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Abstract. We propose a novel method for the segmentation of Multi-
ple Sclerosis (MS) lesions in MRI. The method is based on a three-step
approach: first a conventional k-NN classifier is applied to pre-classify
gray matter (GM), white matter (WM), cerebro-spinal fluid (CSF) and
MS lesions from a set of prototypes selected by an expert. Second, the
classification of problematic patterns is resolved computing a fast dis-
tance transformation (DT) algorithm from the set of prototypes in the
Euclidean space defined by the MRI dataset. Finally, a connected compo-
nent filtering algorithm is used to remove lesion voxels not connected to
the real lesions. This method uses distance information together with in-
tensity information to improve the accuracy of lesion segmentation and,
thus, it is specially useful when MS lesions have similar intensity values
than other tissues. It is also well suited for interactive segmentations due
to its efficiency. Results are shown on real MRI data as wall as on a
standard database of synthetic images.

1 Introduction

MS lesions have similar MRI intensity levels than other tissues, such as gray
matter (GM) in T1 weighted MRI or cerebrospinal fluid (CSF) in T2 weighted
MRI, making lesion segmentation and subsequent quantitative analysis a very
difficult task. Approaches to tackle this problem include multimodal acquisition
of different datasets and atlas registration, in order to take advantage of the fact
that lesions only appear inside the white matter [1].

Here we propose a supervised segmentation method based on three steps: (1)
k-Nearest Neighbor (k-NN) classification, (2) distance-based intensity overlap
resolution, and (3) connected components relabeling.

The k-NN rule [2] is a popular supervised classification method with asymp-
totic optimum properties, which has been used for years for MRI segmentation
due to its good stability conditions [3]. The main disadvantage of this technique
is its low execution performance due to the neighbor search, specially in the



multimodal case. The simplest approach, the brute force method, computes for
every test pattern, the distances to all the training prototypes and then choses
the k nearest ones. This approach is unfeasible for large 3D medical datasets. For
this reason several techniques to improve the k-NN performance have been pro-
posed. For example Friedmann [4] ordered the prototypes by increasing distance
in every channel and then, the search is reduced to the channel with less local
sparsity, reducing the dimensionality of the searching space. Another method is
described by Jian-Zhang [5] and Fukunaga [6] which use a branch and bound
strategy to find out the nearest neighbors. A very efficient method was proposed
by [7], where a fast distance transformation is used to generate a look-up table
with the k nearest neighbors directly available. Our k-NN implementation is
based on an improved version of this method described in [8].

In order to distinguish different tissues with overlapping intensities, spatial
information is added to the method by computing a distance transformation
(DT) from the training prototypes. Finally a connected component algorithm is
used to remove isolated voxels that are not connected to the real MS lesion.

Indicative execution times are: 0.5 seconds for 256 × 256 images, and one
minute for a full 3D (181× 181× 217) volume.

2 Method

In this work we have chosen a supervised segmentation method, such as the
k-NN rule, mainly because it can take into account abnormal anatomy better
than unsupervised methods. Some authors have reported unsupervised methods
in order to segment abnormal anatomy, as for example tumors detection [9].
Those methods need the introduction of a priori anatomy knowledge in order
to detect outliers, and this is achieved usually by means of atlas registration.
There are basically two problems with unsupervised methods. The first one is
the accuracy, because image registration is an ill posed problem, and thus it is
very hard to find voxels belonging to abnormal anatomy among the voxels that
are not well registered with an atlas. Usually even for a medical expert it is
hard to identify where exactly is located a lesion. The second drawback is the
low speed-performance of unsupervised segmentation algorithms, which is also
a clear disadvantage.

The k-NN rule is a non-parametric pattern classification technique that has
proved to be an excellent method for supervised classification of MRI data.
An excellent description of k-NN classification is provided in [10]. Before being
applied it requires a training step, carried out by a medical expert by selecting a
dataset that consists of a set of classified voxels (training prototypes). Training is
carried out in 2−3 minutes using 100−300 prototypes, which are usually stored
in a file that can be interactively edited in order to improve the segmentation.
After training, the method consists of a pipeline with three automatic steps:



2.1 k-NN Pre-Segmentation

The k nearest prototypes of every voxel are searched in order to classify it
as class c if most of the k prototypes found belong to class c. A brute force
implementation of this algorithm demands a huge computational load and is
not feasible for large 3D medical datasets. Thus, we have used a scheme, first
described by Warfield [7], where a look-up table is computed by finding out a
partition of the feature space into regions such that points in each region have
the same k closest prototypes. This partition of the space is denoted as a Voronoi
diagram of order k, and if the voxel values are the identifiers of the Voronoi cell
centers, this is called the nearest neighbor transform of order k. Some good
surveys of the types of Voronoi diagrams and its properties can be found in
Okabe et al. [11] and Aurenhammer et al. [12].

In order to compute the k-Voronoi diagrams efficiently we use a novel im-
plementation of a fast algorithm initially proposed by Cuisenaire [8], which is
based on a DT by ordered propagation. The concept of ordered propagation to
compute DT was introduced by Verwer [13], and the idea is essentially to scan
the data from the training prototypes to the rest of the image, i.e., by increasing
distance order. For this reason, every voxel in the volume is visited only once to
compute the DT as opposed to distance transformations based on mask propa-
gation [14–16], which need several raster scans over the image, and hence voxels
are visited more than once. The difference between our approach and that of
Cuisenaire is that he uses a technique called bucket sorting to store the elements
in the propagation scheme, and our implementation uses a double list strategy
which is less memory consuming and therefore more efficient. The k-Voronoi di-
agram implementation that we use requires that every pattern is visited k times,
obtaining a computational complexity of order O(k.m), i.e. the performance of
this approach is linear in the number of patterns in the feature space, m, and
linear in k.

Figure 1(a) shows the training prototypes corresponding to a two-channel
MRI dataset, (T1w and T2w). The DT from the prototypes, the look-up table
for k = 1 used in the k-NN classification, and the Voronoi diagram of order
one from the prototypes are also shown in 1(b), 1(c) and 1(d) respectively. The
lookup table can be interpreted as a partition of the feature space on Nc regions,
where Nc is the number of classes, and each region represents a class c, in such a
way that a pattern is classified as class ci if its feature coordinates are located in
the region of class ci at the lookup table. Notice that the lookup table is formed
by the junction of the Voronoi cells belonging to the same class. We show the
result of the pre-segmentation step with one channel for a T1w MRI coronal
slice of the brainweb dataset [17] in figure 3(b), where many voxels belonging to
gray matter are misclassified as MS and vice versa due to the overlapping in the
intensity space.

2.2 Distance-based Relabeling

The initial k-NN classification using only intensity information is not enough to
get good results if there exist tissues with intensity values in the same inten-
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Fig. 1. Training prototype patterns corresponding to a two channel MRI data (a),
distance transformation coded with a cyclic colormap from the prototypes (b), lookup
table for k = 1 (c) and order one Voronoi diagram corresponding to the training
prototypes (d)

sity range, as for example gray matter and lesion in T1 weighted MRI. For this
reason we propose to separate these ambiguous tissues using additional infor-
mation. This information is taken here from the spatial location of the training
prototypes, in particular, the Euclidean distance from a given pattern to the
nearest prototype in the image space. With the addition of spatial information,
the patterns to classify becomes of the form (I1, .., ID, dx, dy, dz), increasing in 3
the space dimension: D+3, where D is the number of channels used. This means
that the neighbor search is now in a space of dimension 4 or 5 if the number of
channels used are 1 or 2. Searching in a space of dimension higher than 3 is more
computationally expensive, more memory consuming and harder to implement.
Thus, focusing on efficiency, our method separates intensity and spatial infor-
mation in different steps. We propose to use a distance-based relabeling step
in addition to the previous k-NN pre-segmentation, in order to add the spatial
information and distinguish patterns with similar intensity values that belong
to different classes.



Let C be the set of classes with overlapping intensity values. If a pattern p
is classified as class ci ∈ C, p will be relabeled, assigning to it the class of the
prototype closest to it. This is like adding a new channel of distances d to the
k-NN classification in order to resolve the overlap of the classes in the intensity
space, as shown schematically in figure 2.

In order to make the relabeling of the pre-classified voxels in an efficient way,
the Euclidean distance transformation from the prototypes belonging to the set
of overlapping classes C are computed in the whole image. For example, in a T1
weighted MRI, there are two conflicting classes in C: gray matter (c1) and lesion
(c2). In this case two DTs are computed from the prototypes of both classes.
Then a pattern p initially belonging to c1, will be classified as c2 if the DT from
c2 prototypes has a lower value at p than the DT from c1 prototypes. Notice that
we prevent mis-classifications of voxels clearly classified, regardless how close in
the image are the prototypes of the other classes, by avoiding relabeling voxels
outside C, i.e. voxels with no intensity overlapping.

As in the first step, the DT implementation used here is based on ordered
propagation with a double list strategy in order to be highly efficient. In con-
sequence, the computational complexity in this step is linear in the number of
voxels: O(M). Notice that now we need to compute a DT in a 3D space, while
in the previous k-NN pre-classification step the lookup table was computed in a
domain of dimension equal to the number of channels used, which is usually no
more than two. Therefore, the computational load is now higher because M is
in general greater than k.m. The result of the distance-based relabeling step for
the T1w MRI coronal slice of the brainweb dataset is shown in figure 3(c), and
the DT used is shown in figure 4 for the GM prototypes and the MS prototypes.

1I

2I

1I

2I

d d

Fig. 2. Two classes overlapped in the feature space I1 and I2 (left), and class separation
adding the spatial channel d (right)
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Fig. 3. Source image: T1w MR coronal slice (a). First step: k-NN segmentation with
one intensity channel (b). Second step: distance-based relabeling (c). Third step: con-
nected component filtering from MS lesions (d). Color code: Background = black,
White Matter = light blue, Gray Matter = gray, CSF = orange, MS = dark blue

2.3 Connected Component Filtering

Still some mis-classifications remain since there are voxels located near lesion
prototypes but they do not really belong to lesion, as shown in figure 3(c).
This problem appears because the proportion of lesion prototypes respect to the
number of voxels that really belong to lesion is high compared to this proportion
in other tissues due to the major importance and locality of MS lesions. For this
reason many non lesion voxels are mis-classified. The third step corrects this
problem, removing the lesion regions not connected to lesion prototypes. This is
achieved applying a connected component filter to the classified image starting
from the lesion prototypes (see figure 3(d)). It is required to have at least one
prototype for every MS lesion connected component, in order to obtain a correct
classification with our method.

2.4 Results

In addition to the 2D experiment shown before, we have made 3D experiments
using the standard simulated 181×181×217 MRI brainweb dataset [17] to asses
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Fig. 4. DT from GM prototypes (a),(c) and from MS prototypes (b),(d) coded in gray
scale colormap (top), and coded in a cyclic colormap (bottom)

quantitatively the speed-performance, we illustrate in figure 6 the orthogonal
slices of a 3D segmentation with our method. The total CPU times measured
in a SUN Ultra-10 workstation with a SPARC II 440 MHz processor and 512
MB RAM, are shown in table 1, as well as the partial times for the different
steps in the 2D and 3D experiments. Notice that the second step is the most
time consuming one, and the total execution time in the 3D experiment takes
less than one minute (59.66 seconds).

Figure 5 shows an example from real MRI data, from a patient with Multiple
Sclerosis. The original axial slices PD and T2, show four non connected MS
lesions, which are always correctly identified by our method using k = 5 and
100 prototypes. Notice that if no distance information is used, multiple MS mis-
classifications appear in the image, as shown in figure 5 on the left side of the last
three rows, moreover when the intensity values are similar to other structures
and only one channel is used as in the T2 case shown in the second row of figure
5.



Fig. 5. Top row: axial T2 weighted MRI slice of a patient with MS, (left) and PD
weighted (right). Second row: k-NN segmentation using T2 (left) and using T2 plus
spatial information (right). Third row: k-NN segmentation using PD (left) and using
PD plus spatial information (right). Bottom row: k-NN segmentation using T2 and
PD (left) and using PD, T2 plus spatial information (right). Color code: Background
= black, White Matter = light blue, Gray Matter = gray, CSF= orange, MS = dark
blue



Fig. 6. Orthogonal slices of a 3D segmentation

Table 1. Total and partial execution times in seconds, for the 2D and 3D experiments.
Number of prototypes used: 127 in the 2D case, and 390 in the 3D case

step 1 step 2 step 3 Total

3D (181x181x217) 6.67 52.36 0.63 59.66
2D (181x181) 0.09 0.26 0.002 0.35

3 Conclusions

We have shown a novel high performance method for the segmentation of ab-
normal anatomy in MRI data, such as MS lesions. One of the main features of
this scheme is that it can segment different structures with the same intensity
level range. The other principal feature is the high performance achieved due to
the fast algorithms to compute distance transformations and Voronoi diagrams
on which our method is based on.

Our scheme also shows some advantages with respect to unsupervised meth-
ods, because it is fairly stable for the segmentation of abnormal anatomy, and
because no image-atlas registration is needed, which is usually a performance
bottleneck in other methods. On the other hand, the whole execution time is
to be increased around one more minute in order take into account the user
interaction to train the classifier.

The algorithm shows a high accuracy, depending essentially on the training
dataset selected by a medical expert, and it performs really well using one inten-
sity channel compared to segmentations carried out with more than one channel,
which is a clear advantage for clinical applications. It is useful for interactive seg-
mentation due to its high performance and the facility to add or remove training
prototypes to improve the results.

The applications of this method go well beyond MS MRI segmentation since
it can be used to segment almost every type of image modalities. Currently we
are starting to use it for MRI segmentation of the knee cartilage.



Acknowledgments

The first author is funded by a FPU grant from the University of Las Palmas de
Gran Canaria. This work has been partially supported by the Spanish Ministry
of Science and Technology and European Commission, co-funded grant TIC-
2001-38008-C02-01.

References

1. Warfield, S., Kaus, M., Jolesz, F., Kikinis, R.: Adaptive, template moderated,
spatially varying statistical classification. Medical Image Analisys 4 (2000) 43–55

2. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory IT-13(1) (1967) 21–27

3. Clarke, L., Velthuizen, R., Phuphanich, S., Schellenberg, J., Arrington, J., Silbiger,
M.: MRI: Stability of three supervised segmentation techniques. Magnetic Reso-
nance Imaging 11 (1993) 95–106

4. Friedman, J., Baskett, F., Shustek, L.: An algorithm for finding nearest neighbors.
IEEE Trans. on Computers C-24(10) (1975) 1000–1006

5. Jian, Q., Zhang, W.: An improved method for finding nearest neighbors. Pattern
Recognition Letters 14 (1993) 531–535

6. Fukunaga, K., Narendra, P.: A branch and bound algorithm for computing k-
nearest neighbors. IEEE Transactions On Computers C-24 (1975) 750–753

7. Warfield, S.: Fast k-nn classification for multichannel image data. Pattern Recog-
nition Letters 17(7) (1996) 713–721

8. Cuisenaire, O., Macq, B.: Fast k-nn classification with an optimal k-distance trans-
formation algorithm. Proc. 10th European Signal Processing Conf. (2000) 1365–
1368

9. Kaus, M.: Contributions to the Automated Segmentation of Brain Tumors in MRI.
PhD thesis, Berlin, Germany (2000)

10. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley &amp
(1973)

11. Okabe, A., Boots, B., Sugihara, K.: Spatial Tesselations: Concepts and Applica-
tions of Voronoi Diagrams. Wiley (1992)

12. Aurenhammer, F., Klein, R.: Voronoi diagrams. In Sack, J., Urrutia, G., eds.:
Handbook of Computational Geometry. Elsevier Science Publishing (2000) 201–
290

13. Verwer, B., Verbeek, P., Dekker, S.: An efficient uniform cost algorithm applied
to distance transforms. IEEE Transactions on Pattern Analysis an Machine Intel-
ligence 11(4) (1989) 425–429

14. Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision,
Graphics and Image Processing 27 (1984) 321–345

15. Danielsson, P.: Euclidean distance mapping. Comput. Graph. Image Process. 14
(1980) 227–248

16. Ragnemalm, I.: The Euclidean distance transform in arbitrary dimensions. Pattern
Recognition Letters 14 (1993) 883–888

17. Cocosco, C., Kollokian, V., Kwan, R.S., Evans, A.: Brainweb: online interface to a
3D MRI simulated brain database. In: Neuroimage. Volume 5 of 425., Copenhagen
(1997)


