must be captured and understood. We propose a method whose core component is a Meta model that provides a taxonomic structure to store all of the sharable, important and fundamental concepts of the requirement traceability domain. The Meta model is based on two formal processes which guide traceability manager in his work. The first model guides the identification of organization needs and the traceability model construction. The second model guide the users to capture and use traceability information. The MV-TMM can be supported by a Requirement Management Tool (RMT) with some extension. We need to add new component to the classical definition of RMT to give support of our approach. This is part of our future work.

B. Strategies for information capture and management

(i) The trace capture guidance

Traceability users must be guided in trace data capture, whenever a stakeholder modifies an approved component; he has to consider the review comments and the approval conditions. Consequently, we should notify the users about the change conditions, retrieve the corresponding traceability data, and display them to the users. The strategies S1 to S5 of the Figure 9 will be used for this purpose.

(ii) The use of trace information

After the capture of the need and the construction of the trace data, the use of trace information constitutes the forth step of our process. This process is generally based on a traceability management tool. We can apply strategies like S6, S7, and S9-S13 for this purpose.

The use of the traceability consists of the update of the traceability data, the automation of certain task, trace information retrieval mechanism and data filter.

(iii) Trace data evolution management

Systems always evolve as the environments in which these systems operate change so do stakeholder requirements. Therefore managing change of traced data is a fundamental activity in overall system development. Most Requirement Management (RM) tool manage requirement as configuration units. Then, they play the role of configuration management tools. We must identify traceability evolution policies to control the evolution of trace data and it's rational. This will be done by applying S8 strategy.
V. RELATED WORK

Several methods were proposed to help capture requirements traceability information. The proposed models answer a particular need in the system development cycle. Gotel [1] classified these approaches according to the concept of pre-traceability and post traceability. The methods suggested are adapted to a specific situation and answer a particular problem in the system development cycle [1] [2] [3] [4].

In [1] Cotel and Finkelstein present an approach to make the details about the social setting that gives rise to the product of Requirement Engineering (RE) their approach manages so-called contribution structures for requirements. In [2], more importance is given to capture the decisions underlying assumptions being made during the requirements engineering process. In contrast to the aforementioned approaches, [3] focuses on the creation, management, and applicability of the typed dependency products and interrelations, which are the key provider of the traceability information.

Other approaches concern the post traceability aspect of requirement, they capture only traceability information related to the artefact that specify or implement the requirement. Neither industrial tools nor research techniques give a complete support of the traceability activities throughout the system development cycle. And there is still lack of effective technique to be used in a complex project context to respond to enterprise requirements.

REFERENCES

[26] (SE, 07) CMMI Product Team, Capability Maturity Model Integration (CMMI), SEL 2002.

