Checking Finite State Machine Conformance when there are Distributed Observations

Robert M. Hierons

Abstract

This paper concerns state-based systems that interact with their environment at physically distributed interfaces, called ports. When such a system is used a projection of the global trace, called a local trace, is observed at each port. This leads to the environment having reduced observational power: the set of local traces observed need not uniquely define the global trace that occurred. We consider the previously defined implementation relation \subseteq_s and start by investigating the problem of defining a language $\tilde{L}(M)$ for a multi-port finite state machine (FSM) M such that $N \subseteq_s M$ if and only if every global trace of N is in $\tilde{L}(M)$. The motivation is that if we can produce such a language $\tilde{L}(M)$ then this can potentially be used to inform development and testing. We show that $\tilde{L}(M)$ can be uniquely defined but need not be regular. We then prove that it is generally undecidable whether $N \subseteq_s M$, a consequence of this result being that it is undecidable whether there is a test case that is capable of distinguishing two states or two multi-port FSM in distributed testing. This result complements a previous result that it is undecidable whether there is a test case that is guaranteed to distinguish two states or multi-port FSMs. We also give some conditions under which $N \subseteq_s M$ is decidable. We then consider the implementation relation \subseteq^{k}_s that only concerns input sequences of length k or less. Naturally, given FSMs N and M it is decidable whether $N \subseteq^{k}_s M$ since only a finite set of traces is relevant. We prove that if we place bounds on k and the number of ports then we can decide $N \subseteq^{k}_s M$ in polynomial time but otherwise this problem is NP-hard.

1 Introduction

Many systems interact with their environment at multiple physically distributed interfaces, called ports, with web-services, cloud systems and wireless sensor networks being important classes of such systems. When we test a system that has multiple ports we place a local tester at each port and the local tester at port p only observes the events at p. This has led to the (ISO standardised) definition of the distributed test architecture in which we have a set of distributed testers, the testers do not communicate with one another during testing, and there is no global clock [23]. While it is sometimes possible to make testing more effective by allowing the testers to exchange coordination messages during testing [4, 31], this is not always feasible and the distributed test architecture is typically simpler and cheaper to implement. Importantly, the situation in which separate agents (users or testers) interact with the system at its ports can correspond to the expected use of the system.

Distributed systems often have a persistent internal state and such systems are thus modeled or specified using state-based languages. In the context of testing the focus has largely been on finite state machines (FSMs) and input output transition systems (IOTSs). This is both because such approaches are suitable and because most tools and techniques for model-based testing transform the models, written in a high-level notation, to an FSM or IOTS [6, 12, 13, 11, 34]. Model-based testing has received much recent attention since it facilitates test automation, the results of a recent major industrial project showing the potential for significant reductions in the cost of testing [13].

\footnote{In model-based testing, test automation is based on a model of the expected behaviour of the system or some aspect of this expected behaviour.}
This paper concerns problems related to developing a multi-port system based on a (multi-port) FSM model/specification. Much of the work in the area of distributed testing has focussed on FSM models \cite{7, 9, 10, 24, 32, 36}, although there has also been work that considers more general models such as IOTs and variants of IOTs \cite{14, 37, 20, 19, 21}. While IOTs are more expressive, this paper explores decidability and complexity issues in distributed testing and so we restrict attention to finite state models and, in particular, to multi-port FSMs. Naturally, the negative decidability and complexity results proved in this paper extend immediately to IOTs.

When a state-based system interacts with its environment there is a resultant sequence of inputs and outputs called a *global trace*. When there are physically distributed ports the user or tester at a port \(p \) only observes the sequence of events that occur at \(p \), the projection at \(p \) of the global trace, and this is called a *local trace*. It is known that the local testers only observing local traces introduces additional issues into testing \cite{7, 9, 10, 14, 37, 24, 32, 36}.

Previous work has shown that distributed testing introduces additional controllability and observability problems. A controllability problem occurs when a tester does not know when to supply an input due to it not observing the events at the other ports \cite{32, 9}. Consider, for example, the global trace shown in Figure 1. We use diagrams (message sequence charts) such as this to represent scenarios. In such diagrams vertical lines represent processes and time progresses as we go down a line. In this case the system under test (SUT) has two ports, 1 and 2, we have one vertical line representing the SUT, one representing the local tester at port 1, and one representing the local tester at port 2. There is a controllability problem because the tester at port 2 should send input \(x' \) after \(y \) has been sent by the SUT but cannot know when this has happened since it does not observe the events at port 1.

Observability problems refer to the fact that the observational ability of a set of distributed testers is less than that of a global tester since the set of local traces need not uniquely define the global trace that occurred \cite{10}. Consider, for example, the global traces \(\sigma \) and \(\sigma' \) shown in Figures 2 and 3 respectively. These global traces are different but the local testers observe the same local traces: in each case the tester at port 1 observes \(xyxy \) and the tester at port 2 observes \(y' \). Recent work has defined new notions of conformance (implementation relations) that recognise this reduced observational power of the environment \cite{16, 20}. These implementation relations essentially say that the SUT conforms to the specification if the environment cannot observe a failure. When using such implementation relations, we do not have to consider observability problems: if a global trace \(\sigma \) of the SUT is observationally equivalent to one in the specification then \(\sigma \) is considered to be an allowed behaviour since a set of distributed testers or users would not observe a failure.

Given multi-port FSMs \(N \) and \(M \), there are two notions of conformance for situations in which distributed observations are made: weak conformance (\(\sqsubseteq_w \)) and strong conformance (\(\sqsubseteq_s \)). Under \(\sqsubseteq_w \), it is sufficient that for every global trace \(\sigma \) of \(N \) and port \(p \) there is some global trace \(\sigma_p \) of \(M \) such that \(\sigma \) and \(\sigma_p \) are indistinguishable at port \(p \); they have the same local traces at \(p \). In contrast, under \(\sqsubseteq_s \) we require that for every global trace \(\sigma \) of \(N \) there is some global trace \(\sigma' \) of \(M \) such that \(\sigma \) and \(\sigma' \) are indistinguishable at all of the ports. To see the difference, let us suppose that there are two allowed responses to input \(x_1 \) at port 1: either \(y_1 \) at port 1 and \(y_2 \) at port 2.
Figure 2. Global trace σ.

Figure 3. Global trace σ'.
(forming global trace σ) or y'_1 at port 1 and y'_2 at port 2 (forming global trace σ'). Under \subseteq_w it is acceptable for the SUT to respond to x_1 with y_1 at port 1 and y'_2 at port 2 since the local trace at port 1 is x_1y_1, which is a projection of σ, and the local trace at port 2 is y'_2, which is a projection of σ'. However, this is not acceptable under \subseteq_s since there is no global trace of the specification that has projection x_1y_1 at port 1 and projection y'_2 at port 2.

One of the benefits of using an FSM to model the required behaviour of a system that interacts with its environment at only one port is that there are standard algorithms for many problems that are relevant to test generation. For example, we can decide whether there are strategies (test cases) that reach or distinguish states \mathcal{L} and such strategies are used by many test generation algorithms [16, 15, 26, 28, 35]. In addition, if we have an FSM specification M and an FSM design N then we can decide whether N conforms to M. Thus, if we wish to adapt standard FSM test techniques to the situation where we have distributed testers then we need to investigate corresponding problems for multi-port FSMs. Recent work has shown that it is undecidable whether there is a strategy that is guaranteed to reach a state or distinguishes two states of an FSM in distributed testing [18]. However, this left open the question of whether one can decide whether one FSM conforms to another. It also left open the related question of whether it is decidable whether there is a strategy that is capable of distinguishing two FSMs.

This paper concerns the problem of deciding, for multi-port FSMs M and N, whether N conforms to M. Clearly, this can be decided in low order polynomial time for \subseteq_w: for each port p we simply compare the projections of N and M at p. However, \subseteq_w will often be too weak since it assumes that we can never have the situation in which an agent is aware of observations made at two or more ports. We therefore focus on the implementation relation \subseteq_s.

We start by investigating the question of whether, given a multi-port FSM M, we can define a language $\mathcal{L}(M)$ such that for every multi-port FSM N we have that $N \subseteq_s M$ if and only if all global traces of N are in $\mathcal{L}(M)$. If we can define such an $\mathcal{L}(M)$ then there is the potential to explore properties of this in order to find algorithms for deciding $N \subseteq_s M$ for classes of N and M. There is also the potential to base testing and development on $\mathcal{L}(M)$. It has already been shown that we can produce such a language $\mathcal{L}(M)$ for the special case where we restrict testing to controllable input sequences and are testing from deterministic FSMs [17]. We prove that $\mathcal{L}(M)$ is uniquely defined but need not be regular.

We then consider the problem of determining whether $N \subseteq_s M$ for multi-port FSMs N an M and prove that this is generally undecidable. We also give some conditions under which $N \subseteq_s M$ is decidable. Clearly, this problem is important when we are checking an FSM design against an FSM specification. In addition, $N \subseteq_s M$ if no possible behaviour of N can be distinguished from the behaviours of M. Thus, since it is undecidable whether $N \subseteq_s M$ it is also undecidable whether there is a test case that is capable of distinguishing two states or FSMs [19]. However, the proofs use very different approaches: the proof of the previous result [18] used results from multi-player games while in this paper we develop and then use results regarding multi-tape automata. Note that many traditional methods for testing from an FSM use sequences that distinguish between states, in order to check that a (prefix of a) test case takes the SUT to a correct state [14, 15, 19, 28, 33]. The results in this paper and in [18] suggest that it will be difficult to adapt such techniques for distributed testing.

In addition, we can represent a possible fault in the SUT by an FSM N formed by introducing the fault into the specification FSM M: the results in this paper show that it is undecidable whether there is a test case that can detect such a ‘fault’, and thus also whether it represents an incorrect implementation.

Since it is undecidable whether $N \subseteq_s M$, we define a weaker implementation relation \subseteq_s^k that only considers sequences of length k or less. This is relevant when we know a bound on the length of sequences in use or we know that the system will be reset after at most k inputs have been received. For example, a protocol might have a bound on the number of steps that can occur before a ‘disconnect’ happens. Naturally, it is decidable whether $N \subseteq_s^k M$ since we only have to reason about finite sets of global traces. We prove that if we place a bound on k and the number of ports then we can decide whether $N \subseteq_s^k M$ in polynomial time but the problem is NP-hard if we do not have such bounds.

This paper is structured as follows. Section 2 provides preliminary definitions. Section 3 then investigates the problem of defining a language $\mathcal{L}(M)$ such that for every multi-port FSM N we have that $N \subseteq_s M$ if and only if all global traces of N are in $\mathcal{L}(M)$. In Section 4 we prove results regarding multi-tape automata that we use in
Section 5 to prove that it is generally undecidable whether \(N \subseteq s M \). Section 4 also gives conditions under which \(N \subseteq s M \) is decidable. In Section 6 we then explore \(\subseteq_s^k \). Finally, in Section 7 we draw conclusions and discuss possible lines of future work.

2 Preliminaries

This paper concerns the testing of state-based systems whose behaviour is characterised by the input/output sequences (global traces) that they can produce. Given a set \(A \) we let \(A^* \) denote the set of sequences formed from elements of \(A \) and we let \(\epsilon \) denote the empty sequence. In addition, \(A^+ \) denotes the set of non-empty sequences in \(A^* \). Given sequence \(\sigma \in A^* \) we let \(\text{pref}(\sigma) \) denote the set of prefixes of \(\sigma \). We are interested in finite state machines, which define global traces (input/output sequences). Given a global trace \(\sigma = x_1/y_1 \ldots x_k/y_k \), in which \(x_1, \ldots, x_k \) are inputs and \(y_1, \ldots, y_k \) are outputs, the prefixes of \(\sigma \) are the global traces of the form \(x_1/y_1 \ldots x_j/y_j \) with \(j \leq k \).

In this paper we investigate the situation in which a system interacts with its environment at \(n \) physically distributed interfaces, called ports. We let \(P = \{1, \ldots, n\} \) denote the names of these ports. Then a multi-port FSM \(M \) is defined by a tuple \((S, s_0, I, O, h)\) in which \(S \) is the finite set of states, \(s_0 \in S \) is the initial state, \(I \) is the finite input alphabet, \(O \) is the finite output alphabet, and \(h \) is the transition relation. The set of inputs is partitioned into subsets \(I_1, \ldots, I_n \) such that for \(p \in P \) we have that \(I_p \) is the set of inputs that can be received at port \(p \). Similarily, for port \(p \) we let \(O_p \) denote the set of output that can be observed at port \(p \). As is usual \([14,18,32,36]\) we allow an input to lead to outputs at several ports and so we let \(O = (\langle O_1 \cup \{-\}\rangle \times \ldots \times (O_n \cup \{-\}))\) in which \(- \) denotes null output. We can ensure that the \(I_p \) and also the \(O_p \) are pairwise disjoint by labelling input and output with the port name, if necessary. We let \(\text{Act} = I \cup O \) denote the set of possible observations and for \(p \in P \) we let \(\text{Act}_p = I_p \cup O_p \) denote the set of possible observations at port \(p \).

The transition relation \(h \) is of type \(S \times I \leftrightarrow S \times O \) and should be interpreted in the following way: if \((s', y) \in h(s, x)\), \(y = (z_1, \ldots, z_n)\), and \(M \) receives input \(x \) when in state \(s \) then it can move to state \(s' \) and send output \(z_p \) to port \(p \) (all \(p \in P \)). This defines the transition \((s, s', x/y)\), which is a self-loop transition if \(s = s' \). Since we only consider multi-port FSMs in this paper, we simply call them FSMs. The FSM \(M \) is said to be a deterministic FSM (DFSM) if \(|h(s, x)| \leq 1\) for all \(s \in S \) and \(x \in I \).

An FSM \(M \) is completely-specified if for every state \(s \) and input \(x \), we have that \(h(s, x) \neq \emptyset \). A sequence \((s_1, s_2, x_1/y_1)(s_2, s_3, x_2/y_2)\ldots(s_k, s_{k+1}, x_k/y_k)\) of consecutive transitions is said to be a path, which has starting state \(s_1 \) and ending state \(s_{k+1} \). This path has label \(x_1/y_1 \ldots x_k/y_k \), which is called a (global) trace. Further, \(x_1 \ldots x_k \) and \(y_1 \ldots y_k \) are said to be the input portion and the output portion respectively of \(x_1/y_1 \ldots x_k/y_k \). A path is a cycle if its starting and ending states are the same. The FSM \(M \) defines the regular language \(L(M) \) of the labels of paths of \(M \) that have starting state \(s_0 \). Given state \(s \in S \) of \(M \) we let \(L_M(s) \) denote the set of global traces that are labels of paths of \(M \) with starting state \(s \), and so \(L(M) = L_M(s_0) \). We say that \(M \) is initially connected if for every state \(s \) of \(M \) there is a path that has starting state \(s_0 \) and ending state \(s \). Throughout this paper we assume that any FSM considered is completely-specified and initially connected. Where this condition does not hold we can remove the states that cannot be reached and we can complete the FSM by, for example, either adding self-loop transitions with null output or transitions to an error state.

At times we will use results regarding finite automata (FA) and so we briefly define FA here. A FA \(M \) is defined by a tuple \((S, s_0, X, h, F)\) in which \(S \) is the finite set of states, \(s_0 \in S \) is the initial state, \(X \) is the finite alphabet, \(h \) is the transition relation, and \(F \subseteq S \) is the set of final states. The transition relation has type \(S \times (X \cup \{\tau\}) \times S \) where \(\tau \) represents a silent transition that is not observed. The notions of a path and its label, which does not include instances of \(\tau \), correspond to those defined for FSMs and so are not defined here. The FA \(M \) defines the language \(L(M) \) of labels of paths that have starting state \(s_0 \) and an ending state in \(F \).

For a global trace \(\sigma \) and port \(p \in P \) let \(\pi_p(\sigma) \) denote the local trace formed by removing from \(\sigma \) all elements that do not occur at \(p \). This is defined by the following rules in which \(\sigma \) is a global trace (see, for example, \([22]\)).
and only if L 3

Test models for conformance

σ trace x global trace equivalent to M to consider the FSMs M to

Definition 2

knows the projection of the global trace at each port. This leads to the following stronger conformance relation.

σ global traces if for every global trace N also clear that

Definition 1

relation.

local trace observed at a port p with one another or share information with other agents that can interact. In such cases it is sufficient for the power of distributed testing \cite{16}. In some situations the agents at the separate ports of the SUT will never interact made. Previous work has defined two conformance relations for testing from an FSM that reflect the observational

Figure 4. Finite State Machines M_1 and N_1

$\pi_p(\epsilon) = \epsilon$

$\pi_p((x/(z_1, \ldots, z_n))\sigma) = \pi_p(\sigma)$ if $x \not\in I_p \land z_p = -$

$\pi_p((x/(z_1, \ldots, z_n))\sigma) = x\pi_p(\sigma)$ if $x \in I_p \land z_p = -$

$\pi_p((x/(z_1, \ldots, z_n))\sigma) = z_p\pi_p(\sigma)$ if $x \not\in X_p \land z_p \neq -$

$\pi_p((x/(z_1, \ldots, z_n))\sigma) = xz_p\pi_p(\sigma)$ if $x \in X_p \land z_p \neq -$

Given a set A of global traces and port p we let $\pi_p(A)$ denote the set of projections of sequences in A. Thus, $\pi_p(A) = \{\pi_p(\sigma)\mid \sigma \in A\}$.

In the distributed test architecture, a local tester at port $p \in P$ only observes events from Act_p. Thus, two global traces σ and σ' are indistinguishable if they have the same projections at every port and we denote this $\sigma \sim \sigma'$. More formally, we say that $\sigma \sim \sigma'$ if for all $p \in P$ we have that $\pi_p(\sigma) = \pi_p(\sigma')$.

Given an FSM M, we let $L(M)$ denote the set of global sequences that are equivalent to elements of $L(M)$ under \sim. These are the sequences that are indistinguishable from sequences in $L(M)$ when distributed observations are made. Previous work has defined two conformance relations for testing from an FSM that reflect the observational power of distributed testing \cite{16}. In some situations the agents at the separate ports of the SUT will never interact with one another or share information with other agents that can interact. In such cases it is sufficient for the local trace observed at a port p to be a local trace of M. This situation is captured by the following conformance relation.

Definition 1

Given FSMs N and M with the same input and output alphabets and the same set of ports, $N \subseteq_w M$ if for every global trace $\sigma \in L(N)$ and port p there exists some $\sigma_p \in L(M)$ such that $\pi_p(\sigma_p) = \pi_p(\sigma)$. N is then said to weakly conform to M.

However, sometimes there is the potential for information from separate testers to be received by an external agent. For example, there may be a central controller that receives the observations made by each tester and thus knows the projection of the global trace at each port. This leads to the following stronger conformance relation.

Definition 2

Given FSMs N and M with the same input and output alphabets and the same set of ports, $N \subseteq_s M$ if for every global trace $\sigma \in L(N)$ there exists some $\sigma' \in L(M)$ such that $\sigma' \sim \sigma$. N is then said to strongly conform to M.

It is straightforward to see that given FSMs N and M we have that $N \subseteq_s M$ if and only if $L(N) \subseteq L(M)$. It is also clear that $N \subseteq_s M$ implies that $N \subseteq_w M$. In order to see that \subseteq_s is strictly stronger than \subseteq_w it is sufficient to consider the FSMs M_1 and N_1 shown in Figure 4. Clearly we do not have that $N_1 \subseteq_s M_1$ since M_1 has no global trace equivalent to $x_1/(y_1, y_2')$ under \sim. However, for every global trace σ of N_1 and port p there is a global trace σ' of M_1 such that $\pi_p(\sigma) = \pi_p(\sigma')$. Thus, we have that $N_1 \subseteq_w M_1$.

3 Test models for conformance

In this section we investigate the problem of defining a language $\hat{L}(M)$ for an FSM M such that $N \subseteq_s M$ if and only if $L(N) \subseteq \hat{L}(M)$. The motivation is that if we are developing the SUT from M and we do have some
such \(\tilde{L}(M) \) then we can use standard approaches to refine \(\tilde{L}(M) \). In addition, if in testing we wish to test for \(\subseteq_s \)
but we can connect the local testers to form a global tester then we should compare the global traces of the SUT with \(\tilde{L}(M) \): if we compare the global traces from the SUT with \(L(M) \) then we could lead to the SUT \(N \) being declared faulty even if \(N \subseteq_s M \). It would be particularly useful if we could find an FSM or IOTS \(M' \) such that \(L(M') = \tilde{L}(M) \); we could then test \(N \) against \(M' \) using normal test methods and the usual conformance relation (trace inclusion).

We start by considering the language \(L(M) \). Clearly, we have that \(N \subseteq_s M \) if and only if \(L(N) \subseteq \tilde{L}(M) \). However, if we can represent \(L(M) \) using an FSM or IOTS then for every \(\sigma \in L(M) \) and \(\sigma' \in \text{pre}(\sigma) \) we must have that \(\sigma' \in L(M) \): \(L(M) \) must be prefix closed.

Proposition 1 The language \(L(M) \) need not be prefix closed.

Proof
Consider a DFSM \(M \) such that \(x_1/(y_1, y_2)x_1/(y_1, -) \in L(M) \). Then \(L(M) \) contains \(x_1/(y_1, -)x_1/(y_1, y_2) \) but \(x_1/(y_1, -) \notin L(M) \) and so \(L(M) \) is not prefix closed. \(\square \)

The languages defined by FSMs and IOTs are prefix closed and so we know that \(L(M) \) cannot always be represented by such a model. However, the languages defined by finite automata need not be prefix closed. Thus, Proposition 1 does not preclude the possibility of representing the \(L(M) \) using finite automata, however, the following does. It is already known from Mazurkiewicz trace theory that, where some elements of an alphabet commute (i.e. \(ab = ba \)) the set of sequences equivalent to those defined by a FA need not be regular (see, for example, [9]). It is straightforward to show that this also holds for FSMs.

Proposition 2 Given FSM \(M \), the language \(L(M) \) need not be regular.

Proof
Consider the FSM \(M_4 \) shown in Figure 5 and let \(L = L(M_4) \). Proof by contradiction: assume that \(L \) is a regular language.

Let \(L' \) be the set of global traces in which all outputs are \((-,-)\). Clearly \(L' \) is a regular language. Thus, since \(L \) is regular we must have that \(L'' = L \cap L' \) is regular. The language \(L'' \) is the set of global traces from \(L(M_4) \) that have null output. Thus, \(L'' \) is the set of all global traces with inputs drawn from \(\{x_1, x_2\} \) and that have null output and in which the number of instances of \(x_2 \) is either equal to the number of instances of \(x_1 \) or is one less than this. However, this language is not regular, providing a contradiction as required. \(\square \)

We have that \(L(M) \) has the property we want \((N \subseteq_s M \text{ if and only if } L(N) \subseteq L(M)) \) but that \(L(M) \) need not be regular. The observation that \(L(M) \) is not prefix closed tells us that it can contain strings that are in no \(L(N) \) for an FSM or IOTS \(N \) such that \(N \subseteq_s M \). It seems natural to remove these global traces.

Definition 3 Given FSM \(M \) let \(\mathcal{L}_{pc}(M) \) denote the set of global traces from \(L(M) \) whose prefixes are also in \(L(M) \). More formally, \(\mathcal{L}_{pc}(M) = \{ \sigma \in L(M) | \text{pre}(\sigma) \subseteq L(M) \} \).
Proposition 3 Given FSMs M and N we have that $N \subseteq_s M$ if and only if $L(N) \subseteq L_{pc}(M)$.

Proof
In forming $L_{pc}(M)$ we only remove from $L(M)$ a global trace σ if some of its prefixes are not in $L(M)$, and so σ cannot be a global trace of an FSM N such that $N \subseteq_s M$. The result therefore follows from the fact that $N \subseteq_s M$ if and only if $L(N) \subseteq L(M)$. □

Clearly, $L_{pc}(M) \subseteq L(M)$ and so it is natural to ask whether there remain any global traces in $L_{pc}(M)$ that cannot appear in FSMs that conform to M under \subseteq_s.

Proposition 4 Given an FSM M and global trace $\sigma \in L_{pc}(M)$ there exists an FSM N such that $N \subseteq_s M$ and $\sigma \in L(N)$. Further, this is true even if we restrict N to being deterministic.

Proof
Let σ be a global trace of length k and so $\sigma = x_1/y_1 \ldots x_k/y_k$ for some $x_1, \ldots, x_k \in I$ and $y_1, \ldots, y_k \in O$. For all $1 \leq i \leq k$ let σ_i denote the prefix of σ with length i. We will construct an FSM N' in the following way. First, define an initial state s'_0 and for every $1 \leq i < k$ we define a state s'_i and add the transition $(s'_{i-1}, s'_i, x_i/y_i)$.

Since $\sigma \in L_{pc}(M)$, for each state s'_i, $1 \leq i \leq k$, we choose a (not necessarily unique) state of M, which we call s_i, that is reached from the initial state of M using a global trace $\sigma'_i \sim \sigma_i$. We add a copy of M to the structure already defined and will use transitions to the states of this copy of M in order to complete N'.

First, we add the transition $(s'_{i-1}, s_i, x_i/y_i)$ so if we follow σ by further input in N' then we will obtain σ followed by a global trace σ' from s_k in M. For all $1 \leq i < k$, $x \in I \setminus \{x_i\}$, and $(s', y) \in h(s_{i-1}, x)$, we add the transition $(s'_{i-1}, s', x/y)$. Every global trace in N' is either a global trace of M or is $\sigma_i \sigma'$ for σ_i (which is in $L(M)$) and a global trace σ' such that $\sigma' \in L_M(s_i)$ and so $\sigma \in L(M)$. Further, it is clear that there is some DFSM N such that $L(N) \subseteq L(N')$ and $\sigma \in L(N)$. Thus, N is a DFSM with $L(N) \subseteq L(N') \subseteq L(M)$ and so we have that $N' \subseteq_s M$ as required. □

Thus, $L_{pc}(M)$ is the smallest language such that $N \subseteq_s M$ if and only if $L(N) \subseteq L_{pc}(M)$ and so it appears to be the language we want.

Figure 6 shows two FSMs M and M' such that $M' = L_{pc}(M)$. Since $M' = L_{pc}(M)$, for an FSM N we have that $N \subseteq_s M$ if and only if $L(N) \subseteq L(M')$. This works because the only global traces that are in $L(M)$ but not $L(M)$ are those in the form $(x_1/(y_1,-))^* x_2/(-,y_2)((x_1/(y_1,-)) + x_2/(-,y_2))^*$ and these are included in $L(M')$.

We have shown that we are required to keep all of the sequences in $L_{pc}(M)$. Now we show that if $L = L(M')$ for some FSM M' and we have that $L_{pc}(M) \subseteq L(M')$ then the language $L(M')$ is too large. We do this by proving that there can be a reduction N of M' that does not conform to M under \subseteq_s and this is the case even if we restrict N to be deterministic.
Proposition 5 Given an FSM M, if $L' = L(M')$ for some FSM M' and $L_{pc}(M) \subseteq L'$ then there is an FSM N such that $L(N) \subseteq L'$ but we do not have that $N \subseteq_s M$. Further, this result holds even if we restrict N to being deterministic.

Proof
Since $L_{pc}(M) \subseteq L'$ there is some global trace $\sigma \in L(M') \setminus L_{pc}(M)$. Since $L' = L(M')$ for an FSM M', it is clear that there exists a DFSM N such that $L(N) \subseteq L'$ and $\sigma \in L(N)$.

It is now sufficient to observe that σ and all of its prefixes are in $L(N)$ and since $\sigma \notin L_{pc}(M)$ we must have that at least one of these sequences is not in $L(M)$.

Thus, the language we are looking for must contain $L_{pc}(M)$ and if we restrict attention to languages defined by FSMs, then the language cannot contain any additional global traces. Unfortunately, however, $L_{pc}(M)$ need not be regular.

Proposition 6 The language $L_{pc}(M)$ need not be regular.

Proof
We will use the FSM M_5 shown in Figure 7. Proof by contradiction: assume that $L_{pc}(M_5)$ is regular.

Let L' denote the regular language $(x_2/(-,-))^\ast x_1/(-,-)^\ast$. Consider the language $L(M_5) \cap L'$, which is the set of sequences of the form $(x_2/(-,-))^\ast x_1/(-,-)^\ast$ where the number of instances of x_2 can be at worst one less than the number of instances of x_1. This is prefix closed since each element of $L(M_5) \cap L'$ starts with all of its instances of $x_2/(-,-)$. Clearly $L(M_5) \cap L'$ is not regular.

Since $L(M_5) \cap L'$ is prefix closed, $L_{pc}(M_5) \cap L' = L(M_5) \cap L'$. As a result, we know that $L_{pc}(M_5) \cap L'$ is not regular. But L' is regular and so if $L_{pc}(M_5)$ was regular then $L_{pc}(M_5) \cap L'$ would also be regular. This provides a contradiction as required.

We therefore obtain the following result.

Theorem 1 Given an FSM M there need not exist an FSM M' with the property that for all FSMs N we have that $N \subseteq_s M$ if and only if $L(N) \subseteq L(M')$. In addition, this result holds even if we restrict attention to deterministic N.

Proof
By Propositions 4 and 5 we know that we must have that $L(M') = L_{pc}(M)$. The result thus follows from Proposition 5.

If $L_{pc}(M)$ is regular then there is a corresponding FSM. It would thus be interesting to explore conditions under which $L_{pc}(M)$ is guaranteed to be regular and also properties of $L_{pc}(M)$ when this is not regular. There may also be scope to represent $L_{pc}(M)$ using an IOTS.

\footnote{We can easily extend the proofs to more general formalisms such as IOTs.}
4 Conformance and multi-tape automata

While we can decide (in polynomial time) whether $N \sqsubseteq_w M$, this is quite a weak conformance relation since it does not allow us to bring together local traces observed at the separate ports. It seems likely that normally the implementation relation \sqsubseteq_s will be more suitable and so we consider the problem of deciding whether $N \sqsubseteq_s M$. In this section we study the problem of deciding language inclusion for multi-tape automata; in Section 5 we use the results proved here regarding multi-tape automata to show that it is generally undecidable whether $N \sqsubseteq_s M$ for FSMs M and N. We first define multi-tape FA [30].

Definition 4 An r-tape FA with disjoint alphabets $\Sigma_i, 1 \leq i \leq r$ is a tuple (S, s_0, Σ, h, F) in which S is a finite set of states, $s_0 \in S$ is the initial state $F \subseteq S$ is the set of final states and $h : S \times \bigcup_{i=1}^{r} \Sigma_i \times S$ is the transition relation. Then A accepts a tuple $(w_1, \ldots, w_r) \in \Sigma_1^* \times \ldots \times \Sigma_r^*$ if and only if there is some sequence $\sigma \in (\bigcup_{i=1}^{r} \Sigma_i)^*$ that takes A to a final state such that $\pi_i(\sigma) = w_i$ for all $1 \leq i \leq r$. We let $L(N)$ denote the set of tuples accepted by N.

Given a multi-tape FA N with r tapes, we will let $L(N)$ denote the language in $(\Sigma_1 \cup \ldots \cup \Sigma_r)^*$ of the corresponding FA. We obtain $L(N)$ by treating N as a FA with alphabet $\Sigma = \Sigma_1 \cup \ldots \cup \Sigma_r$.

It might seem that deciding whether $N \sqsubseteq_s M$ is similar to deciding whether, for two multi-tape FA N' and M', the language defined by N' is a subset of that defined by M'. This problem, regarding multi-tape FA, is known to be undecidable [30]. However, the proof of the result regarding multi-tape FA uses FA in which not all states are final and in FSMs there is no concept of a state not being a final state. Thus, the results of [30] are not directly applicable to the problem of deciding whether $N \sqsubseteq_s M$ for FSMs N and M and it appears that the corresponding problem, for multi-tape FA in which all states are final, has not previously been solved. In this section we prove that language inclusion is generally undecidable for multi-tape FA in which all states are final states. Before we consider decidability issues, we investigate the corresponding languages and closure properties.

Proposition 7 Let us suppose that $N_1 = (S, s_0, h_1, S)$ and $N_2 = (Q, q_0, h_2, Q)$ are multi-tape FA with the same number of tapes and the same alphabets and also that all of the states of N_1 and N_2 are final states. Then we have the following.

1. There exists a multi-tape FA M such that $L(M) = L(N_1) \cup L(N_2)$ and all of the states of M are final states.
2. There exists a multi-tape FA M such that $L(M) = L(N_1) \cup L(N_2)$ and all of the states of M are final states.
3. There may not exists a multi-tape FA M such that $L(M) = L(N_1) \cap L(N_2)$ and all of the states of M are final states.
4. There may not exists a multi-tape FA M such that $L(M) = L(N_1) \cap L(N_2)$ and all of the states of M are final states.

Proof We will use $A \oplus B$, for sets A and B, to denote the disjoint union of A and B. For the first result it is sufficient to define the FA $(S \oplus Q \oplus \{r_0\}, r_0, h', S \oplus Q \oplus \{r_0\})$ for $r_0 \not\in S \oplus Q$, in which h is the union of h_1 and h_2 plus the following transitions: for every $(s_0, a, s) \in h_1$ we include in h' the tuple (r_0, a, s); and for every $(q_0, a, q) \in h_2$ we include in h' the tuple (r_0, a, q).

For the second part, it is sufficient to take the disjoint union of N_1 and N_2 and for every transition (s, s', a) of N_1 add a transition (s, q_0, a).

For the third part, it is sufficient to observe that for any choice of N_1 and N_2 we have that the empty sequence is in $L(N_1)$ and $L(N_2)$ and so not in $L(N_1) \cap L(N_2)$. Thus, it is sufficient to choose any N_1 and N_2 such that $L(N_1) \cap L(N_2)$ is non-empty.

For the last part, let us suppose that we have two tapes with alphabets $\{a_1\}$ and $\{a_2\}$, let $L(N_1) = \{e, a_1, a_1 a_2\}$ and let $L(N_2) = \{e, a_2, a_2 a_1\}$ and so $L(N_1) \cap L(N_2) = \{e, a_1 a_2, a_2 a_1\}$.

We will use Post’s Correspondence Problem to prove that language inclusion is undecidable.

Definition 5 Given sequences $\alpha_1, \ldots, \alpha_m$ and β_1, \ldots, β_m over an alphabet Σ, Post’s Correspondence Problem (PCP) is to decide whether there is a sequence i_1, \ldots, i_k of indices from $[1, m]$ such that $\alpha_{i_1} \ldots \alpha_{i_k} = \beta_{i_1} \ldots \beta_{i_k}$.
Clearly, such an FA \(N \) (\(\Sigma_1 \) and \(\Sigma_2 \)) is the language that contains all elements of the form \(x((f_1(\alpha_{i_1})f_2(\beta_{i_1}) + \cdots + (f_1(\alpha_{i_k})f_2(\beta_{i_k})))^*x') \) and all prefixes of such sequences. Clearly, such an FA \(N \) exists. Consider all sequences in \(\mathcal{L}(N) \) that contain an \(x \) and an \(x' \) and let \(\sigma_a \) and \(\sigma_b \) be the sequences in the two tapes with \(x \) and \(x' \) removed. Then we must have that \(\sigma_a \) is of the form \(f_1(\alpha_{i_1}) \cdots f_1(\alpha_{i_k}) \) and \(\sigma_b \) is of the form \(f_2(\beta_{i_1}) \cdots f_2(\beta_{i_k}) \) with \(i_1, \ldots, i_k \in [1, m] \). In addition, all such combinations correspond to sequences in \(\mathcal{L}(N) \). Thus, there is a solution to this instance of the PCP if and only if \(\mathcal{L}(N) \) contains a tuple \((x\sigma_a x', \sigma_b)\) in which \(\sigma_a = \sigma_b \).

The FA \(M \) that defines language \(\mathcal{L}(M) \) is shown in Figure 8 in which \((a, -)\) denotes elements all of the form \(f_1(a) \) and \((- , a)\) denotes all elements of the form \(f_2(a) \), \(a \in \Sigma \). Further, \((a, b)\) denotes sequences of the form \(f_1(a)f_2(b) \) with \(a, b \in \Sigma \) and \(a \neq b \). We use \((a, a)\) to denote sequences of the form \(f_1(a)f_2(a) \) with \(a \in \Sigma \). In all cases where we have sequences with length 2, this represents a cycle of length 2.

Now consider the problem of deciding whether \(\mathcal{L}(N) \subseteq \mathcal{L}(M) \). Specifically, we will focus on the problem of deciding whether \(\mathcal{L}(N) \) is not a subset of \(\mathcal{L}(M) \) and so \(\mathcal{L}(N) \setminus \mathcal{L}(M) \) is non-empty. First, note that in \(\mathcal{L}(M) \) we have:

\[
\mathcal{L}(M) = \{ (x\sigma_a x', \sigma_b) \mid \sigma_a = \sigma_b \}
\]

Figure 8. Finite Automaton \(M \)
1. The language defined by paths that pass through s_1 contains all tuples of the form $(x f_1(w_1), f_2(w_2))$ or $(x f_1(w_1)x', f_2(w_2))$ such that $w_1, w_2 \in \Sigma^*$ and w_1 is a strict prefix of w_2.

2. The language defined by paths that pass through s_3 contains all tuples of the form $(x f_1(w_1), f_2(w_2))$ or $(x f_1(w_1)x', f_2(w_2))$ such that $w_1, w_2 \in \Sigma^*$ and w_2 is a strict prefix of w_1.

3. The language defined by paths that pass through s_2 contains all tuples of the form $(x f_1(w_1), f_2(w_2))$ or $(x f_1(w_1)w_3)x', f_2(w_2)w_4))$ in which $w_1 \in \Sigma^*$ and $w_2 \in \Sigma^*$ have the same length, $w_1 \neq w_2$, and $w_3, w_4 \in \Sigma^*$.

4. The language defined by paths that do not leave s_0 contains all tuples of the form $(x f_1(w), f_2(w))$.

Consider tuples in $L(M)$ that do not contain x' and thus tuples of the form $(x f_1(w_1), f_2(w_2))$ in which $w_1, w_2 \in \Sigma^*$. Then paths that pass through s_1 define all such tuples in which w_1 is a strict prefix of w_2 and paths that pass through s_3 define all such tuples in which w_2 is a strict prefix of w_1. In addition, paths that do not leave s_0 define all such tuples in which $w_1 = w_2$ and paths that pass through s_2 define all such tuples in which w_1 and w_2 differ after a (possibly empty) common prefix. Thus, $L(M)$ defines all tuples of the form $(x f_1(w_1), f_2(w_2))$ in which $w_1, w_2 \in \Sigma^*$ and so all tuples in $L(N)$ that do not contain x' are also in $L(M)$.

Now, consider the tuples in $L(M)$ that contain x'. These are of the form $(x f_1(w_1)x', f_2(w_2))$ and are defined by paths that pass through s_1, s_2 and s_3. By examining the languages defined by paths that pass through these states we find that $L(M)$ contains the set of tuples of this form in which $w_1 \neq w_2$. Thus, $L(N) \setminus L(M)$ is non-empty if and only if $L(N)$ contains a tuple of the form $(x f_1(w)x', f_2(w))$. But we know that this is the case if and only if there is a solution to this instance of the PCP and so the result follows from Theorem 2.

For the sake of completeness, we now prove some additional decidability results regarding multi-tape automata in which all states are final.

Theorem 4 Let us suppose that N and M are multi-tape FA in which all states are final states. The following problem is undecidable, even when there are only three tapes: do we have that $L(N) \cap L(M)$ contains a non-empty sequence.

Proof

We assume that we have been given an instance of the PCP with sequences $\alpha_1, \ldots, \alpha_m$ and β_1, \ldots, β_m with alphabet Σ and follow an approach similar to that used in the proof of Theorem 2. To allow elements of Σ on two tapes we use two copies of elements of Σ and let $\Sigma_1 = \{ f_1(a) | a \in \Sigma \} \cup \{ x \}$, $\Sigma_2 = \{ f_2(a) | a \in \Sigma \}$, and $\Sigma_3 = \{ x' \}$. Given a sequence $\alpha_1, \ldots, \alpha_i \in \Sigma^*$ and $j \in \{1, 2\}$ we let $f_j(\alpha_1 \ldots \alpha_i)$ denote $f_j(\alpha_1) \ldots f_j(\alpha_i)$.

We consider multi-tape automata with three tapes with alphabets Σ_1, Σ_2, and Σ_3. We let N denote such an FA such that $L(N)$ contains all tuples formed by sequences in the regular language $x(x f_1(\alpha_1) f_2(\beta_1) + \ldots + (f_1(\alpha_m) f_2(\beta_m))^* x')$ and all prefixes of such sequences. Note that xx' is not contained in $L(N)$. In addition, we let M denote the multi-tape automaton defined by the following:

1. There is a transition from s_0 to state s_1 and this has label x';
2. For all $a \in \Sigma$ there is a cycle starting and ending at s_1 with label $f_1(a) f_2(a)$;
3. There is a transition from s_1 to s_2, not involved in the cycles, with label x.
4. There are no transition from s_2.

Thus, all elements of $L(M)$ are either $(\epsilon, \epsilon, \epsilon)$ or contain x'. As a result, if there is a non-empty element of $L(N) \cap L(M)$ then this must contain both x and x'. It is now sufficient to observe that this is the case if and only if there is a solution to this instance of the PCP.

Finally, we prove that equivalence is undecidable for multi-tape FA in which all states are final states.

Theorem 5 Let us suppose that N and M are multi-tape FA in which all states are final states. The following problem is undecidable, even when there are only two tapes: do we have that $L(N) = L(M)$?
Proof
First observe that given sets A and B we have that $A \subseteq B$ if and only if $A \cup B = B$. Let us suppose that we have two multi-tape automata N_1 and N_2 with the same numbers of tapes and the same alphabets and assume that all states of N_1 and N_2 are final states. By Proposition 1 we know that we can construct a multi-tape automaton N_3 such that $\mathcal{L}(N_3) = \mathcal{L}(N_1) \cup \mathcal{L}(N_2)$ and all states of N_3 are final states. Thus, if we can decide whether $\mathcal{L}(N) = \mathcal{L}(M)$ for two multi-tape FA that have only final states then we can also decide whether $\mathcal{L}(N_1) \cup \mathcal{L}(N_2) = \mathcal{L}(N_2)$ for two multi-tape FA that only have final states. However, this holds if and only if $\mathcal{L}(N_1) \subseteq \mathcal{L}(N_2)$. The result thus follows from Theorem 3.

We now show how we can represent the problem of deciding language inclusion for multi-tape FA in terms of deciding whether $N \subseteq_s M$ for suitable FSMs N and M.

5 Deciding Strong Conformance

We have proved some decidability results for multi-tape FA in which all states are final states. However, we are interested in FSMs and here a transition has an input/output pair as a label. We now show how a multi-tape FA can be represented using an FSM (with multiple ports) before using this result to prove that $N \subseteq_s M$ is generally undecidable for FSMs N and M.

In order to extend Theorem 3 to FSMs we define a function that takes a multi-port finite automaton and returns an FSM.

Definition 6 Let us suppose that $N = (S, S_0, \Sigma, h, S)$ is a FA with r tapes with alphabets $\Sigma_1, \ldots, \Sigma_r$. We define the FSM $F(N)$ with $r + 1$ ports as defined below in which for all $1 \leq p \leq r$ we have that the input alphabet of N at p is Σ_p and the output alphabet is empty and further we have that the input alphabet at port $r + 1$ is empty and the output alphabet at $r + 1$ is $\{0, 1\}$. In the following for $a \in \{0, 1\}$ we use a_k to denote the k-tuple whose first $k - 1$ elements are empty and whose kth element is a.

$F(N) = (\{s\} \cup \{s_0, s, \{0, 1\}_{n + 1}, 1_{n + 1}\}, h')$ in which $s \notin S$, for all $z \in \Sigma$ we have that $h'(s, z) = \{(s, 0_{r + 1})\}$ and for all $s \in S$ and $z \in \Sigma$ we have that $h'(s, z)$ is defined by the following:

1. If $h(s, z) = S' \neq \emptyset$ then $h'(s, z) = \{(s', 1_{r + 1}), (s', 0_{r + 1})|s' \in S\}$;

2. If $h(s, z) = \emptyset$ then $h'(s, z) = \{(s, 0_{r + 1})\}$.

The idea is that while following a path of N the FSM $F(N)$ can produce either 0 or 1 at port $r + 1$ in response to each input but once we diverge from such a path the FSM can then only produce 0 (at $r + 1$) in response to an input.

Lemma 1 Let us suppose that N and M are r-tape FA with alphabets $\Sigma_1, \ldots, \Sigma_r$. Then $\mathcal{L}(N) \subseteq \mathcal{L}(M)$ if and only if $F(N) \subseteq_s F(M)$.

Proof
First assume that $F(N) \subseteq_s F(M)$ and we are required to prove that $\mathcal{L}(N) \subseteq \mathcal{L}(M)$. Assume that $\sigma \in \mathcal{L}(N)$ and so there exists some $\sigma' \sim \sigma$ such that $\sigma' \in L(N)$. Since $\sigma' \in L(N)$ we have that $L(F(N))$ contains the global trace ρ' in which the input portion is σ' and each output is 1. Since $F(N) \subseteq_s F(M)$ we must have that there is some $\rho'' \in L(F(M))$ such that $\rho'' \sim \rho'$. However, since the outputs are all at port $r + 1$ and the inputs are at ports $1, \ldots, r$ we must have that ρ'' has output portion that contains only 1 and input portion σ'' for some $\sigma'' \sim \sigma'$. Thus, we must have that $\sigma'' \in L(M)$. Since $\sigma' \sim \sigma''$ and $\sigma' \sim \sigma''$ we must have that $\sigma \in \mathcal{L}(M)$ as required.

Now assume that $\mathcal{L}(N) \subseteq \mathcal{L}(M)$ and we are required to prove that $F(N) \subseteq_s F(M)$. Let ρ be some element of $L(F(N))$ and it is sufficient to prove that $\rho \in L(F(M))$. Then $\rho = \rho_1 \rho_2$ for some maximal ρ_2 such that all outputs in ρ_2 are 0. Let the input portions of ρ_1 and ρ_2 be σ_1 and σ_2 respectively. By the maximality of ρ_2 we must have that ρ_1 is either empty or ends in output 1. Thus, $\sigma_1 \in L(N)$ and so, since $\mathcal{L}(N) \subseteq \mathcal{L}(M)$, there exists $\sigma'_1 \sim \sigma_1$ with $\sigma'_1 \in L(M)$. But this means that M can produce the output portion of ρ_1 in response to σ'_1 and so there exists $\rho'_1 \in L(F(M))$ with $\rho'_1 \sim \rho_1$. By the definition of $F(M)$, since all outputs in ρ_2 are 0 we have that $\rho' = \rho'_1 \rho_2 \in L(F(M))$. The result therefore follows from observing that $\rho' = \rho'_1 \rho_2 \sim \rho_1 \rho_2 = \rho$. □
Theorem 6 The following problem is undecidable: given two multi-port FSMs N and M with the same alphabets, do we have that $N \subseteq_s M$?

Proof
This follows from Lemma 1 and Theorem 3. \square

When considering FSM M with only one port, we represent the problem of deciding whether two states s and s' of M are equivalent by comparing the FSMs M_s and $M_{s'}$, formed by starting M in s and s' respectively. However, we also have that the general problem is undecidable.

Theorem 7 The following problem is undecidable: given a multi-port FSM M and two states s and s' of M, are s and s' equivalent.

Proof
We will prove that we can express the problem of deciding whether multi-port FSMs are equivalent in terms of state equivalence. We therefore assume that we have multi-port FSMs M_1 and M_2 with the same input and output alphabets and we wish to decide whether M_1 and M_2 are equivalent. Let s_{01} and s_{02} denote the initial states of M_1 and M_2 respectively. We will construct an FSM M in the following way. We add a new port p and input x_p at p. The input of x_p in the initial state s_0 of M moves M non-deterministically to either s_{01} or s_{02} and produces no output. All other input in state s_0 moves M to a state $s'_0 \neq s_0$, that is not a state of M_1 or M_2, from which all transitions are self-loops. The input of x_p in a state of M_1 or M_2 leads to no output and no change of state. Now we can observe that a sequence in the language defined by starting M in state s_{0i}, $i \in \{0,1\}$, is equivalent under \sim to a sequence from $L(M_i)$ followed by a sequence of zero or more instances of x_p. Thus, s_{01} and s_{02} are equivalent if and only if M_1 and M_2 are equivalent. The result thus follows from Theorem 3 and the fact that if we can decide equivalence then we can also decide inclusion. \square

We now consider problems relating to distinguishing FSMs and states in testing. We can only distinguish between FSMs and states on the basis of observations and each observation, in distributed testing, defines an equivalence class of \sim.

Definition 7 It is possible to distinguish FSM N from FSM M in distributed testing if and only if $L(N) \nsubseteq L(M)$. Further, it is possible to distinguish between FSMs N and M in distributed testing if and only if $L(N) \nsubseteq L(M)$ and $L(M) \nsubseteq L(N)$.

The first part of the definition says that we can only distinguish N from M in distributed testing if there is some global trace of N that is not observationally equivalent to a global trace of M. The second part strengthens this by requiring that we can distinguish N from M and also M from N. The following is an immediate consequence of Theorem 6.

Theorem 8 The following problems are generally undecidable in distributed testing.

- Is it possible to distinguish FSM N from FSM M?
- Is it possible to distinguish between FSMs N and M?

Similar to the proof of Theorem 7 we can express the problem of distinguishing between two FSMs as that of distinguishing two states s and s' of an FSM M. Thus, the above shows that it is undecidable whether there is some test case that is capable of distinguishing two states of an FSM or two FSMs. This complements a previous result [15], that it is undecidable whether there is some test case that is guaranteed to distinguish two states or FSMs.

Finally, we give conditions under which equivalence and inclusion are decidable. The first uses the notion of a Parikh Image of a sequence [27]. Given a sequence $\sigma \in \Sigma^*$, where we have ordered the elements of Σ as a_1, \ldots, a_m, the Parikh Image of σ is the tuple (x_1, \ldots, x_m) in which for all $1 \leq i \leq m$ we have that σ contains x_i instances of a_i. Given a set A of sequences, the Parikh Image of A is the set of tuples formed by taking the Parikh Image of each sequence in A.

There are classes of languages where the Parikh Image of the language is guaranteed to be a semi-linear set. A linear set is defined by a set of vectors v_0, \ldots, v_k that have the same dimension. Specifically, the linear set defined by v_0, \ldots, v_k and is the set of $n_0v_0 + n_1v_1 + \ldots + n_kv_k$ where n_0, \ldots, n_k are all non-negative integers. A semi-linear set is a finite union of linear sets.
Proposition 8 Let us suppose that multi-port FSMs N and M have the same input and output alphabets and that for each port $p \in P$ we have that $|\text{Act}_p| \leq 1$. Then it is decidable whether $N \subseteq_s M$.

Proof
Since for all $p \in P$ we have that $|\text{Act}_p| \leq 1$, for each $\sigma \in \text{Act}^*$ we have that σ is equivalent under \sim to all its permutations. Thus, the Parikh Image of a sequence in $L(N)$ or $L(M)$ uniquely defines the corresponding equivalence class. Thus, $N \subseteq_s M$ if and only if the Parikh Image of $L(N)$ is a subset of the Parikh Image of $L(M)$. However, these Parikh Images are semi-linear sets and it is decidable whether one semi-linear set is a subset of another (see, for example, [25]). The result thus follows. □

We now consider the case where each transition produces output at all ports.

Proposition 9 Let us suppose that M is an FSM in which all transitions produce output at all ports. Then $N \subseteq_s M$ if and only if $L(N) \subseteq L(M)$.

Proof
First observe that if $N \subseteq_s M$ then each transition of N must also produce output at every port. Consider a sequence $\sigma \in L(M) \cup L(N)$ that contains k inputs. Since every transition produces output at all ports, for a port p we have that $\pi_p(\sigma)$ contains k outputs with each input x_i at p being between the output produced at p by the previous input and the output produced at p in response to x_i. Thus, given sequences $\sigma, \sigma' \in L(N) \cup L(M)$ we must have that $\sigma' \sim \sigma$ if and only if $\sigma' = \sigma$. The result therefore holds. □

6 Bounded conformance

We have seen that it is undecidable whether two FSMs are related under \subseteq_s. However, we might use a weaker notion of conformance where we only consider sequences of length at most k for some k. This would be relevant when the expected usage does not involve sequences of length greater than k since, for example, the system will be reset after at most k inputs. In this section we define such a weaker implementation relation and explore the problem of deciding whether two FSMs are related under this.

First, we introduce some notation. We let IO_k denote the set of global traces that have at most k inputs. In addition, for an FSM N we let $L_k(N) = L(N) \cap IO_k$ denote the set of global traces of N that have at most k inputs. We can now define our implementation relation.

Definition 8 Given FSMs N and M with the same input and output alphabets, we say that N strongly k-conforms to M if for all $\sigma \in L_k(N)$ there exists some $\sigma' \in L(M)$ such that $\sigma' \sim \sigma$. If this is the case then we write $N \subseteq_b^k M$.

Clearly, given N and M it is decidable whether $N \subseteq_b^k M$: we can simply generate every element of $L_k(N)$ and for each $\sigma \in L_k(N)$ we determine whether $\sigma \in L(M)$. The following shows that this can be achieved in polynomial time if we have a bound on the number of ports. We use a result from Mazurkiewicz trace theory. In Mazurkiewicz trace theory an independence graph is a directed graph where each vertex of the graph represents an element of Act and there is an edge between the vertex representing $a \in \text{Act}$ and the vertex representing $b \in \text{Act}$ if and only if ab and ba are equivalent; a and b are said to be independent [5]. Thus, for FSMs we have that a and b are independent if and only if they are at different ports.

Lemma 2 Given a sequence $\sigma \in IO_k$ and FSM M with n ports, we can decide whether $\sigma \in L(M)$ in time of $O(|\sigma|^n)$.

Proof
The membership problem for a sequence σ and rational trace language with alphabet Σ and independence relation \mathcal{I} can be solved in time of $O(|\sigma|^\alpha)$ where α is the size of the largest clique in the independence graph [3]. Since each observation is made at exactly one port and two observations are independent if and only if they are at different ports, we have that the maximal cliques of the independence graph all have size n and so $\alpha = n$. The result therefore follows. □

Theorem 9 If there are bounds on the value of k and the number n of ports then the following problem can be solved in polynomial time: given FSMs N and M with at most n ports, do we have that $N \subseteq_b^k M$?
Proof
First observe that the number of elements in \(L_1(N)\) is of \(O(q^k)\), where \(q\) denotes the maximum number of transitions leaving a state of \(N\). Thus, since \(k\) is bounded, the elements in \(L_1(N)\) can be produced in polynomial time. It only remains to consider each \(\sigma\) in \(L_1(N)\) and decide whether it is in \(\mathcal{L}(M)\). However, by Lemma 2 this can be decided in polynomial time. The result therefore follows.

Thus, if we have bounds on the number of ports of the system and the length of sequences we are considering then we can decide whether \(N \subseteq_k M\) in polynomial time. However, the proof of Theorem 9 introduced terms that are exponential in \(n\) and \(k\) and so it is natural to ask what happens if we do not place bounds on these values. It transpires that the problem is then NP-hard even for DFSMs, the proof using the following.

Definition 9
Given boolean variables \(z_1, \ldots, z_r\), let \(C_1, \ldots, C_k\) denote sets of three literals, where each literal is either a variable \(z_i\) or its negation. The three-in-one SAT problem is: does there exist an assignment to the boolean variables such that each \(C_i\) contains exactly one true literal.

The three-in-one SAT problem is known to be NP-complete [33].

Theorem 10
The following problem is NP-hard: given \(k\) and completely specified DFSMs \(N\) and \(M\), do we have that \(N \subseteq_k M\)?

Proof
We will show that we can reduce the three-in-one SAT problem to this and suppose that we have variables \(z_1, \ldots, z_r\) and clauses \(C_1, \ldots, C_k\). We will define a DFSM \(M_1\) with \(r + q + 2\) inputs, \(z_{-1}, z_0, z_1, \ldots, z_r\) at ports \(-1, 0, 1, \ldots, r\) and outputs \(y_1, \ldots, y_{r+q}\) at ports \(1, \ldots, r + q\). We count ports from \(-1\) rather than \(1\) since the roles of inputs at \(-1\) and \(0\) will be rather different from the roles of the other inputs.

DFSM \(M_1\) has four states \(s_0, s_1, s_2, s_3\) in which \(s_0\) is the initial state. The states effectively represent different ‘modes’ and we now describe the roles of \(s_1\) and \(s_2\). In state \(s_1\) an input at port \(p\), \(1 \leq p \leq r\), will lead to output at all of the ports corresponding to clauses with literal \(z_p\). In state \(s_2\) an input at port \(p\), \(1 \leq p \leq r\), will lead to output at all of the ports corresponding to clauses with literal \(\neg z_p\). The input \(z_0\) moves \(M_1\) from \(s_1\) to \(s_2\). The special input \(z_{-1}\) takes \(M_1\) from state \(s_0\) to state \(s_1\).

Overall, input \(z_0\) does not produce output and only changes the state of \(M_1\) if it is in state \(s_1\), in which case it takes \(M\) to state \(s_2\). Input \(z_{-1}\) does not produce output and only changes the state of \(M_1\) if it is in state \(s_0\), in which case it takes \(M_1\) to state \(s_1\).

For an input \(z_p\) with \(1 \leq p \leq r\) there are four transitions:

1. From state \(s_1\) there is a transition that, for all \(1 \leq j \leq k\), sends output \(y_{r+j}\) to port \(r + j\) if \(C_j\) contains literal \(z_p\) and otherwise sends no output to port \(r + j\). The transition sends no output to ports \(-1, \ldots, r\) and does not change state.

2. From state \(s_2\) there is a transition that, for all \(1 \leq j \leq k\), sends output \(y_{r+j}\) to port \(r + j\) if \(C_j\) contains literal \(\neg z_p\) and otherwise sends no output to port \(r + j\). The transition sends no output to ports \(-1, \ldots, r\) and does not change state.

3. From state \(s_0\) there is a transition to state \(s_3\) that produces no output.

4. From state \(s_3\) there is a transition to state \(s_3\) that produces no output.

Now consider the global trace \(\sigma\) that starts with input sequence \(z_{-1} z_0 z_1 \ldots z_{r-1}\) and then has input \(z_r\) producing the outputs \(y_{r+1} \ldots y_{r+q}\); all outputs are produced in response to the last input. Clearly we do not have \(\sigma \in L(M_1)\). We now prove that \(\sigma \in L(M_1)\) if and only if there is a solution to the instance of the three-in-one SAT problem. Consider the problem of deciding whether there exists \(\sigma' \in L(M_1)\) such that \(\sigma' \sim \sigma\). Clearly the first input in \(\sigma'\) must be \(z_{-1}\). Each input \(z_p\) is received once by the DFSM and these can be received in any order after \(z_{-1}\). Thus, for all \(1 \leq p \leq r\) we do not know whether \(z_p\) will be received before or after \(z_0\) in \(\sigma'\). If \(z_p\) is received before \(z_0\) then an output is sent to all ports that correspond to clauses that contain literal \(z_p\). If \(z_p\) is received after \(z_0\) then an output is sent to all ports that correspond to clauses that contain literal \(\neg z_p\). Thus there exists \(\sigma' \in L(M_1)\) such that \(\sigma' \sim \sigma\) if and only if there exists an assignment to the boolean variables \(z_1, \ldots, z_r\) such that each \(C_j\) contains exactly one true literal.

16
We now construct DFSMs N and M such that $N \sqsubseteq s_k M$ if and only if $\sigma \in L(M_1)$. In the following we assume that $r > 1$ and let σ_1 be the global trace formed from σ by replacing the prefix $z_0 z_1 z_2 \ldots z_{r-1} z_0$ by $z_1 z_2 z_3 \ldots z_{r-1}$. Thus, $\sigma_1 \sim \sigma$. We form N from M_1 by adding a new path that has label σ_1. We add state s_0' such that the input of z_1 in state s_0 leads to state s_1' (instead of s_3) and no output. From s_0' we add a transition with label z_2 to another new state s_0''. We repeat this process, adding new states, until we have a path from s_0 with label $z_1 z_2 z_3 \ldots z_{r-1}$ ending in state $s_r' + 3$. We then add a transition from $s_r' + 3$ to $s_r' + 4$ with input z_r and the outputs y_{r+1}, \ldots, y_{r+q}. Finally, we complete N by adding a transition to s_3 with input z_p and null output from a state s_p' if there is no transition from s_p' with input z_p. Clearly, $L(N) = L(M_1) \cup \text{pref}(\sigma_1)^*$. Let σ_1' be defined such that $\sigma_1 = z_1 \sigma_1'$. We can similarly form an FSM M from M_1 such that $L(M) = L(M_1) \cup \text{pref}(\{z_1\}I(\sigma_1'))^*$. Since each I_p contains only one input we have that $\{z_1\}I(\sigma_1')^*$ and $\{\sigma_1\}I^*$ define the same sets of equivalence classes under \sim. Thus, the equivalence classes of $\text{pref}(\sigma_1)^*$ and $\text{pref}(\{z_1\}I(\sigma_1'))^*$ under \sim differ only in the one that contains σ_1 and we know that $\sigma_1 \sim \sigma$. We therefore have that $N \sqsubseteq s_k M$, for $k > r + 1$, if and only if $\sigma \in L(M_1)$ and we know that this is the case if and only if the instance of the three-in-one SAT problem has a solution. The result follows from the three-in-one SAT problem being NP-hard.

7 Conclusions

There are important classes of systems such as cloud systems, web services and wireless sensor networks, that interact with their environment at physically distributed ports. In testing such a system we place a local tester at each port and the local tester (or user) at port p only observes the events that occur at p. It is known that this reduced observational power, under which a set of local traces is observed, can introduce additional controllability and observability problems.

This paper has considered the situation in which there is a finite state machine (FSM) model M that acts as the specification for a system that interacts with its environment at physically distributed ports. We considered the implementation relation \sqsubseteq that requires the set of local traces observed to be consistent with some global trace of the specification. We investigated the problem of defining a language $\hat{L}(M)$ such that we know that $N \sqsubseteq M$ if and only if all of the global traces of N are contained in $\hat{L}(M)$. We showed that $\hat{L}(M)$ can be uniquely defined but need not be regular.

We proved that it is generally undecidable whether $N \sqsubseteq M$ even if there are only two ports, although we also gave conditions under which this is decidable. An additional consequence of this result is that it is undecidable whether there is a test case (a strategy for each local tester) that is capable of distinguishing two states of an FSM or two FSMS. This complements earlier results that show that it is undecidable whether there is a test case that is guaranteed to distinguish between two states of an FSM or two FSMS. While these results appear to be related the proofs relied on very different approaches: the earlier result looked at the problem in terms of multi-player games while this paper developed and used results regarding multi-tape automata.

Since it is generally undecidable whether $N \sqsubseteq M$ we defined a weaker implementation relation \sqsubseteq_s^k under which we only consider input sequences of length k or less. This is particularly relevant in situations in which it is known that input sequences of length greater than k need not be considered since, for example, the system must be reset before this limit has been reached. We proved that if we place a bound on k and the number of ports then we can decide whether $N \sqsubseteq M$ in polynomial time but otherwise this problem is NP-hard.

There are several avenues for future work. First, there is the problem of finding weaker conditions under which we can decide whether $N \sqsubseteq M$. In addition, it would be interesting to find conditions under which $\hat{L}(M)$ can be constructed. There is also the problem of extending the results to situation in which we can make additional observations; for example, we might consider languages such as CSP in which we can also observe refusals. Finally, one of the motivations for this work was the problem of deciding whether there is a test case that is capable of distinguishing two states of an FSM and, despite this being undecidable, it would be interesting to develop heuristics for this problem.
References

