
On the Synthesis of a Reactive Module

Amir Pnueli and Roni Rosner*
Department of Computer Science

The Weiamann Institute of Science
Rehovot 76100, Israel

amirOwiedom.bitnet, roniQwisdom.bitnet

Abstract

We consider the synthesis of a reactive module with
input x and output y, which is specified by the lin-
ear temporal formula ~(2, y). We show that there
exists a program satisfying ‘P iff the branching time
formula (Vx)(Zly)A~(z, y) is valid over all tree mod-
els. For the restricted case that all variables range
over finite domains, the validity problem is decidable,
and we present an algorithm for constructing the pro-
gram whenever it exists. The algorithm is based on
a new procedure for checking the emptiness of Rabin
automata on infinite trees in time exponential in the
number of pairs, but only polynomial in the number
of states. This leads to a synthesis algorithm whose
complexity is double exponential in the length of the
given specification.

1 Introduction

An interesting and fruitful approach to the system-
atic construction of a program from its formal speci-
fication is based on the idea of program synthesis as
a theorem proving activity. In this approach, a pro-

*The work of this author was partially supported by the
Israel ministry of science and development, the national council
for research and development.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1989 ACM O-89791-294-2/89/0001/0179 $1.50

gram with input x and output y, specified by the for-
mula P(X, y), is constructed as a by-product of prov-
ing the theorem (VX)(~~)P(X, y). The specification
P(Z, y) characterizes the expected relation between
the input z presented to the program and the out-
put y computed by the program. For example, the
specification for a root extracting program may be
presented by the formula]x - y2] < E.

This approach, which may be called the AE
paradigm, or alternately, the Skolem paradigm,
is based on the observation that the formula

(Vx) @Y)‘p(G Y) is equivalent to the second order for-
mula (3f)(Vx)~(x, f(x)), stating the existence of a
function f, such that P(Z, f(x)) holds for every 2.
If we restrict the proof rules, by which the synthesis
formula is to be established, to a particular set of COR-
structive rules, then any proof of its validity necessar-
ily identifies a constructive version of the function f,
from which a program that satisfies the specification
(0 can be constructed.

The AE-paradigm for the synthesis of sequential
programs has been introduced in [WL69] (but see also
IElg61]), and has been the subject of extensive re-
search [MW80,Con85] directed at extending the class
of programs that can be synthesized, and the theories
that may be used for the proofs, as well as strengthen-
ing the proof rules and the mechanisms for extracting
the program from the proof.

The success of this approach to sequential program-
ming should not be judged only by the number and
complexity of programs that can be fully automati-
cally derived, even though serious efforts are continu-
ously invested in extending the range and capabilities
of fully automatic synthesizers, in much the same way
we keep improving the power of automatic theorem
provers. The more important contribution of this ap-

179

preach is in providing a conceptual framework for
the rigorous derivation of a program from its spec-
ification. Once this scheme is accepted, it can, in
principle, be followed in a completely manual fashi.on,
but encourages, on the other hand, the open ended
development of a support system that will offer au-
tomatic support to increasingly larger parts of the
procedure. Equally important is the realization of
the identity between the processes of theorem prov-
ing and program construct ion. It has been recognized
very early that every system for the formal devel-
opment of programs must contain at least a powerful
theorem prover as an important component. The ap-
proach of synthesis by theorem proving tells us that
such a system need not contain much more than a
theorem prover.

In view of the success of this approach for se-
quential programs, there is no wonder that several
attempts have been made to extend it to concur-
rent programs. These attempts were held back for
awhile by the question of what was the appropriate
language to use for expressing the specification for-
mula CP. While, for sequential programs, it is ob-
vious that a properly enriched first order language
is adequate, it took time to propose a similarly ade-
quate specification language for concurrent progra.m.9.
One of the more stable proposals is that of temporal
logic ([Pnu77,GPS%O,MP82,SC85,Pnu86]). The ba-
sic supposition underlying temporal logic is that con-
current programs often implement reactive systems
(see [HP85,Pnu85]) whose role is not to produce an
output on termination, but rather to maintain an on-
going interaction with their environment. Therefore,
the specification should describe the expected behav-
ior of the system throughout its activity.

Indeed, the two main works on the synthesis of
concurrent programs, which are reported in [CE81]
and (MW84], consider a temporal specification ‘P, and
show that ifit is satisfiable, we can use the model that
satisfies ~3 to construct a program that implements (0.

There are, however, some limitations of the ap-
proach, as represented in these two pioneering con-
tributions, due to the fact, that the approach is based
on satisfiability of the formula expressing the specifi-
cation CP(Z, y). Th e implied limitations are that the
approach can in principle synthesize only entire or
closed systems.

To see that, assume that the system to be con-
structed has two components, Cr and C,. Assume
that only Cr can modify 5 (a shared variable used
for communication) and only C’s can modify y. The
fact that (P(z, y) is satisfiable means that there ex-
ists at least one behavior, listing the running values
of z and y, which satisfies CP(Z, y). This shows that

there is a way for Cr and C’z to cooperate in order
to achieve 9. The hidden assumption is that we have
the power to construct both Cr and Cz in a way that
will ensure the needed cooperation. If indeed we are
constructing a closed system consisting solely of Cr
and Cz and having no additional external interaction,
this is quite satisfactory.

On the other hand, in a situation typical to an open
system, Cr represents the environment over which the
implementor has no control, while Cz is the body of
the system itself, to which we may refer as a reactive
module. Now the situation is no longer that of peace-
ful cooperation. Rather, the situation very much re-
sembles a two-person game. The module Cz does its
best, by manipulating y, to maintain cP(x, y), despite
all the possible z values the environment keeps feed-
ing it. The environment, represented by Cl, does
its worst to foil the attempts of Cz. Of course, this
anthropomorphism should not be taken too literally.
The main point is that we have to show that Cz has
a winning strategy for y against all possible z scenar-
ios the environment may present to it.

It seems that the natural way to express the exis-
tence of a winning strategy for Cs, is again expressed
by the AE-formula (VZ)(~Y)P(X, y). The only differ-
ence is that now we should interpret it over temporal
logic, where z and y are no longer simple variables,
but rather sequences of values assumed by the vari-
ables z and y over the computation. In contrast, we
may describe the approach presented in (MW84) and
(CE81] as based on the formula (3x)(3y)~(s, y).

This is indeed the main claim of this paper.
Namely, that the theorem proving approach to the
synthesis of a reactive module should be based on
proving the validity of an AE-formula. As we will
show below, the precise form of the formula claim-
ing the existence of a program satisfying the linear
time temporal formula cP(x, y), is (Vz)(?ly)A(Q(x, y),
where A is the “for all paths” quantifier of branch-
ing time logic. Thus, even though the specification
cP(z, y) is given in linear logic, which is generally con-
sidered adequate for reactive specifications, the syn-
thesis problem has to be solved in a branching frame-
work. This conclusion applies to the synthesis of both
synchronous and asynchronous programs, yet for sim-
plicity of presentation, we prefer to restrict the expo-
sition in this paper to the synthesis of synchronous
programs. The application of our approach to the
synthesis of asynchronous programs will be presented
in a subsequent paper.

An interesting observation is that the explicit quan-
tification over the dynamic (i.e., variables that may
change their values over the computation) interface
variables, x and y, is not absolutely necessary. As

180

we will show in the paper, there exists an equivalent
branching time formula, which quantifies only over
static variables (i.e., variables which remain constant
over the computation), whose satisfiability guarantees
the existence of a program for P(Z, y). For the case
of finite state programs, this other formula becomes
purely propositional, and its sat&liability, therefore,
can be resolved by known decision methods for sat-
isfiability of propositional branching time formulae.
However, for the more general case that deductive
techniques have to be applied, we prefer to estab-
lish validity, rather than satisfiability, in particular
since the explicitly quantified version emphasizes the
asymmetry between the roles of the variables z and
y in the program.

We justify our main claim on two levels. First we
consider the general case and show that the synthe-
sis formula is valid iff there exists a strategy tree for
the process controlling y. We then argue that such
a strategy tree represents a program by specifying
an appropriate y for each history of z values. On
this level we pay no attention to the question of how
effective this representation of a program is, which
becomes relevant when we wish to obtain a program
represented in a conventional programming language.

Hence, in a following section we consider the more
restricted case in which the specification refers only to
Boolean variables. In this case the validity of the syn-
thesis formula is decidable, and we present an algo-
rithm for checking its validity and extracting a finite-
state program out of a valid synthesis formula.

A related investigation of synthesis for the finite
state case, based on a similar approach, has been car-
ried out in (BL69]. The question, formulated for the
first time in [Chu63], has been asked in an automata-
theoretic framework, where the specification P(Z, y)
is given by an w-automaton accepting a combined
z,y-behavior, and the extracted automaton is an w-
transducer. The solution presented in (BL69] uses
game-theoretic ideas, and it is of very high compu-
tational complexity. Later, [HR72] and [Rab72] have
observed, similar to us, that even though the speci-
fication is expressed by automata on strings (corre-
sponding to linear temporal logic), its synthesis must
be carried out by using tree automata. In our own
approach we had to use a similar algorithm for check-
ing emptiness of w-tree automata. The previously
best known complexity of this problem has been non-
deterministic polynomial time in the overall size of
the automata ([VS85,Eme85]). Another important
result of our paper is a derivation of a better empti-
ness checking algorithm, whose complexity is deter-
ministic polynomial time in the number of states
and exponential in the number of pairs in the ac-

ceptance condition of the automata (a different algo-
rithm yielding similar complexity has been recently
reported in [EJ88]). Using this improved algorithm,
the complete synthesis process can be performed in
deterministic time which is doubly exponential in the
size of the specification.

The papaer is organized as follows. The second
section introduces a general temporal logic. The third
section presents the implementability problem, while
the fourth and the fifth sections suggest a temporal
framework for the development of reactive modules,
for the general (first-order) and for the finite-state
cases, respectively. Examples of the development of
finite-state modules are exhibited in the sixth section.
The seventh and the eighth sections are concerned
with automata and formal languages in general, and
with the emptiness problem of automata on infinite-
trees in particular.

2 Temporal Logic

We describe the syntax and semantics of a general
branching time temporal language. This language is
an extension of CTL’ ([CES86,EH86,ES84,HT87]),
obtained by admitting variables, terms, and quan-
tification. Its uocabulary consists of variables and op-
erators. For each integer k 2 0, we have a countable
set of k-ary variables for each of the following types:
static junction variables - Fk, static predicate uari-
ables - U”, dynamic function variables - f”, and
dynamic predicate variables - uk. The intended dif-
ference between the dynamic and the static entities
is that, while the interpretation of a dynamic element
in a model may vary from state to state, the interpre-
tation of a static element is uniform over the whole
model. For simplicity, we refer to 0-ary function vari-
ables simply as (individual) variables, of which we
have both the static and the dynamic types. The
operators include the classical 7, V, 3 and the tem-
poral 0 (next), U (until) and E (for some path). A
survey of similar approaches in the context of modal
logic can be found in [BacBO].
Terms: For every k 2 0, If tl,. . . , tk are terms, then
so are Fk(tl, . . . , tk) and fk(ti, . . . , tk).
State formulae are the (only) formulae defined by the
following rules:

1. For all k 2 0, rf ti, . . . , tk, are terms, then

u” (t1 , . . . , tk) and u”(tl, . +. , tk) are (atomic)
state formulae.

2. If p and q are state formulae, then so are up, (pv

q) and (3cu)p where a is any variable.

3. If p is a path formula then Ep is a state formula.

181

Path formulae are the (only) formulae defined by the
following rules:

1. Every state formula is a path formula.

2. If p and Q are path formulae, then so are -up, (pV

q), OP and (pUq)-

We shall omit the superscripts denoting arities and
the parentheses whenever no confusion can occur. We
also use the following standard abbreviations: T for
pVyp, F for lT, phq for y(--pV-q), p -+ q for -pVq,

P = q for (P -+ q) A (q +’ P), (VQ)P for ++P),
Op for TUp, Cl p for ~O-lp, puq for pu q V •I q and
Ap for 43(-p). W e s a use the letters a,b for static h 11
individual variables (constants) and z, y for dynamic
individual variables, or propositions, for the Boolean
case.

By restricting this syntax, one gets special cases
of the temporal language. In classical static logic,
there are no dynamic variables nor temporal o:per-
ators (0, U, E). First-order logic permits 3 quan-
tification over individual variables only. In proposi-
tional (resp. quantified propositional) logic, the only
variables permitted are propositions, without (resp.
with) 3 quantification over them. Finally, linear tem-
poral logic omits the E operator (i.e. all linear for-
mulae are path formulae).

The semantics of temporal logic is given with. re-
spect to models of the form M = (D,1,M). D is
some non-empty data domak, I is a (static) inter-
pretation of all static variables into appropriate func-
tions and predicates over D, and M = (S, R, L) is a
structure. S is a countable set of states. R s S x S is
a binary total access relation on S. L is the labeling
function, assigning to each state s E S a (dynamic)
interpretation L(s) of all dynamic variables into ap-
propriate functions and predicates over D. A path
in M is a sequence r = (se, 91,. . .) such that fo:r all
i 2 0, (si, si+l) E R. A ,fullpath in M is an infinite
path. Denote by &) = (si, sj+l,. . .) the jth sufiz
Of IT.

A structure M = (S, R, L) is called a tree-structure,
iff the following conditions are satisfied:

1. There exists a precisely one state, r E S, called
the root of M, which has no parent, i.e., no state
s E S, such that R(s, r).

2. Every other state t # r, has precisely one parent.

3. For every state s E S, there exists a unique Ipath
leading from r to s.

A model M = (D, I, M), is called a tree-model, iff the
structure M is a tree-structure.

In order to interpret applications of static functions
and predicates to terms, and applications of existen-
tial quantifiers over static variables to formulae, we
use standard definitions, over the static interpretation
I and the semantics of the given terms or formulae.
Analogously, applications of dynamic functions are
interpreted with respect to dynamic interpretations.

Satisfiability of a state formula is defined with re-
spect to a model M and a state s E S, inductively as
follows:

1. VW k 4tl, ..+, tk) iff L(s)(u)(dr, . . . ,dk) =
true, where di is the semantics oft; in (M, s), 1 <
i 5 k. That is, we apply u, as interpreted in s by
L, to the evaluation of tl,. . . , tk, as interpreted
in 5.

2. (M,s) + up iff not (M,s) k p.

3. (M,s) l==pvq iff(M,s) l=porW,s) I=+

4. For a dynamic variable Q, (M, s) k (3cy)p iff
(M’, 3) ‘l= p for some M’ which equals M except
that for any t E S, L’(t)(o) may be different
than L(t)(a).

5. For a path formula p, (M, 3) F Ep iff for some
fullpath x = (3,. . .) inM, (M,4 +P.

Satisfiability of a path formula is defined with respect
to a model M and a fullpath r in M, according to the
following:

1. For ?r = (30,. . .) and a state formula p, (M, T> i=
P iff (M, 30) I= P.

2. (M,T) + yp iff not (M,n) k p.

3. (M,d t=pvqiffW,d l==por (44 I==.
4. (M,?r) t= Op iff (M,7rf11) +p.

5. (M,A) + pUq iff for some j 2 0, (M,&)) k q,
andforalli, O<;<j; (M,di))+p.

We say that the model M satisfies the state formula
p, and write M + p, iff (M, so) /= p, for some state
so of M. For the case of a tree-model, there is no loss
of generality in assuming that 30 is the root of the
model. A state formula p is said to be satisjiable iff
for some model M, M k p. The formula p is valid,
denoted by k p, iff it is satisfied by every model.

3 The Implementability prob-
lem

We define a (semantic) synchronous program P from
D to D to be a function jp : D+ -+ D, i.e., a func-
tion mapping non-empty sequences of D elements

182

into elements of D. The intended meaning of this
function is that it represents a program with an in-
put variable x ranging over D, and an output vari-
able y with the same range, such that at each step
i = 0,l 1 ***, the program outputs (assigns to y) the
value fp(ao, al,. . . , oi), where au, or,. . . , oi is the
sequence of input values assumed by x over steps
0,l i. ,“‘,

Note that our treatment at this point is semantic,
meaning that we are mainly interested in the exis-
tence of such a function, and ignore, for the time be-
ing, the question of its expressibility within a given
programming language. Obviously, a complete exam-
ination of the synthesis problem should consider both
the semantic aspect and the syntactic aspect.

We define a behavior of the program P to be an
infinite sequence (for simplicity we only consider non-
terminating programs) of pairs

u : (~0, bo), (~1, bl), ---

such that, for every i 3 0, ui, bi E D, and bi =
fp(a0, ~1,. . . ,ui). A program P satisfies a linear
temporal logic specification P(x, y), written P t=
CP(X, y), iff every behavior u of P satisfies d k ~(2, y).
We may now consider the following problem:

Problem 1 (Implementability) Given a linear
specification (o(z,y), does there exists a program P
which satisfies (0(x, y) ?

Specifications for which such a program exists are
called implementable, and the program satisfying
them is called an implementation of the correspond-
ing specificat ion.

The main question is to find conditions which are
necessary and sufficient for the (semantic) imple-
mentability of a given specification. For example, in
the transformational case, i.e., that of non-reactive
terminating sequential programs, the specification is
given by a first order (non temporal) formula V(x, y)
where x and y range over some domain D. The ba-
sis for synthesis of transformational programs is the
theorem that such a specification is implementable iff
the implementabilityformula (Vx) (3y)(o(x, y) is valid.
We are looking for a similar condition for the reactive
case.

CIearly, satisfiability of the temporal formula
cP(x, y) (also guaranteeing its consistency), which is
the basis for the synthesis approaches of [CE81] and
[MW84], is a necessary but not a sufficient condition
for implementability in our sense. To see this, it is
sufficient to consider a specification which constrains
the sequence of input values provided by the envi-
ronment, without even saying anything about the se-

quence of output values. An example of such a spec-
ification is given by

(0 : ox.

This formula states that the next input value (the one
presented at step l), is T. In this and all the other ex-
amples presented here, we assume the domain D to be
the boolean domain, and x,y to be dynamic boolean
variables. This specification is unimplementable, be-
cause no matter how the function fp is defined, the
program P will always have a behavior of the form

(ao, bo), (F, bl), . . .

which violates the above specification. This, of
course, is a direct consequence of the fact that in
constructing the module P, we cannot control the be-
havior of the environment, expressed by the sequence
of input values it chooses to present to the module.

Our next best attempt has been to mimic the trans-
formational case, and suggest the linear temporal for-
mula (V~)(~Y)P(X, Y) as an implementability formula,
whose validity is a necessary and sufficient condition
for the existence of an implementation, Unfortu-
nately, this does not work either. Consider the spec-
ification

ex, Y) : (Y = Ox),

which requires that the first output value (issued at
step 0) is T iff some input value, appearing now or
later, equals T. It is not difficult to see that the
formula (Vx)(3y)P(x, y) is valid. It is sufficient to
substitute Ox for y, in order to get the obvious tau-
tology (t/x)(0x c Ox). However, this specification
is certainly not implementable. To implement it we
need a clairvoyant program, which can foresee at the
first step whether any of the future inputs will ever
equal T. Our definition of programs, which corre-
sponds to the way real programs operate, allows the
program to base its decision of the next output only
on the inputs it has seen so far, i.e., only on the past.
Somehow, we have to introduce this restriction of the
past-dependency of y on x, into the implementabil-
ity formula. As we will show next, this can be done
if we extend our logic framework to branching time
temporal logic.

4 Development of Reactive
Modules

Assume that we wish to develop a reactive module,
communicating with the environment by an input
variable x and output variable y. The partition of

183

the variables into input and output means that only
the environment can modify z, and only the module
can modify y. By our restriction to synchronous sys-
tems, each step in a computation starts by the envi-
ronment setting a value to 2, and the module read-
ing the value and responding by setting a value to
y. Thus, a typical behavi.or of such a system is .a se-
quence (ae, a,), (al, bi), . . . where ai,a2,. . ., are the
values given to z by the environment, and bi, ba, . . .,
are the responses of the module. Without loss of gen-
erality, we may assume that ao, bo are fixed, and for
every i > 0, bi may depend on al,. . . , ai-1, ai.

Let CP(Z, y) be a formula in linear temporal logic,
specifying the requirements of the module. We as-
sume that x and y are the only free variables in ‘P.
We consider x and y to be just single variables for
simplicity - the extension of the results below, to
the case where x and y are vectors of variables, is
straightforward. We further assume the validity of
p -+ ((x = uo) A (y = bb)), in order to express our in-
terest in models with roots satisfying our fixed initial
condition, namely x = ac and y = bo.

Let D be some fixed data domain and I some fixed
interpretation over D. Since D and I are fixed, we
shall identify models M of the form (D, I, M) with
their non-fixed elements, i.e., with the dynamic s,truc-
ture M, and write ‘the model M’, referring to the
whole model M = (D, I, M). For definitions and no-
tations for some of the constructs used below, see the
section on formal languages. A full-z-tree is a model
M = (S, R,L), where S = D*, (21, zz) E R +=+

zn = zia for some a E D, and L : S x {x, y} * D sat-
isfies (L(e, z),L(c, y)) = (a~, bo), and L(zu,x) = a.
Thus, a full-x-tree is baaed on a structure whose
states are named after strings of the elements of D.

For example, if D = CQ == (0, 1) (a Boolean domain),
then the states are strings over Ca, i.e., elements
of (o+ l)*. In general, a state z = al,. . . , ak, for
a; E D, 1 5 i 5 k, has succesors zb for each b E D
(z0 and zl for the Boolean domain). We further re-
quire that L assigns the fixed values ao to x and bo to
y at the root, and the value ak E D to x in the state
z = al,. . . , ak. The intuition behind a full-x-tree is
that it should contain all the possible sequences of x
values.

Lemma 1 The formula ti = (Vx)(!iy)AIO is valid
over all tree-models iff Ap holds ouer some full-x-
tree M.

Proof: The ‘only if’ direction is obvious from the
definition of validity. For the ‘if’ directitn, assume
M = (D’, R, L) /= A(o, and let M y (S,R,.t) be
any other tree-model. Define M’ = (S, R, L’), with
L’(s,z) = Z(s,z) f or every dynamic variables 2: # y.

Lete(.s,x)=&e.ForeverysE,i?,let(r,si,...,sk=:
s) be the unique path in &f (and in M’) leading from
the root r to s, and let 60, al,. ..,ukED+ bethese-
quence of values assigned to x on this path by A. Con-
sider the state z = al,. . . , ak E D* in the structure
M, and define L’(s, y) = L(z, y). Since M b Ap, it
follows that M’ b A(o, and hence M k (3y)Ap. But
this applies to every such fi, hence ~6 is valid over all
tree-models. I

Given a full-x-tree M, we can interpret it as a pro-
gram PM, represented by the function ~PM, such that

fe (a~, al,. . . , ai) = L(a0, al,. . . , ai , Y).

The proof of the following lemma is immediate from
the definitions and from lemma 1.

Lemma2 P”/=‘PiffMkAp. I

We conclude the general case by the following theo-
rem.

Theorem 1 (Implementability) The following
conditions are equivalent:

1. The specification (~(5, y) is implementable.

1. The formula (Vx)(Ely)A’~(x,y) is valid over all
tree-models.

3. The formula Ap(x, y) holds over some full-x-
tree.

4. The formula Ap(x, y) A A •I (Va)E 0 (z = u) is
satisfiable.

Proof: The equivalence of l-3 is straightforward.
To relate clause 4, we observe that the conjunct
Au(Va)E 0 (x = a) ensures that every node n
in the constructed model, has descendants n, with

L(h, x) = a for every a E D. Thus, a model satis-
fying this conjunct, has a full-x-tree embedded in it
(perhaps in a folded form). I

5 The Finite-State Case

Restricting to Boolean domains, we may clearly treat
the logic as purely propositional, by considering all
variables to be propositions. Full-x-trees become full
binary trees, over the set of states S = C;, where
CZ = (0, 1). Note that a more general finite domain
can always be reduced to several Boolean domains.

Therefore, what we are looking for is a full binary
tree with assignments L(s, x) and L(s, y) to each state
s, such that the formula cP(z, y) holds on each infinite
rooted. path. Since the assignment of z is already
determined in a full-x-tree (left son always gets x = F,

184

and right son gets x = T), the only element left open
is the assignment L(s, y).

We approach this problem by constructing a finite
state tree automaton A over infinite binary trees,
whose nodes are labeled by the assignment L(s, y).
The automaton A will accept a labeled tree iff the
y-assignment is such that (0(x, y) holds on all rooted
paths in the tree, when we take for L(s,x) the as-
signment implied by the directions in the tree. The
construction uses techniques similar to those used in
[ES84,VW86]. The validity of $J over tree-models
is easily reduced to non-emptiness of T,(A), the set
of trees accepted by A. We remind the reader that
what the automaton accepts is a set of labelings for
the nodes of the tree. We then use the technique
described in the proof of proposition 3 to check the
emptiness of T,(A)

As is well known, [HR72,Rab72], and will also be
reestablished in our proof of proposition 2, a tree au-
tomaton A accepts some infinite labeling iff it ac-
cepts some regular labeling. A regular labeling is one
that can be generated by a deterministic (string) w-
transducer. The transducer is fed a sequence of direc-
tions, encoded by 0, 1, defining a path in the tree, and
outputs at each visited node the corresponding label
(from I& in our case). Given such a transducer C, we
can immediately interpret it as a program P = PC.
The program reads an input history al,. . . , ok, from
the variable x, and sets the variable y, at each step,
to the value emitted by the transducer at this step.

Our main result, showing how to construct an ef-
fective finite-state representation of a program which
satisfies the propositional specification ‘P, is stated by
the following theorem:

Theorem 2 (Synthesis) There is a deterministic
algorithm, such that given a propositional formula

$ = (Vx)@y)AP as above, checks whether the spec-
ification Go is implementable. If it is implementable,
the algorithm constructs a deterministic transducer
C, such that PC k ‘P. The running time of the al-
gorithm and the size of the transducer C, are both at
most double-ezponential in the length of (0.

Proof: Given a linear time formula ~3 as above,
with (‘PI = n, we first construct a Biichi automa-
ton A on infinite strings over Cz x Es, such that
Q = (ai, h)lSi<w E L,(A) iff the linear model
M = (S, L), where S = (s c,sl, . . .), L(si,x) = ai and
L(Si, y) = bi for 0 < i < w (recall that a0 and bo are
fixed), satisfies (0. This standard construction (see
(VW86,ES84]) y’ Id re s in general, a non-deterministic
automaton of size IA\ = 2Con, for some constant co.
Secondly, we use the determinization procedure of
[Saf88], to construct a deterministic Rabin automaton

B equivalent to A, with 22c’n states and 2’0~ pairs,
for some constant cl > CO. Both A and B have the
property that for each state p, there exists an unique
letter b,, such that for every transition p E b(q, (a, b))
leading to p, necessarily b = b,. For the single initial
state qo, put b,, = bo. This property enables us to
interpret B as a tree-automaton B’ on infinite trees
over Es, where a transition p E 6(q, (a, bp)) of B cor-
responds to a transition p E 6’(q, bQ) u a of B’. Obvi-
ously, all transitions leaving the single initial state qo,
generate the constant letter bo. The third step con-
sists of applying the emptiness checking algorithm of
proposition 3 to B’.

Theorem 1 supports our main claim, which states
that P is implementable iff T,(B’) # 0, and if
implementable, the algorithm of proposition 3 also
constructs the required deterministic-transducer C.
Time complexity of the whole synthesis procedure
and the size of C, both equal C(22cn), for some con-
stant c > co + cl. I

6 Examples of Modules Devel-
opment

We consider two examples which demonstrate the de-
velopment of reactive, finite-state modules. For each
example, we present a formal specification, and sev-
eral sketches of appropriate automata, representing
significant steps along the synthesis process.

Example 1 (Responder) Synthesis of a consistent
responder, specified by (Vx)(3y)A~r, where

‘pl : 72 --+

‘Y
A

ax -+OY)
A

0 by ---t (1y)Ux)

A deterministic and complete Biichi w-automaton for
P1:

185

by (VZ, ~)(3y)A%, where

We present two solutions. The first w-transducer cor-
responds to the strategy: Keep y equal to x forever.

. / \ 1X / \

The second w-transducer corresponds to ,the strat-
egy: Once x gets true -. keep y true forever.

The automata in this example are given in a com-
pact, visual presentation, similar to the statecharts
of [Har87]. Following, is a deterministic and com-
plete Rabin w-automaton for ‘92, with the acceptance

condition Q = {(h, VI)}, LI = {go, q3,n,q6} and
Ul = {Ql, 92,94,47h

I (T~.G 'Y)

Example 2 (Yet Another Responder)

The strategy corresponding to the following w-
transducer for ‘~2 says: Keep y different than x as
long as z is false. Once z gets true - keep y equal to

Synthesis of a more complicated responder, specified x forever.

186

-2 Ql -0 Y

X q2 -0 -Y !
z.

2 47 -0 Y

L/

7 Formal Languages and Fi-
nite Automata

An alphabet C is a non-empty set of letters. In par-
ticular, if n > 0, C, = (0,. . . , n - 1). As usual, E
denotes the empty string, C* denotes the set of fi-
nite strings over C, C+ = C’ - {e} and C” is the
set of infinite (omega) strings over C. For all strings
x,yEC+=C*lJCW, 0 I 1x1 I w denotes the length
of x, for 0 5 i 5 k < 1x1, z[k] E C denotes the kth
letter of x, x[j, k] = {z[i], . . . , x[lc]} and xy is the con-
catenation of x and y (if]z] = w then xy = x). If
z E CW we denote by Inf(z) (the infinity set ofz),
the set of all letters a E C such that x[i] = a for in-
finitely many i’s. We define two partial orderings 5
and 3 on Ct as follows: for x, y E Ct, x < y (x is a
prefix of y) iff y = xz for some z E Ct and x 5 y (x
is a sufix ofy) iffy = 2x for some 2 E C*.

Languages (resp. finitary Ianguages, w-languages)
over C are just subsets of Ct (resp. C’, P). For a
tuple a = (au,. . . , ak-1) and integer 1, 0 5 1 < k, de-
fine the l-projection of a to be a # 1 = al. The usual
operations on languages include the Boolean oper-
ations, the Cartesian product 'x', and the natural
extensions over sets of projection ‘q’, concatenation,
and different types of iteration: ‘*‘, ‘*‘, ‘+‘, ‘w’ and
ct*

i finite automaton is a 5-tuple A = (IS, Q, 6, Qo, F)
where C is a finite alphabet, Q is a finite, nonempty
set of states, 6 : QxC * 28 is the transition function,

Qu c Q is the set of initial states, and P C_ Q is
the set of final states. A is said to be deterministic
iff (Qu] = 1 and for all q E Q and a E C,]6(q, a) (< 1.
A run of A on a string z E Ct is a string r E Q1+lzl
such that r[O] E Qu and for alli, 0 5 i < (z(, r[i+l] f
b(r[i],x[i]). A run r on x is accepting iff either x is
finite and r[]x]] E F or x is infinite and Inf (r) nF # 0
(B&hi acceptance). A string z is accepted by A iff
there is some accepting run of A on x, and the set
of all finite (resp. w) strings accepted by A is called
the jinitary [resp. w) language of A, and denoted by
Lf (A) (resp. L, (A)).

A k-ary tree, is a subset T of CL which is either
infinite and equals C;, or is finite and satisfies

1. T is prefbx-closed: x E T and y 5 z imply y f T.

2. T is frontiered: xl E T for some 1 E C,+ implies
xl E T for all I E Ck (the set of leaves, i.e. maxi-
mal elements of T, is called the frontier of T and
denoted by Ft(T)).

If x E T then the subtree of T rooted at x is the
set TS = {y E T] z < y}. In particular TI = T.
A path ?r in T, is a subset of T, such that x E x
and for all y E ?r - Ft(T,), yl E w for precisely one
1 E Ck. A E-tree is a pair (u, T) where T is a tree and
v : T - Ft(T) -P C assigns to each node of T a value
from C. Tree languages and C-tree languages are de-
fined analogously to string languages. In the follow-
ing, we will mainly speak of binary C-trees, where the
alphabet C is clear from the context (or simply any
fixed alphabet), in which case we omit explicit indi-
cations to the type of trees.

A finite tree-automaton (t.a. for short) is a 5-tuple
A = (C, Q, 6, Qs, a) where C is a finite alphabet, Q is
a finite, nonempty set of states, and Qu C Q is the set
of initial states. 6 : Q x C ---) 2Q x 2Q is the transition

function assigning to each state q and letter a E C a
pair of sets of states Sc and SI called the sets of 0
and 1 (resp.) successors of q (upon generating u). il
is the acceptance condition, where for an automaton
on finite trees n c Q, while for an automaton on infi-
nite trees Cl E 2QxQ (Rabin’s acceptance condition).
One may observe that the original formulation of t.a.
(on infinite trees) in [RabBS] defines the transition
function as 6 : Q x C -+ 2QXQ. However, our defini-
tion seems to be more convenient and is polynomially
equivalent to the original one (see [GH82]). A run of
A on a C-tree (v, T) is a Q-tree r = (w, T U (TX,))
such that W(E) E Qu and for all z E T and a E C2,
w(xa) E S(w(x), u(x)) # a. A run r = (w,T’) on
(u, T) is accepting iff either T is finite (corresponding
to R c Q) and for each leaf x E Ft(T’), W(X) E fl,
or T = C; is infinite (corresponding to 0 C 2QxQ)

187

and for each path x E T’, there is a pair (L, U) E f-I
such that Inf(w(lr)) n U # 0 and Inf(w(z)) n L = 0
(Rabin acceptance). A tree (u, T) is accepted by A iff
there is some accepting run of A on (u,T), and the
set of all finite (resp. infinite) trees accepted by A is
called the finitary (resp. infinite) tree language d A,
and denoted by Tf(A) (resp. T,(A)).

A t.a. A = (C, Q, 3,Qo, n) is said to be determin-
istic iff]Qo] = 1 and for all q E Q, a E C and b <: Da,

1% a) Y 61 I 1. A is called a state-machine (or al-
ternatively an w-transducer) iff its acceptance condi-
tion is degenerated, i.e. fl = Q for automata on Enite
trees, or 0 = {(Q, 0)) for automata on infinite trees.
A transducer B = (CQ, 6, {go)) is said to be deter-
ministic iff for each state q E Q, there is a unique
a E C such that {J(q,a) # 01 = IJ(q,a) 4 11 = 1,
but IS(q, 6) 4 O(=]6(q, b) # I] = 0 for all b # a. This
definition implies that (Tw (B)] = 1, which clearly
characterizes any deterministic transducer A with
T,(A) = {t} as a finite and effective representation
of the single tree t.

8 Emptiness of Automata on
Infinite Tress

The following proposition is a collection of well known
results.

Proposition 1 Given a finite automaton A and a
t-a. B on finite trees, the following emptiness prob-
lems are decidable:

1. L,(A) 2 0 (in logarithmic space).

2. L,,,(A) 2 0 (in logarithmic space).

3. Tf(B) 2 0 (in cubic time). I

Decidability of the emptiness problem for automata
on infinite trees is discussed in]Rab69,R.ab72,
HR72,GH%Z,MS85,Eme85,VS85,Tho], Let .A =
(Q,d, Qo, n) be a t.a. on infinite trees with IQ] =
n and]sl] = m. The complexities of the algo-
rithms given in the above papers vary from non-
elementary time in the original [Rab69] paper, de-
terministic exponential time(n) in [Rab72] an.d de-
terministic double-exponential time(n) in [HR72] to
nondeterministic polynomial time(n) plus determin-
istic polynomial time(m) in (VS85,Eme85]. We shall
present here a deterministic algorithm which solves
(constructively) the emptiness problem of automata
on infinite trees and runs in polynomial time((nm)“‘).
This complexity turns out to be significant for the
class of t.a.‘s for which m, the number of pairs in

the acceptance condition, is much smaller (polyloga-
rithmic) than n - the number of states. Another al-
gorithm which yields similar complexity, has been re-
cently reported in [EJ88], and is used there to achieve
better upper bounds on the complexities of some log-
its of programs.

The following proposition and its proof essentially
consist of delicate modifications of the result reported
in [HR72] as theorem 1 and its proof.

Proposition 2 (Non-Emptiness Condition) Let

A = (Q,6, Qo, f-Q b e u teaa with R = {(Li,Ui) 1 1 5
i 5 m} and IQ/ = n. Then, T,(A) # 0 if and only
if for some finite tree E and a run r = (w, E’) of A
on E, for every path x in E, there e&t an integer
i, 1 _< i 5 m, and strings ~0~~1,. . . , x,+1, such that
the following hold:

1. XOIXl<... -=zz,<z~+,ET~F~(E).

2. For all 1, 0 < 1 5 n + 1, u(z~) E Vi.

3. For all j, 1 I j I m, w[zi, ~,+i] n L, # 0 ==+

v[XO, Xl] n Lj # 0.
4. u(z13, Z,+I] n Li = 0.

Proposition 3 (Non-Emptiness Algorithm)
The emptiness problem for automata on infinite trees,
is decidable in deterministic time O((nm)Cm) for
some constant c, where n is the number of states and
m is the number of pairs.

Proof: Given a t.a. A as in proposition 2, we con-
struct a deterministic t.a. B on finite trees, which
accepts some finite tree E satisfying the conditions
of proposition 2, if such a tree exists. B is the cross-
product of A and a finite automaton C which recog-
nizes the leaves of E.

A state of C should record, for every i, 1 < i I m,
whether for some string x and integer i’, there exist
strings xo < xi < . . . < xl’ 5 x, satisfying the above
mentioned conditions. The state is Enal if 1’ = n + 1
and XII = x, for some i. It can be shown that sufficient
information for such a state (and for determining the
appropriate transition function) can be coded into a
vector of at most 2m counters of size log(m) + log(n)
each, and m pointers into this vector. A counter (i, 1)
records that a potential xl has been encountered with
respect to & (and with respect to the internal order
of the vector). Also, if (i,l) is added to the vector,
all previous (i, 1’) with 0 < 1’ < 1 can be eliminated
from it. The pointers record for each j 5 m, which
is the last segment (with respect to the vector) in
which some state of Li has occurred. Acceptance is
announced when some counter approaches (;, n + 1).
Clearly, the size of B is at most (nm)3m, hence by

188

proposition 1, emptiness can be tested in determinis-
tic time o((nm)cm) for some constant c 5 9.

If Tf(B) # 0, we may apply some simple modifi-
cations to B, which do not change the complexity of
the algorithm, yielding a deterministic transducer D
with T,(D) = {t} for some regular t E T,(A). More-
over,]D] I JB], that is,]D] = O((nm)3”). I

9 Directions for Further Re-
search

We propose two directions for extending the results
of this paper. We are currently developing a similar
framework for the specification and synthesis of asyn-
chronous systems. Secondly, there is need for strate-
gies and techniques for the systematic development of
general modules (specified by first-order formulae).

References

[BacSO]

[BL69]

[CEBl]

(CES86]

[Chu63j

[Con851

[EH86]

J. Bacon, Substance and first-order quan-
tification over individual-concepts, J.
Symb. Logic 45, 1980, pp. 193-203.

J.R. B&hi and L.H. Landweber, Solving
sequential conditions by finite-state strate-
gies, Trans. Amer. Math. Sot. 138, 1969,
pp. 295-311.

E.M. Clarke and E.A. Emerson, Design
and synthesis of synchronization skeletons
using branching time temporal logic, Proc.
IBM Workshop on Logics of Programs,
Let. Notes in Comp. Sci. 131, Springer,
1981, pp. 52-71.

E.M. Clarke, E.A. Emerson, and A.P.
Sistla, Automatic verification of finite
state concurrent systems using tempo-
ral logic specifications, ACM Trans. Prog.

Lang. Syst. 8, 1986, pp. 244-263.

A. Church, Logic, arithmetic and au-
tomata, Proc, 1962 Int. Congr. Math,, Up-
sala, 1963, pp. 23-25.

R.L. Constable, Constructive mathematics
as a programming logic I: some principles
of theory, Ann. Discrete Math. 24, 1985,
pp. 21-38.

E.A. Emerson and J.Y. Halpern, ‘Some-
times’ and ‘not never’ revisited: on
branching time versus linear time, J. ACM
33, 1986, pp. 151-178.

(EJB&]

[EWj

[Eme85]

[ES841

[GH82]

E.A. Emerson and C.S. Jutla, The com-
plexity of tree automata and logic of pro-
grams, Proc. &9th IEEE Symp. Found.
Comp. Sci., 1988.

C.C. Elgot, Decision problems of finite
automata design and related arithmetics,
Trans. Amer. Math. Sot. 98, 1961, pp. 21-
52.

E.A. Emerson, Automata, tableaux and
temporal logics, Proc. Conf. Logic of Pro-
grams, Let. Notes in Comp. Sci. 193,
Springer, 1985, pp. 79-88.

E.A. Emerson and A.P. Sistla, Deciding
full branching time logic, Inf. and Cont.

61, 1984, pp. 175-201.

Y. Gurevich and L.A. Harrington, Au-
tomata, trees and games, Proc. 14th ACM
Symp. Theory of Computing, 1982, pp. 60-
65.

[GPSSBO] D. Gabbay, A. Pnueli, S. Shelah, and J.
Stavi, On the temporal analysis of fairness,
Proc. 7th ACM Symp. Print. Pros. Lang.,
1980, pp. 163-173.

[Har87]

[HP851

[HR72]

[HT87]

[MP82]

D. Harel, Statecharts: a visual formalism
for complex syatems, sci. Comp. Prog. 8,
1987, pp. 231-274.

D. Hare1 and A. Pnueli, On the develop-
ment of reactive systems, Logics and Mod-
els of Concurrent Systems, Springer, 1985,
pp. 477-498.

R. Hossley and C. Rackoff, The emptiness
problem for automata on infinite trees,
Proc. 13th IEEE Symp. Switching and Au-
tomata Theory, 1972, pp. 121-124.

T. Hafer and W. Thomas, Computation
tree logic CTL* and path quantifiers in the
monadic theory of the binary tree, Proc.
14th Int. Colloq. Aut. Lang. Prog., Let.
Notes in Comp. Sci. 267, Springer, 1987,
pp. 269-279.

Z. Manna and A. Pnueli, Verification of
concurrent programs: the temporal frame-
work, The Correctness Problem in Com-
puter Science (R.S. Boyer and J.S. Moore,
eds.), Academic Press, London, 1982,
pp. 215-273.

189

[MS851

[MW80]

[MW84]

[Pnu77]

[Pnu85]

[Pnu86]

[Rab69]

IRab72)

[Saf88]

[X85]

Pm

[VS85]

D.E. Muller and P.E. Schupp, Alternat-
ing automata on infinite objects, determi-
nancy and rabin’s theorem, Automata on
Infinite Words, Let. Notes in Comp. Sci.
192, Springer, 11985, pp. 100-107.

Z. Manna and R.J. Waldinger, A deduc-
tive approach to program synthesis, ACM
Trans. Prog. L’ang. Syst. 2, 1980, pp. 90-
121.

Z. Manna and I’. Wolper, Synthesis of com-
municating processes from temporal llogic
specifications, ACM Trans. Prog. L,ang.
Syst. 6, 1984, pp. 68-93.

A. Pnueli, The temporal logic of programs,
Proc. 18th IEEE Symp. Found. Comp.
SC;., 1977, pp. 46-57.

A. Pnueli, In transition from global to
modular temporal reasoning about pro-
grams, Logics and Models of Concu,rrent
Systems, Springer, 1985, pp. 123-144.

A, Pnueli, Applications of temporal logic
to the specification and verification of
reactive syste:ms: a survey of current
trends, Current Trends in Concurrency,
Let. Notes in Comp. Sci. 224, Springer,
1986, pp. 510-584.

M.O. Rabin, Decidability of second order
theories and automata on infinite trees,
Trans. Amer. Math. Sot. 141, 1969, pp. l-
35.

M.O. Rabin, Automata on Infinite Objects
and Churc’s Problem, Volume 13 of Re-
gional Conference Series in Mathematics,
Amer. Math. Sot., 1972.

S. Safra, On the complexity of w-
automata, Proc. 29th IEEE Symp. Found.
Comp. Sci., 1!388.

A.P. Sistla and E.M. Clarke, The complex-

ity of propositional linear time logics, J.
ACM 32, 1985, pp. 733-749.

W. Thomas, Automata on infinite ob-
jects, Handbook of Theoretical Computer
Science, North-Holland. To appear.

M.Y. Vardi and L.J. Stockmeyer, Im-
proved upper and lower bounds for modal
logics of programs, Proc. 17th ACM !?ymp.
Theory of Computing, 1985, pp. 240--251.

[VW861 M.‘Y. Vardi and P. Wolper, Automata
theoretic techniques for modal logics of
programs, J. Comp. Sys. Sci. 32, 1986,
pp, 183-221.

(WLBS] R.J. Waldinger and R.C.T. Lee, PROW:
a step towrds automatic program writing,
Proc. First Int. Joint Conf. on Artificial
Inteligence, 1969, pp. 241-252.

190

