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Abstract: - We propose a flexible Multi-layered Virtual Machine (MVM) design intended to improve 
efficiencies in grid computing and to overcome known problems that exist in grid systems. We present a novel 
approach to building virtual laboratories by adapting MVMs within distributed and grid systems, thereby 
providing enhanced flexibility and reconfigurability. The MVM is a service-oriented grid architecture to 
discover, describe and retrieve platform independent configuration models for each resource usage pattern and 
provides virtual laboratory users with a logical view of the grid. It consists of three layers: OS-level, Queue-
level, and Component-level VMs. MVMs virtualize system resources, topologies, networks, policies and 
services. In our framework, the virtual machines can be created “on-demand” and their applications can be 
distributed at the source-code level, compiled and instantiated in run-time. 
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1   Introduction 
In recent decades, virtual laboratories have provided 
an environment to test various research models, in 
the modelling phase, for cost and time savings [1]. A 
virtual laboratory can be dynamically organized, 
whereby its topology is adapted on-demand by 
research communities. Our goal is to create a virtual 
laboratory framework, using multi-layered virtual 
machines (MVM), in which virtual machines are 
scalable, reconfigurable, and flexible. These design 
goals are based on the following: Reconfigurability - 
Any group of virtual machines should be able to be 
reconfigured at run-time. Flexibility – Data, resource 
and network service components must interact 
seamlessly in a grid environment. Dynamicity - 
Virtual machines require the ability to be created 
and destroyed on-demand, regardless of network 
location while providing at least one simplified, 
logical view of any relevant underlying system.  
Fault/Attack Isolation – If a service suffers from 
faults or attacks, side effects should be minimized.   

We assert that reconfigurable and layered 
abstract machines can simplify the complexities of 
current distributed and grid systems. By raising the 
level of abstraction for both resources and their 
networks, we can apply the logical resource usage 
models to a wide variety of heterogeneous 
environments.  

The MVM model consists of three layers: OS-
level, Queue-level, and Component-level VM 
layers. The OS-level layer is a virtualized operating 

system that can be dynamically deployed and moved 
around computer networks; the queue-level layer 
virtualizes data communication interfaces and the 
component-level layer provides services in an 
architecture-independent, transparent manner. These 
components specify the virtual topology, parallel 
communication patterns, and resource 
characteristics, and can be thought as Platform 
Independent Models (PIMs) of Model Driven 
Architecture (MDA) [2]. Further, component VM 
layer maps these PIMs into Platform Specific 
Models (PSMs).  

This paper presents a virtual machine 
architecture for a virtual laboratory framework that 
meets the goals described above. Our multi-layered, 
flexible virtual machine architecture allows us to 
reconfigure the virtual machine itself at run-time 
rather than at compile- or deployment-time.  

Section 2 presents the design of the Multi-
layered Virtual Machine (MVM) and its three 
layers. Section 3 discusses the design of our 
framework by using MVMs including our virtual 
network model for grid computing. Section 4 
presents some implementation and experimental 
results using MVMs. Finally section 5 presents 
concluding remarks and future work. 
 
 
2   A  Multi-layered Virtual Machine 
 
2.1 OS-level VM layer 
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We take advantage of existing OS-level VM 
technology [3] to satisfy part of our design goals, 
especially fault/attack isolation. In our MVM 
design, distinct OS-level VMs can be multiplexed 
on a hardware abstraction layer called the Virtual 
Machine Monitor (VMM). In addition to the 
isolation feature of the OS-level VM technology, the 
OS-level VM can be used to set up a virtual 
network, which allows the setting up and testing of 
experimental services.  

Among other matters, we intend to support 
scenarios in which multiple, independent jobs are 
running on the same physical machine, but 
simulating two virtual machines, each with its own 
processor, sharing and resource management rules.  

One is then able to customize each OS-level VM 
with its own specific sharing, connectivity, jobs and 
resource management rules as if multiple, 
autonomous, dedicated host machines were running.  
In such cases OS-level VMs are allocated on 
appropriate VMMs. 

Current projects, including VMPlant [4] and 
SODA [5], show that the on-demand, dynamic 
instantiation of VMs can be accessed through a 
Service Oriented Architecture (SOA). In a similar 
way, we can store a wide variety of OS-level VMs 
in the virtual backend, and then retrieve and 
assemble them with the Queue-level VMs by 
utilizing existing grid middleware methods.  

The OS-level VM in the MVM can also facilitate 
the underlying system to be maintained in a 
partitioned way. This means that nearly all 
manipulations inside an OS-level VM do not affect 
the configuration values in another OS-level VM on 
the underlying system.  

The principal advantages to the OS-level VM 
approach is that of virtualizing user accounts, 
monitoring facilities, logging and system services.  

Yet another advantage of utilizing the OS-level 
VM as a building block of the MVM is that we can 
migrate the processes in the OS-level VM including 
the OS-level VM itself to other locations across a 
network, grid, or off-line storage. The strength of 
OS-level VM based checkpointing is that all volatile 
execution states of running processes (including 
disks, memory, CPU registers, I/O devices, etc) can 
be encapsulated [6].  Indeed, the entire running 
MVM, including queue-level and component-level 
VMs, and all of their respective applications, can be 
encapsulated.  
 
 
2.2   Queue-level VM layer 
The queue-level VM virtualizes data communication 
interfaces by using virtual queues. We advocate that 

“enqueuing” and “dequeuing” are the most common 
characteristics of any computer systems available.  
Any computer system should enqueue and dequeue 
its data including instructions. The actual 
computation is determined by how a given machine 
decodes items from the queue, and how it encodes 
its output. Our design of the queue-level VM in the 
MVM is intended to be fully generic and flexible, 
allowing us to (re)configure and control how to 
communicate with an arbitrary computer system. 
Once this is configured at run-time, one can build a 
flexible and scalable system on top of it. 

The queue-level VM consists of VM interface 
logics, VM interface controller, and VM 
encoder/decoder. The VM interface logics include 
the virtual queue types (i.e. FIFO queue, priority 
queue, etc) and policies for queue management. 
They are specified by service-oriented components 
which enable virtual machines to register and 
retrieve information on how to encode, decode, and 
process those items. 

The “enqueuing” and “dequeuing” portions of 
the queue-level VM can be extended to a group of 
nodes. When a group of queue-level VMs are 
organized under certain sharing rules for the specific 
experiment, it provides a Single System Image (SSI) 
to an external user. Several virtual queues can be 
allocated for the enqueuing process in the queue-
level VM, so that we can assign different queues to 
different jobs, allowing each job to be run 
concurrently in each queue in SSI. Each connected 
VM can provide either instruction stream, or data 
stream, for the parallel computation. Thus, we can 
simulate Flynn’s MIMD architecture [7], by 
organizing a group of queue-level VMs of MVMs.  

While we may not know exactly how to interact 
with data communication interfaces for an arbitrary 
computing system, with MVM one is able to look at 
the virtualized queues, extract items, and then apply 
various rules to these items.  
 
 
2.3   Component-level VM layer 
Our VM middleware shares certain problems, 
including resource discovery, resource allocation,  
resource management, authorization/authentication, 
policy enforcement, as with the existing grid 
middleware.  As a consequence of virtualization, we 
can dynamically reconfigure and customize all VM 
components using service-oriented technologies 
such as web services. 

Another advantage of the component-based 
technology is reusability. Once we register the 
connectivity, resource, and job profiles for a certain 
experiment, we might reuse the same profiles, with 
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different parameters later and, possibly, in different 
job scenarios and topologies.   
  

 
3   A Proposed Virtual Laboratory 
The proposed virtual laboratory has three different 
layers to serve as the basis of a dynamic, flexible 
test environment for a wide range of research 
scenarios including: virtualized resources, 
virtualized networks, and policy-based 
reconfigurable components. For scalability, the 
virtual front-ends and the virtual clusters in 
virtualized resources are organized in a 
decentralized way. However, a pure decentralized 
system has several drawbacks, such as bandwidth 
overuse by message flooding, and maintenance 
difficulties [8]. Thus, we advocate using a super-
peer based P2P system for aggregating virtual 
resources. Each virtual community has one or more 
peer groups, and each peer group has a super-peer. 
The super-peer in each peer group acts as the virtual 
front-end, in that it provides a group of peers with 
virtual back-end information. This data includes 
URI location of the virtual backend, and the ways on 
how to retrieve information from the virtual back-
end.  
 
 
3.1   Virtualized Resources 
The virtualized resource layer consists of virtual 
back-ends, virtual front-ends and virtual clusters. 
The virtual back-ends consist of several remote 
servers that provide the virtual front-ends and virtual 
clusters with our VM image, resource discovery, 
bootstrapping, storage service, and so on. Servers in 
the virtual back-end can be one of these types: high 
performance computers; workstation clusters; or 
data stores. The main building blocks of the back-
end servers are bootstrap nodes, information service 
servers, image servers, and authentication and 
authorization servers. Service-oriented grid 
architectures, such as OGSA, virtualize back-end 
servers as “services”. We also use service-oriented 
grid architecture for platform independent 
configuration models for each resource usage 
scenario.  The virtual front-end is the super-peer 
module of our virtual laboratory. We use the term 
“virtual front-end” rather than “front-end”, in that 
the virtual front-end node is itself a MVM node with 
additional flexibility and reconfigurability. 

The primary purpose of the virtual front-end is to 
schedule the incoming jobs to the available 
resources in the virtual cluster by using the queue-
level VM.  We note that scheduling problems in grid 

computing are known to be NP-complete problems 
[9]. 

Using the component-level VM, we can 
configure scheduling policies to our schedulers in 
the virtual front-end nodes, giving flexibility to the 
local and global schedulers. For a specific 
experiment in the virtual community, the virtual 
front-end controls the connectivity and sharing rules 
for the virtual cluster. The connectivity and sharing 
rules consist of the service-oriented components, 
and are manipulated by the component-level VM in 
the MVM. Thus, we are able to map the logical 
connectivity (virtual topology) and sharing rules to 
the physical connectivity and sharing rules for the 
virtual cluster.  

The virtual cluster in our virtual laboratory is 
organized as a group of MVMs, dynamically and 
on-demand. The virtual front-end node initially 
retrieves the available resource information of the 
virtual cluster from the information service server. 
Then the virtual front-end node notifies a group of 
available nodes in the community and organizes the 
virtual cluster.  
 
 
3.2   Virtualized Networks 
Certain kinds of grid applications require virtual 
topologies to specify the logical arrangement of 
tasks. In some situations we are required to specify 
each stage in the topology for high performance 
pipelined computing, such as the butterfly 
computation of the Fast Fourier Transform (FFT) 
[10]. However, in current grid applications, we need 
to denote the virtual topology at the source-code 
level.  

We emphasize that there is no requirement for 
the source/destination field for the message passing 
API in the MVM toolkit; instead, we specify the 
virtual topology and network information outside, 
rather than inside the programming source codes. 
All connectivity information is determined outside 
the grid program, enabling efficiency and runtime-
reconfigurability for job execution. Additionally, 
this scheme allows a grid resource scheduler or 
allocator to select and map process-to-processor in 
grid environments in dynamic and adaptive ways, as 
the message passing API for MVM is not bound to 
specific source or destination job id at the source-
code level. Further, we provide job distribution at 
the source-code level, allowing us to compile and 
instantiate jobs at runtime rather than at deployment 
time. The virtual topology for  grid job execution is 
one of our platform independent configuration 
models which is a grid service.  
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3.3   Policy-based Reconfigurable Components 
According to Appleby [11], “policy-based 
computing” is “a software paradigm that 
incorporates a set of decision-making technologies 
into its management components in order to simplify 
and automate the administration of computer 
systems”. The policy components in the MVM are 
designed to achieve this viewpoint, allowing 
dynamic adjustment of the behaviour of the group of 
MVMs in run-time, without modifying its internal 
implementation. The policies in our virtual 
laboratory framework are deployed and reconfigured 
at different levels of abstraction. We divide the 
policies into three levels: inter-domain level, domain 
(virtual community) level, and general node level.  
The inter-domain level policies may require a 
mediator to manage semantic heterogeneity and 
integration of multiple heterogeneous policies for 
each domain. We mandate that inter-domain 
resource sharing in the virtual laboratory be subject 
to the inter-domain policies. 

The domain level policies apply to the virtual 
community to specify the security rules, resource 
sharing rules, privileges for each participant, fault 
recovery mechanisms, scheduling and monitoring 
mechanisms, and so forth. The domain-level policies 
include how and when the partitioning takes place, 
and how to monitor each partition. For both inter-
domain and domain level policies, the Policy 
Management Point (PMP), Policy Decision Point 
(PDP), and policy repository should be located in 
the virtual back-ends. Our “policy-based 
reconfigurable components” are located in the 
Policy Enforcement Point (PEP); that is, the broker 
module of the highest level super peer in the 
hierarchical tree. Once the highest level super peer 
in the virtual community enforces these policies, the 
lower level super peers in the hierarchical tree 
retrieve them from the highest level super peer if 
needed.  

The general node level policies determine the 
interface logics, such as encoding/decoding types, 
queue type, maximum number of queue-level VMs, 
and so forth. They also specify how to monitor the 
performance and availability of each node, and what 
metrics are used for them. The general node level 
policies do not require external PDP and PMP, 
thereby allowing the user to set his/her policies for 
MVM.  

The policy-based reconfigurable components 
consist of three main building blocks: security 
handlings, fault tolerance, scheduling and 
monitoring. Full implementation of these 
components is not yet complete, but our work is 
based on the following considerations: 

The security handlings deal with both 
authentication and authorization. The authentication 
policy specifies what kind of authentication 
mechanism is used for a certain virtual community. 
For scalability, we advocate the PKI-based GSI 
authentication model [12], which supports “single 
sign on” and “delegation” capabilities.  

The authorization policy determines whether a 
certain user is allowed to do an action by using a 
certain amount of resources. The Role-based Access 
Control (RBAC) [13] is emerging as an 
authorization mechanism for large-scale systems in 
which both policies and user roles are stored in 
attribute certificates to provide integrity. It is based 
on user-to-role and role-to-permission assignments. 
We note that context and content-based constraints 
for the extended RBAC Model are discussed in [14].  

The monitoring reconfigurable policy determines 
how often the resources in a virtual community are 
monitored, and what metrics are used to monitor 
them. Each monitoring result is reported to the 
super-peer which determines what policy 
components should be replaced to optimize the 
virtual cluster. The scheduling reconfiguration 
policy determines what policy will be applied for 
resource scheduling in a virtual community. The 
optimal scheduling policy depends on each 
monitoring result, allowing the scheduling policy to 
be dynamically adjusted for system status in the 
virtual community. The scheduling policy is also 
affected by the resource reservation policy. The 
resource reservation policy determines whether the 
reservation is allowed, how the reservation is made, 
and what requirements need to be satisfied for 
resource reservation. 

The fault tolerance reconfigurable components 
consist of MVM checkpointing and MVM failure 
recovery policy components. The MVM 
checkpointing policy determines what kind of 
checkpointing method is used for a virtual 
community and how often the checkpointing is to be 
conducted.  

We envision that the automatic runtime policy 
reconfiguration and enforcement allows our virtual 
machines to be self-configurable in order to 
optimize themselves in grid systems. 
 
 
4   Implementation and Results 
We have developed the MVM toolkit to evaluate the 
essential functionality of the MVM framework. This 
toolkit is a testing tool for MVM framework in 
distributed systems and grids and it is still work in 
progress. We have used the Apache web server 
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2.0.52, gSOAP 2.7.0 [15], Globus 3.2.1[16], POSIX 
IPC, POSIX Threads, and BSD Sockets, running 
under Fedora Core 3 Linux systems (kernel 2.6.9) 
for our implementation and various experiments. 
The current features of MVM toolkit are as follows: 

(1) Source-code level grid job distribution: 
Traditional computing architectures, such as MPI 
and PVM, need to recompile jobs for every 
participating node at deployment time. In addition, 
one must connect each machine, update each 
program, and recompile or reconfigure them for 
each job scenario. Within the MVM framework, 
users modify job profiles and MVM automatically 
reconfigures, deploys and runs the system.  

(2) Component-based grid job (re)configuration: 
In the MVM framework, each user sends a job 
profile to a resource broker to request a unique 
runtime environment for each resource usage case. 
The MVM toolkit takes the job profile data structure 
and renders it as a SOAP document intended to 
provide resource sharing over grid environments 
using standard web services. 

(3) Virtual network approach for grid job 
execution: Each user can create a virtual network at 
runtime, specifying the virtual topology for grid 
jobs. All connectivity information is determined 
outside the grid application, allowing reuse or 
redeployment of grid communication patterns. 

(4)  P2P Web services and P2P socket approach: 
Each node has both server and client modules for 
socket and web services. This means that each node 
publishes its service using WSDL and accesses other 
nodes using a SOAP interface. Additionally, similar 
transactions can happen through traditional sockets. 

(5) On-demand creation and termination: The 
MVM processes do not have to run continuously. 
Whenever a node is invoked from other nodes, it can 
initialize itself and launch tasks for a particular use.  

In more detail, the “on-demand” creation and 
termination mechanism for the MVM is as follows: 
a. Only the server runs for each node and the 

MVM process is not loaded yet. 
b. After contacting a bootstrap node, the MVM 

client retrieves the broker address and invokes 
the components of the broker node by using 
SOAP. The MVM client sends a job profile 
data structure to the broker node at this phase. 

c. The MVM process is loaded by the SOAP 
invocation, and the process instantiates the 
MVM proxy and the MVM queue threads, if 
required. 

d. The broker node selects a job group and 
awakens all the nodes in that job group. Each 
node in a job group instantiates its proxy and 
queue-level VM module if required. 

e. Each node communicates with other nodes by 
using its proxy with BSD sockets. 

f. The broker node generates the job instantiation 
messages for each participating node, and 
sends these messages to each participating 
node in a concurrent way. According to the job 
instantiation messages, queue-level VM 
spawns child processes and initializes the inter-
process communication (IPC) subsystem. 
Processes in a local host enqueue or dequeue 
their data and instructions via IPC, and 
processes between different hosts enqueue or 
dequeue their data via their proxies. 

g. When a job has finished its operation, it reports 
to its resource broker. The resource broker then 
broadcasts a job termination message to a job 
group. A proxy module for each job group 
reads the message, and sends a terminate signal 
to all on-demand created processes.  

 
Using various services within Globus, we have 
tested the MVM framework by writing codes that 
are semantically equivalent to those of a series of 
programs developed under Globus using MPICH2 
[17].  The MVM framework properly, dynamically, 
creates the proper topologies to run the various job 
instances.  Although the job run-time performances 
are lacking, relative to MPICH2, this is due to the 
fact that the current MVM model is not performance 
optimized at the API level.  Further, it is important 
to note that, in contrast to MPI based programming, 
all topology considerations are dealt with exclusive 
to the program and within MVM itself. 
 
 
5   Conclusion and Future Work 
 
In this paper we have presented an architecture for a 
Multi-layered Virtual Machine design intended to 
provide a foundational mechanism for supporting 
virtual laboratory infrastructure. 

Through the use of virtualization we have 
reduced, if not eliminated, the costs associated with 
topology configuration and the deployment of codes 
on a grid. We described how virtualization 
technology can provide runtime flexibility and 
automation for grids. By specifying virtual topology 
and network information outside, rather than inside, 
source codes, we may reuse grid communication 
patterns by reusing virtual topologies.  

In our framework, multi-layered virtual machines 
can also be created and destroyed “on-demand”. 
This capability provides further flexibility and 
automation in grid environments. It lessens the need 
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for manual effort and intervention in configuring 
and deploying jobs, thereby reducing management 
and maintenance costs.  

We have not yet implemented all features of our 
system. We envision enhancing our 
“reconfigurability” mechanism as a policy-based 
web service.  In the spirit of autonomic computing, 
automatic runtime policy reconfiguration and 
enforcement will permit our virtual machines to be 
self-configuring to some degree.  

The implementation and testing of interface 
modules for existing OS-level VMs has to be 
extended to complete our framework.  Specifically, 
in the area of security, we aim to implement a grid-
based trust system and protection against malicious 
codes and attacks.  

We are also planning to extend our virtual data 
communication interface model to optical networks 
and wireless networks. Hence, we plan to 
incorporate User-Controlled Light Path (UCLP) [18] 
services into the MVM framework by using our 
component-level VM layer services.  
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