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Abstract 

We consider the synthesis of a reactive module with 
input x and output y, which is specified by the lin- 
ear temporal formula ~(2, y). We show that there 
exists a program satisfying ‘P iff the branching time 
formula (Vx)(Zly)A~(z, y) is valid over all tree mod- 
els. For the restricted case that all variables range 
over finite domains, the validity problem is decidable, 
and we present an algorithm for constructing the pro- 
gram whenever it exists. The algorithm is based on 
a new procedure for checking the emptiness of Rabin 
automata on infinite trees in time exponential in the 
number of pairs, but only polynomial in the number 
of states. This leads to a synthesis algorithm whose 
complexity is double exponential in the length of the 
given specification. 

1 Introduction 

An interesting and fruitful approach to the system- 
atic construction of a program from its formal speci- 
fication is based on the idea of program synthesis as 
a theorem proving activity. In this approach, a pro- 
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gram with input x and output y, specified by the for- 
mula P(X, y), is constructed as a by-product of prov- 
ing the theorem (VX)(~~)P(X, y). The specification 
P(Z, y) characterizes the expected relation between 
the input z presented to the program and the out- 
put y computed by the program. For example, the 
specification for a root extracting program may be 
presented by the formula ]x - y2] < E. 

This approach, which may be called the AE 
paradigm, or alternately, the Skolem paradigm, 
is based on the observation that the formula 

(Vx) @Y)‘p(G Y) is equivalent to the second order for- 
mula (3f)(Vx)~(x, f(x)), stating the existence of a 
function f, such that P(Z, f(x)) holds for every 2. 
If we restrict the proof rules, by which the synthesis 
formula is to be established, to a particular set of COR- 
structive rules, then any proof of its validity necessar- 
ily identifies a constructive version of the function f, 
from which a program that satisfies the specification 
(0 can be constructed. 

The AE-paradigm for the synthesis of sequential 
programs has been introduced in [WL69] (but see also 
IElg61]), and has been the subject of extensive re- 
search [MW80,Con85] directed at extending the class 
of programs that can be synthesized, and the theories 
that may be used for the proofs, as well as strengthen- 
ing the proof rules and the mechanisms for extracting 
the program from the proof. 

The success of this approach to sequential program- 
ming should not be judged only by the number and 
complexity of programs that can be fully automati- 
cally derived, even though serious efforts are continu- 
ously invested in extending the range and capabilities 
of fully automatic synthesizers, in much the same way 
we keep improving the power of automatic theorem 
provers. The more important contribution of this ap- 
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preach is in providing a conceptual framework for 
the rigorous derivation of a program from its spec- 
ification. Once this scheme is accepted, it can, in 
principle, be followed in a completely manual fashi.on, 
but encourages, on the other hand, the open ended 
development of a support system that will offer au- 
tomatic support to increasingly larger parts of the 
procedure. Equally important is the realization of 
the identity between the processes of theorem prov- 
ing and program construct ion. It has been recognized 
very early that every system for the formal devel- 
opment of programs must contain at least a powerful 
theorem prover as an important component. The ap- 
proach of synthesis by theorem proving tells us that 
such a system need not contain much more than a 
theorem prover. 

In view of the success of this approach for se- 
quential programs, there is no wonder that several 
attempts have been made to extend it to concur- 
rent programs. These attempts were held back for 
awhile by the question of what was the appropriate 
language to use for expressing the specification for- 
mula CP. While, for sequential programs, it is ob- 
vious that a properly enriched first order language 
is adequate, it took time to propose a similarly ade- 
quate specification language for concurrent progra.m.9. 
One of the more stable proposals is that of temporal 
logic ([Pnu77,GPS%O,MP82,SC85,Pnu86]). The ba- 
sic supposition underlying temporal logic is that con- 
current programs often implement reactive systems 
(see [HP85,Pnu85]) whose role is not to produce an 
output on termination, but rather to maintain an on- 
going interaction with their environment. Therefore, 
the specification should describe the expected behav- 
ior of the system throughout its activity. 

Indeed, the two main works on the synthesis of 
concurrent programs, which are reported in [CE81] 
and (MW84], consider a temporal specification ‘P, and 
show that ifit is satisfiable, we can use the model that 
satisfies ~3 to construct a program that implements (0. 

There are, however, some limitations of the ap- 
proach, as represented in these two pioneering con- 
tributions, due to the fact, that the approach is based 
on satisfiability of the formula expressing the specifi- 
cation CP(Z, y). Th e implied limitations are that the 
approach can in principle synthesize only entire or 
closed systems. 

To see that, assume that the system to be con- 
structed has two components, Cr and C,. Assume 
that only Cr can modify 5 (a shared variable used 
for communication) and only C’s can modify y. The 
fact that (P(z, y) is satisfiable means that there ex- 
ists at least one behavior, listing the running values 
of z and y, which satisfies CP(Z, y). This shows that 

there is a way for Cr and C’z to cooperate in order 
to achieve 9. The hidden assumption is that we have 
the power to construct both Cr and Cz in a way that 
will ensure the needed cooperation. If indeed we are 
constructing a closed system consisting solely of Cr 
and Cz and having no additional external interaction, 
this is quite satisfactory. 

On the other hand, in a situation typical to an open 
system, Cr represents the environment over which the 
implementor has no control, while Cz is the body of 
the system itself, to which we may refer as a reactive 
module. Now the situation is no longer that of peace- 
ful cooperation. Rather, the situation very much re- 
sembles a two-person game. The module Cz does its 
best, by manipulating y, to maintain cP(x, y), despite 
all the possible z values the environment keeps feed- 
ing it. The environment, represented by Cl, does 
its worst to foil the attempts of Cz. Of course, this 
anthropomorphism should not be taken too literally. 
The main point is that we have to show that Cz has 
a winning strategy for y against all possible z scenar- 
ios the environment may present to it. 

It seems that the natural way to express the exis- 
tence of a winning strategy for Cs, is again expressed 
by the AE-formula (VZ)(~Y)P(X, y). The only differ- 
ence is that now we should interpret it over temporal 
logic, where z and y are no longer simple variables, 
but rather sequences of values assumed by the vari- 
ables z and y over the computation. In contrast, we 
may describe the approach presented in (MW84) and 
(CE81] as based on the formula (3x)(3y)~(s, y). 

This is indeed the main claim of this paper. 
Namely, that the theorem proving approach to the 
synthesis of a reactive module should be based on 
proving the validity of an AE-formula. As we will 
show below, the precise form of the formula claim- 
ing the existence of a program satisfying the linear 
time temporal formula cP(x, y), is (Vz)(?ly)A(Q(x, y), 
where A is the “for all paths” quantifier of branch- 
ing time logic. Thus, even though the specification 
cP(z, y) is given in linear logic, which is generally con- 
sidered adequate for reactive specifications, the syn- 
thesis problem has to be solved in a branching frame- 
work. This conclusion applies to the synthesis of both 
synchronous and asynchronous programs, yet for sim- 
plicity of presentation, we prefer to restrict the expo- 
sition in this paper to the synthesis of synchronous 
programs. The application of our approach to the 
synthesis of asynchronous programs will be presented 
in a subsequent paper. 

An interesting observation is that the explicit quan- 
tification over the dynamic (i.e., variables that may 
change their values over the computation) interface 
variables, x and y, is not absolutely necessary. As 
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we will show in the paper, there exists an equivalent 
branching time formula, which quantifies only over 
static variables (i.e., variables which remain constant 
over the computation), whose satisfiability guarantees 
the existence of a program for P(Z, y). For the case 
of finite state programs, this other formula becomes 
purely propositional, and its sat&liability, therefore, 
can be resolved by known decision methods for sat- 
isfiability of propositional branching time formulae. 
However, for the more general case that deductive 
techniques have to be applied, we prefer to estab- 
lish validity, rather than satisfiability, in particular 
since the explicitly quantified version emphasizes the 
asymmetry between the roles of the variables z and 
y in the program. 

We justify our main claim on two levels. First we 
consider the general case and show that the synthe- 
sis formula is valid iff there exists a strategy tree for 
the process controlling y. We then argue that such 
a strategy tree represents a program by specifying 
an appropriate y for each history of z values. On 
this level we pay no attention to the question of how 
effective this representation of a program is, which 
becomes relevant when we wish to obtain a program 
represented in a conventional programming language. 

Hence, in a following section we consider the more 
restricted case in which the specification refers only to 
Boolean variables. In this case the validity of the syn- 
thesis formula is decidable, and we present an algo- 
rithm for checking its validity and extracting a finite- 
state program out of a valid synthesis formula. 

A related investigation of synthesis for the finite 
state case, based on a similar approach, has been car- 
ried out in (BL69]. The question, formulated for the 
first time in [Chu63], has been asked in an automata- 
theoretic framework, where the specification P(Z, y) 
is given by an w-automaton accepting a combined 
z,y-behavior, and the extracted automaton is an w- 
transducer. The solution presented in (BL69] uses 
game-theoretic ideas, and it is of very high compu- 
tational complexity. Later, [HR72] and [Rab72] have 
observed, similar to us, that even though the speci- 
fication is expressed by automata on strings (corre- 
sponding to linear temporal logic), its synthesis must 
be carried out by using tree automata. In our own 
approach we had to use a similar algorithm for check- 
ing emptiness of w-tree automata. The previously 
best known complexity of this problem has been non- 
deterministic polynomial time in the overall size of 
the automata ([VS85,Eme85]). Another important 
result of our paper is a derivation of a better empti- 
ness checking algorithm, whose complexity is deter- 
ministic polynomial time in the number of states 
and exponential in the number of pairs in the ac- 

ceptance condition of the automata (a different algo- 
rithm yielding similar complexity has been recently 
reported in [EJ88]). Using this improved algorithm, 
the complete synthesis process can be performed in 
deterministic time which is doubly exponential in the 
size of the specification. 

The papaer is organized as follows. The second 
section introduces a general temporal logic. The third 
section presents the implementability problem, while 
the fourth and the fifth sections suggest a temporal 
framework for the development of reactive modules, 
for the general (first-order) and for the finite-state 
cases, respectively. Examples of the development of 
finite-state modules are exhibited in the sixth section. 
The seventh and the eighth sections are concerned 
with automata and formal languages in general, and 
with the emptiness problem of automata on infinite- 
trees in particular. 

2 Temporal Logic 

We describe the syntax and semantics of a general 
branching time temporal language. This language is 
an extension of CTL’ ([CES86,EH86,ES84,HT87]), 
obtained by admitting variables, terms, and quan- 
tification. Its uocabulary consists of variables and op- 
erators. For each integer k 2 0, we have a countable 
set of k-ary variables for each of the following types: 
static junction variables - Fk, static predicate uari- 
ables - U”, dynamic function variables - f”, and 
dynamic predicate variables - uk. The intended dif- 
ference between the dynamic and the static entities 
is that, while the interpretation of a dynamic element 
in a model may vary from state to state, the interpre- 
tation of a static element is uniform over the whole 
model. For simplicity, we refer to 0-ary function vari- 
ables simply as (individual) variables, of which we 
have both the static and the dynamic types. The 
operators include the classical 7, V, 3 and the tem- 
poral 0 (next), U (until) and E (for some path). A 
survey of similar approaches in the context of modal 
logic can be found in [BacBO]. 
Terms: For every k 2 0, If tl,. . . , tk are terms, then 
so are Fk(tl, . . . , tk) and fk(ti, . . . , tk). 
State formulae are the (only) formulae defined by the 
following rules: 

1. For all k 2 0, rf ti, . . . , tk, are terms, then 

u” (t1 , . . . , tk) and u”(tl, . +. , tk) are (atomic) 
state formulae. 

2. If p and q are state formulae, then so are up, (pv 

q) and (3cu)p where a is any variable. 

3. If p is a path formula then Ep is a state formula. 
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Path formulae are the (only) formulae defined by the 
following rules: 

1. Every state formula is a path formula. 

2. If p and Q are path formulae, then so are -up, (pV 

q), OP and (pUq)- 

We shall omit the superscripts denoting arities and 
the parentheses whenever no confusion can occur. We 
also use the following standard abbreviations: T for 
pVyp, F for lT, phq for y(--pV-q), p -+ q for -pVq, 

P = q for (P -+ q) A (q +’ P), (VQ)P for ++P), 
Op for TUp, Cl p for ~O-lp, puq for pu q V •I q and 
Ap for 43(-p). W e s a use the letters a,b for static h 11 
individual variables (constants) and z, y for dynamic 
individual variables, or propositions, for the Boolean 
case. 

By restricting this syntax, one gets special cases 
of the temporal language. In classical static logic, 
there are no dynamic variables nor temporal o:per- 
ators (0, U, E). First-order logic permits 3 quan- 
tification over individual variables only. In proposi- 
tional (resp. quantified propositional) logic, the only 
variables permitted are propositions, without (resp. 
with) 3 quantification over them. Finally, linear tem- 
poral logic omits the E operator (i.e. all linear for- 
mulae are path formulae). 

The semantics of temporal logic is given with. re- 
spect to models of the form M = (D,1,M). D is 
some non-empty data domak, I is a (static) inter- 
pretation of all static variables into appropriate func- 
tions and predicates over D, and M = (S, R, L) is a 
structure. S is a countable set of states. R s S x S is 
a binary total access relation on S. L is the labeling 
function, assigning to each state s E S a (dynamic) 
interpretation L(s) of all dynamic variables into ap- 
propriate functions and predicates over D. A path 
in M is a sequence r = (se, 91,. . .) such that fo:r all 
i 2 0, (si, si+l) E R. A ,fullpath in M is an infinite 
path. Denote by &) = (si, sj+l,. . .) the jth sufiz 
Of IT. 

A structure M = (S, R, L) is called a tree-structure, 
iff the following conditions are satisfied: 

1. There exists a precisely one state, r E S, called 
the root of M, which has no parent, i.e., no state 
s E S, such that R(s, r). 

2. Every other state t # r, has precisely one parent. 

3. For every state s E S, there exists a unique Ipath 
leading from r to s. 

A model M = (D, I, M), is called a tree-model, iff the 
structure M is a tree-structure. 

In order to interpret applications of static functions 
and predicates to terms, and applications of existen- 
tial quantifiers over static variables to formulae, we 
use standard definitions, over the static interpretation 
I and the semantics of the given terms or formulae. 
Analogously, applications of dynamic functions are 
interpreted with respect to dynamic interpretations. 

Satisfiability of a state formula is defined with re- 
spect to a model M and a state s E S, inductively as 
follows: 

1. VW k 4tl, ..+, tk) iff L(s)(u)(dr, . . . ,dk) = 
true, where di is the semantics oft; in (M, s), 1 < 
i 5 k. That is, we apply u, as interpreted in s by 
L, to the evaluation of tl,. . . , tk, as interpreted 
in 5. 

2. (M,s) + up iff not (M,s) k p. 

3. (M,s) l==pvq iff(M,s) l=porW,s) I=+ 

4. For a dynamic variable Q, (M, s) k (3cy)p iff 
(M’, 3) ‘l= p for some M’ which equals M except 
that for any t E S, L’(t)(o) may be different 
than L(t)(a). 

5. For a path formula p, (M, 3) F Ep iff for some 
fullpath x = (3,. . . ) inM, (M,4 +P. 

Satisfiability of a path formula is defined with respect 
to a model M and a fullpath r in M, according to the 
following: 

1. For ?r = (30,. . .) and a state formula p, (M, T> i= 
P iff (M, 30) I= P. 

2. (M,T) + yp iff not (M,n) k p. 

3. (M,d t=pvqiffW,d l==por (44 I==. 
4. (M,?r) t= Op iff (M,7rf11) +p. 

5. (M,A) + pUq iff for some j 2 0, (M,&)) k q, 
andforalli, O<;<j; (M,di))+p. 

We say that the model M satisfies the state formula 
p, and write M + p, iff (M, so) /= p, for some state 
so of M. For the case of a tree-model, there is no loss 
of generality in assuming that 30 is the root of the 
model. A state formula p is said to be satisjiable iff 
for some model M, M k p. The formula p is valid, 
denoted by k p, iff it is satisfied by every model. 

3 The Implementability prob- 
lem 

We define a (semantic) synchronous program P from 
D to D to be a function jp : D+ -+ D, i.e., a func- 
tion mapping non-empty sequences of D elements 
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into elements of D. The intended meaning of this 
function is that it represents a program with an in- 
put variable x ranging over D, and an output vari- 
able y with the same range, such that at each step 
i = 0,l 1 ***, the program outputs (assigns to y) the 
value fp(ao, al,. . . , oi), where au, or,. . . , oi is the 
sequence of input values assumed by x over steps 
0,l i. ,“‘, 

Note that our treatment at this point is semantic, 
meaning that we are mainly interested in the exis- 
tence of such a function, and ignore, for the time be- 
ing, the question of its expressibility within a given 
programming language. Obviously, a complete exam- 
ination of the synthesis problem should consider both 
the semantic aspect and the syntactic aspect. 

We define a behavior of the program P to be an 
infinite sequence (for simplicity we only consider non- 
terminating programs) of pairs 

u : (~0, bo), (~1, bl), --- 

such that, for every i 3 0, ui, bi E D, and bi = 
fp(a0, ~1,. . . ,ui). A program P satisfies a linear 
temporal logic specification P(x, y), written P t= 
CP(X, y), iff every behavior u of P satisfies d k ~(2, y). 
We may now consider the following problem: 

Problem 1 (Implementability) Given a linear 
specification (o(z,y), does there exists a program P 
which satisfies (0(x, y) ? 

Specifications for which such a program exists are 
called implementable, and the program satisfying 
them is called an implementation of the correspond- 
ing specificat ion. 

The main question is to find conditions which are 
necessary and sufficient for the (semantic) imple- 
mentability of a given specification. For example, in 
the transformational case, i.e., that of non-reactive 
terminating sequential programs, the specification is 
given by a first order (non temporal) formula V(x, y) 
where x and y range over some domain D. The ba- 
sis for synthesis of transformational programs is the 
theorem that such a specification is implementable iff 
the implementabilityformula (Vx) (3y)(o(x, y) is valid. 
We are looking for a similar condition for the reactive 
case. 

CIearly, satisfiability of the temporal formula 
cP(x, y) (also guaranteeing its consistency), which is 
the basis for the synthesis approaches of [CE81] and 
[MW84], is a necessary but not a sufficient condition 
for implementability in our sense. To see this, it is 
sufficient to consider a specification which constrains 
the sequence of input values provided by the envi- 
ronment, without even saying anything about the se- 

quence of output values. An example of such a spec- 
ification is given by 

(0 : ox. 

This formula states that the next input value (the one 
presented at step l), is T. In this and all the other ex- 
amples presented here, we assume the domain D to be 
the boolean domain, and x,y to be dynamic boolean 
variables. This specification is unimplementable, be- 
cause no matter how the function fp is defined, the 
program P will always have a behavior of the form 

(ao, bo), (F, bl), . . . 

which violates the above specification. This, of 
course, is a direct consequence of the fact that in 
constructing the module P, we cannot control the be- 
havior of the environment, expressed by the sequence 
of input values it chooses to present to the module. 

Our next best attempt has been to mimic the trans- 
formational case, and suggest the linear temporal for- 
mula (V~)(~Y)P(X, Y) as an implementability formula, 
whose validity is a necessary and sufficient condition 
for the existence of an implementation, Unfortu- 
nately, this does not work either. Consider the spec- 
ification 

ex, Y) : (Y = Ox), 

which requires that the first output value (issued at 
step 0) is T iff some input value, appearing now or 
later, equals T. It is not difficult to see that the 
formula (Vx)(3y)P(x, y) is valid. It is sufficient to 
substitute Ox for y, in order to get the obvious tau- 
tology (t/x)(0x c Ox). However, this specification 
is certainly not implementable. To implement it we 
need a clairvoyant program, which can foresee at the 
first step whether any of the future inputs will ever 
equal T. Our definition of programs, which corre- 
sponds to the way real programs operate, allows the 
program to base its decision of the next output only 
on the inputs it has seen so far, i.e., only on the past. 
Somehow, we have to introduce this restriction of the 
past-dependency of y on x, into the implementabil- 
ity formula. As we will show next, this can be done 
if we extend our logic framework to branching time 
temporal logic. 

4 Development of Reactive 
Modules 

Assume that we wish to develop a reactive module, 
communicating with the environment by an input 
variable x and output variable y. The partition of 
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the variables into input and output means that only 
the environment can modify z, and only the module 
can modify y. By our restriction to synchronous sys- 
tems, each step in a computation starts by the envi- 
ronment setting a value to 2, and the module read- 
ing the value and responding by setting a value to 
y. Thus, a typical behavi.or of such a system is .a se- 
quence (ae, a,), (al, bi), . . . where ai,a2,. . ., are the 
values given to z by the environment, and bi, ba, . . ., 
are the responses of the module. Without loss of gen- 
erality, we may assume that ao, bo are fixed, and for 
every i > 0, bi may depend on al,. . . , ai-1, ai. 

Let CP(Z, y) be a formula in linear temporal logic, 
specifying the requirements of the module. We as- 
sume that x and y are the only free variables in ‘P. 
We consider x and y to be just single variables for 
simplicity - the extension of the results below, to 
the case where x and y are vectors of variables, is 
straightforward. We further assume the validity of 
p -+ ((x = uo) A (y = bb)), in order to express our in- 
terest in models with roots satisfying our fixed initial 
condition, namely x = ac and y = bo. 

Let D be some fixed data domain and I some fixed 
interpretation over D. Since D and I are fixed, we 
shall identify models M of the form (D, I, M) with 
their non-fixed elements, i.e., with the dynamic s,truc- 
ture M, and write ‘the model M’, referring to the 
whole model M = (D, I, M). For definitions and no- 
tations for some of the constructs used below, see the 
section on formal languages. A full-z-tree is a model 
M = (S, R,L), where S = D*, (21, zz) E R +=+ 

zn = zia for some a E D, and L : S x {x, y} * D sat- 
isfies (L(e, z),L(c, y)) = (a~, bo), and L(zu,x) = a. 
Thus, a full-x-tree is baaed on a structure whose 
states are named after strings of the elements of D. 

For example, if D = CQ == (0, 1) (a Boolean domain), 
then the states are strings over Ca, i.e., elements 
of (o+ l)*. In general, a state z = al,. . . , ak, for 
a; E D, 1 5 i 5 k, has succesors zb for each b E D 
(z0 and zl for the Boolean domain). We further re- 
quire that L assigns the fixed values ao to x and bo to 
y at the root, and the value ak E D to x in the state 
z = al,. . . , ak. The intuition behind a full-x-tree is 
that it should contain all the possible sequences of x 
values. 

Lemma 1 The formula ti = (Vx)(!iy)AIO is valid 
over all tree-models iff Ap holds ouer some full-x- 
tree M. 

Proof: The ‘only if’ direction is obvious from the 
definition of validity. For the ‘if’ directitn, assume 
M = (D’, R, L) /= A(o, and let M y (S,R,.t) be 
any other tree-model. Define M’ = (S, R, L’), with 
L’(s,z) = Z(s,z) f or every dynamic variables 2: # y. 

Lete(.s,x)=&e.ForeverysE,i?,let(r,si,...,sk=: 
s) be the unique path in &f (and in M’) leading from 
the root r to s, and let 60, al,. ..,ukED+ bethese- 
quence of values assigned to x on this path by A. Con- 
sider the state z = al,. . . , ak E D* in the structure 
M, and define L’(s, y) = L(z, y). Since M b Ap, it 
follows that M’ b A(o, and hence M k (3y)Ap. But 
this applies to every such fi, hence ~6 is valid over all 
tree-models. I 

Given a full-x-tree M, we can interpret it as a pro- 
gram PM, represented by the function ~PM, such that 

fe (a~, al,. . . , ai) = L(a0, al,. . . , ai , Y). 

The proof of the following lemma is immediate from 
the definitions and from lemma 1. 

Lemma2 P”/=‘PiffMkAp. I 

We conclude the general case by the following theo- 
rem. 

Theorem 1 (Implementability) The following 
conditions are equivalent: 

1. The specification (~(5, y) is implementable. 

1. The formula (Vx)(Ely)A’~(x,y) is valid over all 
tree-models. 

3. The formula Ap(x, y) holds over some full-x- 
tree. 

4. The formula Ap(x, y) A A •I (Va)E 0 (z = u) is 
satisfiable. 

Proof: The equivalence of l-3 is straightforward. 
To relate clause 4, we observe that the conjunct 
Au(Va)E 0 (x = a) ensures that every node n 
in the constructed model, has descendants n, with 

L(h, x) = a for every a E D. Thus, a model satis- 
fying this conjunct, has a full-x-tree embedded in it 
(perhaps in a folded form). I 

5 The Finite-State Case 

Restricting to Boolean domains, we may clearly treat 
the logic as purely propositional, by considering all 
variables to be propositions. Full-x-trees become full 
binary trees, over the set of states S = C;, where 
CZ = (0, 1). Note that a more general finite domain 
can always be reduced to several Boolean domains. 

Therefore, what we are looking for is a full binary 
tree with assignments L(s, x) and L(s, y) to each state 
s, such that the formula cP(z, y) holds on each infinite 
rooted. path. Since the assignment of z is already 
determined in a full-x-tree (left son always gets x = F, 
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and right son gets x = T), the only element left open 
is the assignment L(s, y). 

We approach this problem by constructing a finite 
state tree automaton A over infinite binary trees, 
whose nodes are labeled by the assignment L(s, y). 
The automaton A will accept a labeled tree iff the 
y-assignment is such that (0(x, y) holds on all rooted 
paths in the tree, when we take for L(s,x) the as- 
signment implied by the directions in the tree. The 
construction uses techniques similar to those used in 
[ES84,VW86]. The validity of $J over tree-models 
is easily reduced to non-emptiness of T,(A), the set 
of trees accepted by A. We remind the reader that 
what the automaton accepts is a set of labelings for 
the nodes of the tree. We then use the technique 
described in the proof of proposition 3 to check the 
emptiness of T,(A) 

As is well known, [HR72,Rab72], and will also be 
reestablished in our proof of proposition 2, a tree au- 
tomaton A accepts some infinite labeling iff it ac- 
cepts some regular labeling. A regular labeling is one 
that can be generated by a deterministic (string) w- 
transducer. The transducer is fed a sequence of direc- 
tions, encoded by 0, 1, defining a path in the tree, and 
outputs at each visited node the corresponding label 
(from I& in our case). Given such a transducer C, we 
can immediately interpret it as a program P = PC. 
The program reads an input history al,. . . , ok, from 
the variable x, and sets the variable y, at each step, 
to the value emitted by the transducer at this step. 

Our main result, showing how to construct an ef- 
fective finite-state representation of a program which 
satisfies the propositional specification ‘P, is stated by 
the following theorem: 

Theorem 2 (Synthesis) There is a deterministic 
algorithm, such that given a propositional formula 

$ = (Vx)@y)AP as above, checks whether the spec- 
ification Go is implementable. If it is implementable, 
the algorithm constructs a deterministic transducer 
C, such that PC k ‘P. The running time of the al- 
gorithm and the size of the transducer C, are both at 
most double-ezponential in the length of (0. 

Proof: Given a linear time formula ~3 as above, 
with (‘PI = n, we first construct a Biichi automa- 
ton A on infinite strings over Cz x Es, such that 
Q = (ai, h)lSi<w E L,(A) iff the linear model 
M = (S, L), where S = (s c,sl, . . .), L(si,x) = ai and 
L(Si, y) = bi for 0 < i < w (recall that a0 and bo are 
fixed), satisfies (0. This standard construction (see 
(VW86,ES84]) y’ Id re s in general, a non-deterministic 
automaton of size IA\ = 2Con, for some constant co. 
Secondly, we use the determinization procedure of 
[Saf88], to construct a deterministic Rabin automaton 

B equivalent to A, with 22c’n states and 2’0~ pairs, 
for some constant cl > CO. Both A and B have the 
property that for each state p, there exists an unique 
letter b,, such that for every transition p E b(q, (a, b)) 
leading to p, necessarily b = b,. For the single initial 
state qo, put b,, = bo. This property enables us to 
interpret B as a tree-automaton B’ on infinite trees 
over Es, where a transition p E 6(q, (a, bp)) of B cor- 
responds to a transition p E 6’(q, bQ) u a of B’. Obvi- 
ously, all transitions leaving the single initial state qo, 
generate the constant letter bo. The third step con- 
sists of applying the emptiness checking algorithm of 
proposition 3 to B’. 

Theorem 1 supports our main claim, which states 
that P is implementable iff T,( B’) # 0, and if 
implementable, the algorithm of proposition 3 also 
constructs the required deterministic-transducer C. 
Time complexity of the whole synthesis procedure 
and the size of C, both equal C(22cn), for some con- 
stant c > co + cl. I 

6 Examples of Modules Devel- 
opment 

We consider two examples which demonstrate the de- 
velopment of reactive, finite-state modules. For each 
example, we present a formal specification, and sev- 
eral sketches of appropriate automata, representing 
significant steps along the synthesis process. 

Example 1 (Responder) Synthesis of a consistent 
responder, specified by (Vx)(3y)A~r, where 

‘pl : 72 --+ 

‘Y 
A 

ax -+OY) 
A 

0 by ---t (1y)Ux) 

A deterministic and complete Biichi w-automaton for 
P1: 
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by (VZ, ~)(3y)A%, where 

We present two solutions. The first w-transducer cor- 
responds to the strategy: Keep y equal to x forever. 

. / \ 1X / \ 

The second w-transducer corresponds to ,the strat- 
egy: Once x gets true -. keep y true forever. 

The automata in this example are given in a com- 
pact, visual presentation, similar to the statecharts 
of [Har87]. Following, is a deterministic and com- 
plete Rabin w-automaton for ‘92, with the acceptance 

condition Q = {(h, VI)}, LI = {go, q3,n,q6} and 
Ul = {Ql, 92,94,47h 

I (T~.G 'Y) 

Example 2 (Yet Another Responder) 

The strategy corresponding to the following w- 
transducer for ‘~2 says: Keep y different than x as 
long as z is false. Once z gets true - keep y equal to 

Synthesis of a more complicated responder, specified x forever. 
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-2 Ql -0 Y 

X q2 -0 -Y ! 
z. 

2 47 -0 Y 

L/ 

7 Formal Languages and Fi- 
nite Automata 

An alphabet C is a non-empty set of letters. In par- 
ticular, if n > 0, C, = (0,. . . , n - 1). As usual, E 
denotes the empty string, C* denotes the set of fi- 
nite strings over C, C+ = C’ - {e} and C” is the 
set of infinite (omega) strings over C. For all strings 
x,yEC+=C*lJCW, 0 I 1x1 I w denotes the length 
of x, for 0 5 i 5 k < 1x1, z[k] E C denotes the kth 
letter of x, x[j, k] = {z[i], . . . , x[lc]} and xy is the con- 
catenation of x and y (if ]z] = w then xy = x). If 
z E CW we denote by Inf(z) (the infinity set ofz), 
the set of all letters a E C such that x[i] = a for in- 
finitely many i’s. We define two partial orderings 5 
and 3 on Ct as follows: for x, y E Ct, x < y (x is a 
prefix of y) iff y = xz for some z E Ct and x 5 y (x 
is a sufix ofy) iffy = 2x for some 2 E C*. 

Languages (resp. finitary Ianguages, w-languages) 
over C are just subsets of Ct (resp. C’, P). For a 
tuple a = (au,. . . , ak-1) and integer 1, 0 5 1 < k, de- 
fine the l-projection of a to be a # 1 = al. The usual 
operations on languages include the Boolean oper- 
ations, the Cartesian product 'x', and the natural 
extensions over sets of projection ‘q’, concatenation, 
and different types of iteration: ‘*‘, ‘*‘, ‘+‘, ‘w’ and 
ct* 

i finite automaton is a 5-tuple A = (IS, Q, 6, Qo, F) 
where C is a finite alphabet, Q is a finite, nonempty 
set of states, 6 : QxC * 28 is the transition function, 

Qu c Q is the set of initial states, and P C_ Q is 
the set of final states. A is said to be deterministic 
iff (Qu] = 1 and for all q E Q and a E C, ]6(q, a) ( < 1. 
A run of A on a string z E Ct is a string r E Q1+lzl 
such that r[O] E Qu and for alli, 0 5 i < (z(, r[i+l] f 
b(r[i],x[i]). A run r on x is accepting iff either x is 
finite and r[]x]] E F or x is infinite and Inf (r) nF # 0 
(B&hi acceptance). A string z is accepted by A iff 
there is some accepting run of A on x, and the set 
of all finite (resp. w) strings accepted by A is called 
the jinitary [resp. w) language of A, and denoted by 
Lf (A) (resp. L, (A)). 

A k-ary tree, is a subset T of CL which is either 
infinite and equals C;, or is finite and satisfies 

1. T is prefbx-closed: x E T and y 5 z imply y f T. 

2. T is frontiered: xl E T for some 1 E C,+ implies 
xl E T for all I E Ck (the set of leaves, i.e. maxi- 
mal elements of T, is called the frontier of T and 
denoted by Ft(T)). 

If x E T then the subtree of T rooted at x is the 
set TS = {y E T ] z < y}. In particular TI = T. 
A path ?r in T, is a subset of T, such that x E x 
and for all y E ?r - Ft(T,), yl E w for precisely one 
1 E Ck. A E-tree is a pair (u, T) where T is a tree and 
v : T - Ft(T) -P C assigns to each node of T a value 
from C. Tree languages and C-tree languages are de- 
fined analogously to string languages. In the follow- 
ing, we will mainly speak of binary C-trees, where the 
alphabet C is clear from the context (or simply any 
fixed alphabet), in which case we omit explicit indi- 
cations to the type of trees. 

A finite tree-automaton (t.a. for short) is a 5-tuple 
A = (C, Q, 6, Qs, a) where C is a finite alphabet, Q is 
a finite, nonempty set of states, and Qu C Q is the set 
of initial states. 6 : Q x C ---) 2Q x 2Q is the transition 

function assigning to each state q and letter a E C a 
pair of sets of states Sc and SI called the sets of 0 
and 1 (resp.) successors of q (upon generating u). il 
is the acceptance condition, where for an automaton 
on finite trees n c Q, while for an automaton on infi- 
nite trees Cl E 2QxQ (Rabin’s acceptance condition). 
One may observe that the original formulation of t.a. 
(on infinite trees) in [RabBS] defines the transition 
function as 6 : Q x C -+ 2QXQ. However, our defini- 
tion seems to be more convenient and is polynomially 
equivalent to the original one (see [GH82]). A run of 
A on a C-tree (v, T) is a Q-tree r = (w, T U (TX,)) 
such that W(E) E Qu and for all z E T and a E C2, 
w(xa) E S(w(x), u(x)) # a. A run r = (w,T’) on 
(u, T) is accepting iff either T is finite (corresponding 
to R c Q) and for each leaf x E Ft(T’), W(X) E fl, 
or T = C; is infinite (corresponding to 0 C 2QxQ) 
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and for each path x E T’, there is a pair (L, U) E f-I 
such that Inf(w(lr)) n U # 0 and Inf(w(z)) n L = 0 
(Rabin acceptance). A tree (u, T) is accepted by A iff 
there is some accepting run of A on (u,T), and the 
set of all finite (resp. infinite) trees accepted by A is 
called the finitary (resp. infinite) tree language d A, 
and denoted by Tf(A) (resp. T,(A)). 

A t.a. A = (C, Q, 3,Qo, n) is said to be determin- 
istic iff ]Qo] = 1 and for all q E Q, a E C and b <: Da, 

1% a) Y 61 I 1. A is called a state-machine (or al- 
ternatively an w-transducer) iff its acceptance condi- 
tion is degenerated, i.e. fl = Q for automata on Enite 
trees, or 0 = {(Q, 0)) for automata on infinite trees. 
A transducer B = (CQ, 6, {go)) is said to be deter- 
ministic iff for each state q E Q, there is a unique 
a E C such that {J(q,a) # 01 = IJ(q,a) 4 11 = 1, 
but IS(q, 6) 4 O( = ]6(q, b) # I] = 0 for all b # a. This 
definition implies that (Tw (B)] = 1, which clearly 
characterizes any deterministic transducer A with 
T,(A) = {t} as a finite and effective representation 
of the single tree t. 

8 Emptiness of Automata on 
Infinite Tress 

The following proposition is a collection of well known 
results. 

Proposition 1 Given a finite automaton A and a 
t-a. B on finite trees, the following emptiness prob- 
lems are decidable: 

1. L,(A) 2 0 (in logarithmic space). 

2. L,,,(A) 2 0 (in logarithmic space). 

3. Tf(B) 2 0 (in cubic time). I 

Decidability of the emptiness problem for automata 
on infinite trees is discussed in ]Rab69,R.ab72, 
HR72,GH%Z,MS85,Eme85,VS85,Tho], Let .A = 
(Q,d, Qo, n) be a t.a. on infinite trees with IQ] = 
n and ]sl] = m. The complexities of the algo- 
rithms given in the above papers vary from non- 
elementary time in the original [Rab69] paper, de- 
terministic exponential time(n) in [Rab72] an.d de- 
terministic double-exponential time(n) in [HR72] to 
nondeterministic polynomial time(n) plus determin- 
istic polynomial time(m) in (VS85,Eme85]. We shall 
present here a deterministic algorithm which solves 
(constructively) the emptiness problem of automata 
on infinite trees and runs in polynomial time((nm)“‘). 
This complexity turns out to be significant for the 
class of t.a.‘s for which m, the number of pairs in 

the acceptance condition, is much smaller (polyloga- 
rithmic) than n - the number of states. Another al- 
gorithm which yields similar complexity, has been re- 
cently reported in [EJ88], and is used there to achieve 
better upper bounds on the complexities of some log- 
its of programs. 

The following proposition and its proof essentially 
consist of delicate modifications of the result reported 
in [HR72] as theorem 1 and its proof. 

Proposition 2 (Non-Emptiness Condition) Let 

A = (Q,6, Qo, f-Q b e u teaa with R = {(Li,Ui) 1 1 5 
i 5 m} and IQ/ = n. Then, T,(A) # 0 if and only 
if for some finite tree E and a run r = (w, E’) of A 
on E, for every path x in E, there e&t an integer 
i, 1 _< i 5 m, and strings ~0~~1,. . . , x,+1, such that 
the following hold: 

1. XOIXl<... -=zz,<z~+,ET~F~(E). 

2. For all 1, 0 < 1 5 n + 1, u(z~) E Vi. 

3. For all j, 1 I j I m, w[zi, ~,+i] n L, # 0 ==+ 

v[XO, Xl] n Lj # 0. 
4. u(z13, Z,+I] n Li = 0. 

Proposition 3 (Non-Emptiness Algorithm) 
The emptiness problem for automata on infinite trees, 
is decidable in deterministic time O((nm)Cm) for 
some constant c, where n is the number of states and 
m is the number of pairs. 

Proof: Given a t.a. A as in proposition 2, we con- 
struct a deterministic t.a. B on finite trees, which 
accepts some finite tree E satisfying the conditions 
of proposition 2, if such a tree exists. B is the cross- 
product of A and a finite automaton C which recog- 
nizes the leaves of E. 

A state of C should record, for every i, 1 < i I m, 
whether for some string x and integer i’, there exist 
strings xo < xi < . . . < xl’ 5 x, satisfying the above 
mentioned conditions. The state is Enal if 1’ = n + 1 
and XII = x, for some i. It can be shown that sufficient 
information for such a state (and for determining the 
appropriate transition function) can be coded into a 
vector of at most 2m counters of size log(m) + log(n) 
each, and m pointers into this vector. A counter (i, 1) 
records that a potential xl has been encountered with 
respect to & (and with respect to the internal order 
of the vector). Also, if (i,l) is added to the vector, 
all previous (i, 1’) with 0 < 1’ < 1 can be eliminated 
from it. The pointers record for each j 5 m, which 
is the last segment (with respect to the vector) in 
which some state of Li has occurred. Acceptance is 
announced when some counter approaches (;, n + 1). 
Clearly, the size of B is at most (nm)3m, hence by 
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proposition 1, emptiness can be tested in determinis- 
tic time o((nm)cm) for some constant c 5 9. 

If Tf(B) # 0, we may apply some simple modifi- 
cations to B, which do not change the complexity of 
the algorithm, yielding a deterministic transducer D 
with T,(D) = {t} for some regular t E T,(A). More- 
over, ]D] I JB], that is, ]D] = O((nm)3”). I 

9 Directions for Further Re- 
search 

We propose two directions for extending the results 
of this paper. We are currently developing a similar 
framework for the specification and synthesis of asyn- 
chronous systems. Secondly, there is need for strate- 
gies and techniques for the systematic development of 
general modules (specified by first-order formulae). 
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