1. INTRODUCTION
Distributed systems and databases are at the core of the information society and increasingly pervade many aspects of our daily lives. While mobility and pervasiveness require support for systems that adapt themselves to changing environments, the middleware infrastructures become more and more heterogeneous and complex. In addition, we can see an increasing demand for dependability of such systems, taking into account the software as well as the surrounding environment. Generally, adaptiveness can either satisfy a change in user requirements or seek to fulfill the same requirements in a changing system context and environment. In particular, adaptation is also a means to achieve dependability in a computing infrastructure with dynamically varying structure and properties. Fault tolerance can consequently be seen as a special case, where the adaptation seeks to overcome an otherwise negative effect of a change in the computing infrastructure that can be classified as a fault. However, dependability can not only be achieved by fault tolerance, but also by other means like fault avoidance (e.g. through formal methods). Therefore, future middleware needs to support adaptiveness and dependability while maintaining scalability and mastering complexity. Still, software legacy must be integrated in a way, such that open and standardized interfaces support not only functional integration, but also a seamless integration of non-functional aspects. Moreover, service-oriented architectures need coordination in order to achieve dependability and can further benefit from context-aware approaches.

2. STATISTICAL DATA
This is the first year for the DADS track and 33 submitted papers show the importance of the topic. 24 reviewers performed our double-blind review process, where each paper has been reviewed by at least three reviewers. Finally, 11 regular papers have been accepted resulting in an acceptance rate of 33%. Three more papers have been accepted as poster presentations.

3. OVERVIEW OF THE SESSIONS AND PAPERS
The DADS track provides a forum for scientists and engineers in academia and industry for their latest research findings on selected topics in dependable and adaptive distributed systems and complex services. The track is structured in three sessions: The first session comprises a keynote from the Software Technology unit of directorate D of the European Commission and continues with P2P and mobile/ad hoc systems:

1. Quiescent Consensus in Mobile Ad-hoc Networks using Eventually Storage-Free Broadcasts:
 This paper presents a solution to solve the consensus problem using a new class of broadcasts that are appropriate to ad-hoc networking.

2. Unstructured Peer-to-Peer Lookup Overlays:
 In this paper, the authors define metrics for evaluating unstructured overlays for peer-to-peer lookup systems. These metrics capture the search dependability and efficiency, and the granularity at which one can control the trade-off between the two, as well as fairness.
3. An Adaptive Index Allocation Scheme for Reliable Data Retrieval and Provision in Peer-to-Peer Networks:
This paper proposes an adaptive scheme for data retrieval and provision in peer-to-peer networks, in which indices are
dynamically allocated in appropriate nodes adaptively to variation of traffic patterns caused by query messages.

The second session focuses on general and architectural mechanisms for adaptation and fault tolerance:

4. Verification of Coordinated Exception Handling:
In this paper, the authors present an approach to modeling and verifying fault-tolerant distributed systems that use exception
handling as the main fault tolerance mechanism.

5. Proactive Resilience through Architectural Hybridization:
In this paper, the authors present the Proactive Resilience Model (PRM) and describe a design methodology under the PRM. This
methodology is a way of building systems which guarantee do not suffer more than the assumed number of faults, and it is
used to derive a distributed intrusion-tolerant secret sharing system.

6. Combining Supervised and Unsupervised Monitoring for Fault Detection in Distributed Computing Systems:
First, a new concept of supervised and unsupervised monitoring is proposed for system fault detection. Second, in order to test the
performance of the proposed approach, the authors simulate a variety of system faults in a real e-commerce application based on
the multi-tiered J2EE architecture.

7. Modeling of Component-Based Adaptive Distributed Applications:
In this paper, the authors present an approach for modeling adaptation of component-based distributed applications. The
approach supports component-based design of different variants of the applications, and a framework for selecting proper
variants based on the current state of the execution environment and the user preferences. XML is used as the specification
language.

The third session concentrates on protocols assisting and enabling dependable and adaptive systems:

8. Service Interface: A New Abstraction for Implementing and Composing Protocols:
In this paper, the authors compare two approaches to the design of protocol frameworks – tools for implementing modular
network protocols. The most common approach uses events as the main abstraction for a local interaction between protocol
modules. The authors argue that an alternative approach, that is based on service abstraction, is more suitable for expressing
modular protocols.

9. Post-Partition Reconciliation Protocols for Maintaining Consistency:
In this paper, the reconciliation process is studied with a focus on integrity constraint conflicts and the decisions that affect the
design of reconciliation algorithms. To compare different algorithms, the authors have both defined a theoretical correctness
criterion and experimental metrics. Three reconciliation algorithms have been introduced.

10. From Spontaneous Total Order to Uniform Total Order: different degrees of optimistic delivery:
This paper makes an overview of different optimistic total order protocols and shows how they can be combined in a single
adaptive protocol.

11. Revisiting 1-Copy Equivalence in Clustered Databases:
In this paper, the authors point out that 1-copy equivalence for causal consistency, which is subsumed by both serializability and
snapshot isolation criteria, depends on basic session guarantees that are costly to ensure in clusters, especially in a multi-tier
environment. Consequently, a simple solution is proposed, that guarantees causal consistency in the Database State Machine
protocol and its performance is evaluated, thus highlighting the cost of seamlessly providing common consistency criteria of
centralized databases in a clustered environment.

Finally, three poster papers have been accepted for presentation during the conference:

1. Distributed Context Management in a Mobility and Adaptation Enabling Middleware (MADAM):
 This work describes a context management approach for reducing the complexity of context aggregation and utilisation.

2. Analysis of deployment dependencies in software components:
 A deployment model and a conceptual foundation for component installation are proposed. Installation dependencies and
 installation rules are expressed in a logic language.

3. A Framework for (Re)Deploying Components in Distributed Real-time and Embedded Systems:
 This paper describes the Resource Allocation and Control Engine (RACE) that integrates multiple resource management
 algorithms for (re)deploying and managing performance of application components in distributed real-time and embedded (DRE)
 systems.

4. ACKNOWLEDGEMENTS
We would like to thank our reviewers as well as our authors for their work and support for making this an interesting track for research and
industry. Special thanks go to our organisational chair, Johannes Osrael at the Vienna University of Technology, who did a great job
during the whole paper submission and review process.