GEOMETRIC-INVARIANT ROBUST WATERMARKING THROUGH CONSTELLATION MATCHING IN THE FREQUENCY DOMAIN

R. Caldellia, M. Barnib, F. Bartolinia and A. Pivaa

a Department of Electronics and Telecommunications
University of Firenze
b Department of Information Engineering
University of Siena

Multimedia can be defined as a combination of different types of media (e.g., text, images, audio, video, and graphics) to communicate information in a given application.

In the last decade, digital watermarking has been studied as a possible tool for copyright protection of multimedia data.

A watermarked image may go through either normal audio-visual (A/V) processes or intentional attacks:

- Examples of normal A/V processes: JPEG compression, and analog-to-digital or digital-to-analog conversion.
- Examples of intentional attacks: geometric manipulations (e.g., rotation, scaling, and translation).

A common strategy for detecting a watermark after geometric manipulations is to embed a synchronization template in addition to the watermark.

- If a geometric attack has occurred, the template has to be inverted before the watermark is detected.
- This approach has a number of major drawbacks.
 - The template has no informative meaning.
 - Image fidelity is affected.
 - Requires exhaustive search in watermark detection.
THE ALGORITHM

- **Embedding**
 - Take the luminance layer of an YUV image.
 - Compute the Discrete Fourier Transform (DFT).
 - Select the magnitudes of some DFT coefficients according to a secret key.
 - Modify the magnitudes in such a way to create a local peak.
 - Compute the average and the standard deviation over a window centered on the point to be changed.
 - The magnitude of the center coefficient will have a value equal to the local average plus n-times ($n = 4,5$) the standard deviation.
 - The peaks are arranged in quadruplets, with pixels belonging to the same quadruplet being collinear.
 - Moreover these spikes are posed in such a way that quadruplets are concatenated to form a chain.
 - Concatenation is achieved by letting the final peak in each quadruplet to be the initial peak of the subsequent quadruplet of the chain.
 - The peaks form a constellation that represents the watermark and the template.
 - A very general geometric invariant (the Cross-Ratio of four collinear points-CR) is adopted to be resistant against complex geometrical attacks.
Figure 1. Example of constellation watermark.
CR is invariant under **affine** or **perspective** transformations which cover all the geometric manipulations usually applied to images.

An affine transformation is any **transformation** that preserves **collinearity** (i.e., all points lying on a line initially still lie on a line after transformation) and **ratios of distances** (e.g., the midpoint of a line segment remains the midpoint after transformation).

Rotation, scaling, and translation are **affine** transformations.

A **projective** transformation maps lines to lines (but does not necessarily preserve parallelism).

For each quadruplet, the **CR** between its four points is calculated as follows:

\[
CR = \frac{AC \cdot BD}{AD \cdot BC}
\]

where A, B, C and D are the four points of the quadruplet ordered according to the sequence A B C D.
The sequence of CR’s of the ordered quadruplets in the chain represents the secret key of the watermark.

The number of chain branches can be decided.
- The higher the number the more distinguishable the constellation.
- On the other hand, the computational burden in the detection step will increase and the image will be more noisy.

Note also that the peaks should not be too evident in the Fourier domain, otherwise attackers could easily destroy the watermark by removing them.

The peaks are introduced in the medium frequency range to reach a trade-off between watermark invisibility and robustness.
FIGURE 2. WATERMARK INVISIBILITY - 256X256 TEST IMAGE LENA
Detection

- Take the luminance layer of the watermarked YUV image.
- Compute the Discrete Fourier Transform (DFT).
- Identify all the local maxima through an exhaustive search.
- If the central coefficient, within a window whose size is equal or smaller than that adopted in the embedding step, is the maximum in the window, this is assumed to be a peak.
- The spikes located in very low and in very high frequencies are not considered.
- The watermark is embedded in middle frequency range.
- For an image of size 256x256 about 400 points are generally recovered.
- This is quite a large number and the watermark is always well-hidden.
- If an attacker wants to destroy the watermark, he should modify or delete all these coefficients, resulting in a big loss of image quality.
- The next step is to check all the existing quadruplets of four collinear points, to compute their Cross Ratios and compare them with those characterizing the watermark.
- If the secret key is known, it is possible to determine which are the correct values of Cross Ratios and which is the exact concatenation order among those selected.
FIGURE 3. EXAMPLE OF SPIKES RECOVERED IN THE DFT DOMAIN FOR A 256X256 IMAGE
During detection, there are two issues:

- All the spikes belonging to the constellation must be extracted.
- Just the right watermark, if present, has to be detected.
- To satisfy the first condition, it is sufficient to reduce the size of the extraction window.
- However, this increases the number of peaks, resulting in a huge amount of possible constellations within the spikes cloud, some of which are likely to satisfy the watermark features.

Two different solutions have been considered:

- The first one is consisted of tolerating loss of some spikes, and consequently of some branches of the chain, without increasing their number, and in carrying out detection resorting to a procedure based on inexact graph matching.
- The second one relies on the detection of all watermark spikes and on the introduction of some extra constraints or longer chains for the extraction phase.

 - Obviously this leads to a more complex search.
 - Furthermore, after an image has undergone a geometric transformation, because spikes positions can assume only integer values, some uncertainties in determining if a point belongs or not to a line and in computing CRs values must be introduced.
TESTS AGAINST GEOMETRICAL ATTACKS, SUCH AS CROPPING, ROTATIONS, SCALING, ETC., WERE CARRIED OUT. IN MOST OF THE CASES, POSITIVE RESULTS WERE OBTAINED. HOWEVER, SOMETIMES DETECTION WAS MISSED AND FALSE ALARMS WERE OBSERVED.

THESE TWO PROBLEMS CAN BE OVERCOME:

- **Missed detection** can be circumvented by developing a safe peaks extraction methodology.
- **False alarms** can be prevented by inserting additional and more featuring constraints on the watermark constellation.

Cropping:

- Invariance is obtained by always padding the image to the same size before watermark insertion.
- Prior to decoding the image is padded to the same size, so that frequency sampling is performed with the same step both by the encoder and the decoder.

JPEG compression:

- Up to 60% of quality factor (Q), the watermark has been correctly and uniquely detected.
FIGURE 4. WATERMARK ROBUSTNESS TESTS

(a) watermarked image cropped at 200x200 and then padded.
(b) watermarked image rotated by -15 degrees.
A novel watermarking technique is presented.

Geometric manipulations can be prevented.

No need for a reference template.

Some experimental results confirm the validity of the approach.

There are implementation problems that need to be solved.