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The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium1

Abstract
We examined the role of common genetic variation in schizophrenia in a genome-wide association
study of substantial size: a stage 1 discovery sample of 21,856 individuals of European ancestry
and a stage 2 replication sample of 29,839 independent subjects. The combined stage 1 and 2
analysis yielded genome-wide significant associations with schizophrenia for seven loci, five of
which are new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33) and two of which have been
previously implicated (6p21.32-p22.1 and 18q21.2). The strongest new finding (P = 1.6 × 10−11)
was with rs1625579 within an intron of a putative primary transcript for MIR137 (microRNA
137), a known regulator of neuronal development. Four other schizophrenia loci achieving
genome-wide significance contain predicted targets of MIR137, suggesting MIR137-mediated
dysregulation as a previously unknown etiologic mechanism in schizophrenia. In a joint analysis
with a bipolar disorder sample (16,374 affected individuals and 14,044 controls), three loci
reached genome-wide significance: CACNA1C (rs4765905, P = 7.0 × 10−9), ANK3 (rs10994359,
P = 2.5 × 10−8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10−9).

In stage 1, we conducted a mega-analysis combining genome-wide assocation study
(GWAS) data from 17 separate studies (with a total of 9,394 cases and 12,462 controls;
Table 1 and Supplementary Tables 1,2). We imputed allelic dosages for 1,252,901
autosomal SNPs (Table 1, Supplementary Table 3 and Supplementary Note) using
HapMap3 as the reference panel1. We tested for association using logistic regression of
imputed dosages with sample identifiers and three principal components as covariates to
minimize inflation in significance testing caused by population stratification. The quantile-
quantile plot (Supplementary Fig. 1) deviated from the null distribution with a population
stratification inflation factor of λ = 1.23. However, λ1000, a metric that standardizes the
degree of inflation by sample size, was only 1.02, similar to that observed in other GWAS
meta-analyses2,3. This deviation persisted despite comprehensive quality control and
inclusion of up to 20 principal components (Supplementary Fig. 1). Thus, we interpret this
deviation as indicative of a large number of weakly associated SNPs consistent with
polygenic inheritance4. We also examined 298 ancestry-informative markers (AIMs) that
reflect European-ancestry population substructure5. Unadjusted analyses showed greater
inflation in the test statistics than we saw for all markers (AIMs λ = 2.26 compared to all
markers λ = 1.56). After inclusion of principal components, the distributions of the test
statistics did not differ between AIMs (λ = 1.18) and all markers (λ = 1.23), a result
inconsistent with population stratification explaining the residual deviation seen in
Supplementary Figure 1. Moreover, the results of a meta-analysis using summary results
generated using study specific principal components (Supplementary Note) were highly
correlated with those from the mega-analysis (Pearson correlation = 0.94, with a similar λ =
1.20; Supplementary Fig. 2). Of the ten SNPs in Table 2, four increased and six decreased in
significance, suggesting that the most extreme values did not result from systematic inflation
artifacts. Therefore, our primary analysis used unadjusted P values (nevertheless, see Table
2 for stage 1 P values adjusted for λ (ref. 6).

In stage 1 (Table 2, Supplementary Table 4 and Supplementary Figs. 3 and 4), 136
associations reached genome-wide significance (P < 5 × 10−8)7. The majority of these
associations (N = 129) mapped to 5.5 Mb in the extended major histocompatibility complex
(MHC, 6p21.32-p22.1), a region of high linkage disequilibrium (LD) previously implicated
in schizophrenia in a subset of the samples used here4,8,9. The other stage 1 regions included
new regions (10q24.33 and 8q21.3) and previously reported regions (18q21.2 at TCF4
(encoding transcription factor 4) and 11q24.2 (ref. 8)). The signal at 11q24.2 is ~0.85 Mb
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from NRGN (encoding neurogranin) and is uncorrelated with the previously associated
variant near this gene8.

In Table 2 and Supplementary Table 4, we denote regions of association by the most
significant marker. Associated SNPs with r2 ≥ 0.2 in HapMap3 (CEU+TSI populations)
were not considered independent. However, we noticed instances where multiple SNPs
within 250 kb of each other yielded evidence for association (P < 10−5) despite weak LD (r2

< 0.2) between them. For regions with P < 10−6, we performed a conditional analysis using
as covariates the dosages of the strongest associated SNP, principal components 1–4 and 6
and study indicator. We observed multiple statistically independent signals at the MHC.
Although a number of SNPs within the MHC were potentially independent per HapMap r2

values, only rs9272105 withstood formal conditional analysis, showing P = 1.8 × 10−6

conditional on association to the best SNP, rs2021722 (stage 1 P = 4.3 × 10−11, inter-SNP
distance = 2.4 Mb, r2 = 0.01 in HapMap). Excluding the MHC region, we identified six
regions with at least one SNP associated at P < 10−5 and a second SNP with a conditionally
independent P < 10−3 (Supplementary Table 5). We performed 100 simulations after
permuting case-control status randomly within each study. In contrast to the six regions in
the real dataset, we never observed more than a single region with co-localized statistically
independent signals in any simulated genome-wide scan, indicating our observation is
highly unlikely to have occurred by chance.

Noteworthy co-localizing independent signals occurred at three regions (Supplementary
Table 5): one region with a genome-wide significant association at 10q24.32-q24.33 (Table
2), a second region that nearly met this threshold at MAD1L1 (encoding mitotic arrest
deficient-like 1; rs10226475, P = 5.06 × 10−8; Supplementary Table 4) and a third region at
CACNA1C (encoding calcium channel, voltage-dependent, L type, α 1C subunit), the latter
of which has previously been associated with bipolar disorder10 and other psychiatric
phenotypes including schizophrenia11. The conditionally independent signal at CACNA1C
was more significant than any observation made in 100 permutations of the entire
experiment (both conditional P < 10−5) and supports CACNA1C in schizophrenia after
genome-wide correction (P < 0.01), even without considering these prior reports.

In stage 2, we evaluated in 29,839 independent subjects (8,442 cases and 21,397 controls)
the most significant SNPs (N = 81) in each LD region where at least one SNP had surpassed
P < 2 × 10−5 (Supplementary Table 6) in the mega-analysis. Of 22 SNPs from the MHC, 5
surpassed the genome-wide significant threshold in stages 1 and 2 combined (minimum P =
2.2 × 10−12 at rs2021722; Supplementary Table 6). Excluding the MHC region, a sign test
for consistency between stages 1 and 2 was highly significant (P < 10−6), with the same
direction of effect as observed stage 1 also being observed in stage 2 for 49 of 59 SNPs. A
Fisher’s combined test revealed the distribution of stage 2 P values was unlikely to have
occurred by chance (P < 10−15). We also performed a transmission analysis using the family
based Multicenter Pedigree replication sample in conjunction with a GWAS of 622 parent-
offspring schizophrenia trios from Bulgaria12, and the stage 1 associated allele was over-
transmitted to cases for 44 of the 59 SNPs (one-sided P = 1.0 × 10−4). Thus, the stage 2
replication results are highly consistent with the stage 1 discovery results.

In the combined dataset (stages 1 and 2), five new (1p21.3, 2q32.3, 8p23.2, 8q21.3 and
10q24.32-q24.33) and two previously reported (6p21.32-p22.1 and 18q21.2) loci met
genome-wide significance (Figs. 1,2, Table 2, Supplementary Tables 6,7 and Supplementary
Fig. 4). After adjusting for λ (ref. 6), four loci (1p21.3, 6p21.32-p22.1, 10q24.32-q24.33 and
18q21.2) remained significant at P ≤ 5 × 10−8. For the primary analyses (unadjusted for λ),
the strongest new association was at 1p21.3 (rs1625579; P = 1.6 × 10−11), which is over 100
kb from any RefSeq protein-coding gene but is within intron 3 of AK094607, which
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contains the primary transcript for MIR137 (ref. 13). The next best locus, 10q24.32
(Supplementary Table 5 and Supplementary Fig. 5), has independent associations 130 kb
apart at rs7914558 (P = 1.8 × 10−9) and rs11191580 (P = 1.1 × 10−8), implicating a 0.5-Mb
region containing multiple genes (Supplementary Fig. 5). The third best locus, rs7004633 (P
= 2.8 × 10−8) on 8q21.3, is 400 kb from the nearest gene (MMP16, encoding matrix
metallopeptidase 16). The fourth best locus, rs10503253 (P = 4.4 × 10−8) at 8p23.2, is in an
intron of CSMD1 (encoding CUB and Sushi multiple domains 1). Finally, rs17662626 (P =
4.7 × 10−8) at 2q32.3 is intergenic, mapping 300 kb from a non-coding RNA, PCGEM1
(prostate-specific transcript 1)14.

MIR137 has been implicated in regulating adult neurogenesis15,16 and neuronal
maturation17, mechanisms through which variation at this locus could contribute to brain
development abnormalities in schizophrenia. Of relevance, two independent schizophrenia
imaging studies found MIR137 to be one of three microRNAs with targets significantly
enriched for association18. In stage 1, SNPs in or near 301 high-confidence predicted
MIR137 targets (with a TargetScan19 probability of conserved targeting ≥0.9) were enriched
for association compared with genes matched for size and marker density: 17 predicted
MIR137 targets (Supplementary Table 8) had at least one SNP with P < 10−4, which is more
than twice as many as the control gene sets (P < 0.01). Excluding the MHC and MIR137, of
the nine loci with genome-wide significant support either in stage 1 or in the combined set
(six loci, 2q32.3, 8p23.2, 8q21.3, 10q24.32-q24.33, 11q24.2 and 18q21.2; Table 2 and
Supplementary Tables 6,7) or in a joint analysis with bipolar disorder (three genes,
CACNA1C, ANK3 and ITIH3-ITIH4, described below), four genes (TCF4, CACNA1C,
CSMD1 and C10orf26) have predicted MIR137 target sites according to analyses using three
different prediction programs (TargetScan19, PicTar20 and miRanda21). In vitro
overexpression and locked nucleic acid–mediated knockdown of MIR137 in neuronal cell
line N2a leads to changes in expression levels of TCF4 protein, strongly supporting the
prediction that TCF4 is a target of MIR137 (L.-H. Tsai, personal communication). Our
observations suggest MIR137-mediated dysregulation as a new etiologic mechanism in
schizophrenia.

The International Schizophrenia Consortium (ISC) reported evidence for a polygenic
contribution to schizophrenia4. An independent family based study confirmed these results,
greatly minimizing the possibility of population stratification artifact12. We reevaluated the
polygenic model, dividing stage 1 samples into independent training and testing sets
(Supplementary Note). The training set had 15,429 subjects (over twice the size of the ISC
training set), and the testing set consisted of 6,428 individuals independent of the ISC report.
The proportion of variance (Nagelkerke’s r2) explained in the testing set increased from 3%
in the ISC to around 6% here (Supplementary Table 9 and Supplementary Fig. 6). This
estimate is much lower than the true total variation in liability that is tagged by all SNPs
because SNP effects are estimated with error3,4,22–25. The polygenic model appears to
explain a substantial fraction of the heritability of schizophrenia4, as has been shown for
other complex traits3,26–28. Some of these additional risk loci are likely contained near the
most highly significant results of our stage 1 analysis. Supporting this hypothesis, of the top
loci that did not reach genome-wide significance in the combined stage 1 and 2 analysis, a
sign test (P < 10−4) and a Fisher’s combined test (P < 10−5) both showed an excess of same-
direction allelic association (41 of 51 non-MHC SNPs) in the discovery and replication
datasets.

Clinical, epidemiological and genetic findings suggest shared risk factors between bipolar
disorder and schizophrenia29. In stage 1, three genes with strong support had prior genome-
wide significant associations with bipolar disorder: CACNA1C, the region containing ITIH3-
ITIH4 (encoding inter-α (globulin) inhibitors H3 and H4) and ANK3 (encoding ankyrin 3,
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node of Ranvier (ankyrin G))10,11,30 (Supplementary Table 10). We performed a joint
analysis with the Schizophrenia Psychiatric Genome-Wide Association Study (GWAS)
Consortium (PGC) for bipolar disorder applying identical analytical methods. After
removing duplicate subjects, we analyzed 16,374 cases with schizophrenia, schizoaffective
disorder or bipolar disorder and 14,044 controls. Support for shared susceptibility was
strengthened (Supplementary Table 11) at CACNA1C (rs4765905, P = 7.0 × 10−9), ANK3
(rs10994359, P = 2.5 × 10−8) and the ITIH3-ITIH4 region (rs2239547, P = 7.8 × 10−9), each
of which reached genome-wide significance. A coding variant in ITIH4 (p.Pro698Thr;
rs4687657) is in perfect LD with the most associated SNP. Although we included all
subjects from an earlier report10, the increased support found with additional independent
cases (N = 11,987) and controls (N = 7,835) provides further evidence for shared risk effects
of schizophrenia and bipolar disorder.

The risk variants implicated here confer small risks (odds ratios ~1.10), but the polygenic
analysis shows many more susceptibility variants with effects for which our sample is
underpowered (Supplementary Table 12). At every stage where samples were added, we
found an increase in the number of genome-wide significant loci and enhancement of signals
at CACNA1C, ANK3 and ITIH3-ITIH4 when schizophrenia and bipolar disorder were jointly
analyzed. Thus, gains in power offset any penalty for increased heterogeneity.

In summary, we report seven genome-wide significant schizophrenia associations (five of
which are new) in a two-stage analysis of 51,695 individuals. We also report loci that confer
susceptibility to both bipolar disorder and schizophrenia. The association near MIR137,
associations in multiple predicted MIR137 targets and the known role of MIR137 in neuronal
maturation and function together suggest an intriguing new insight into the pathogenesis of
schizophrenia.

URLs
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Methods and any associated references are available in the online version of the paper at
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Figure 1.
Manhattan plot for stages 1 and 2. Standard −log10 P plot of the study results. For the stage
1 results, 16 regions with one or more SNP achieving P < 10−6 are highlighted in color and
labeled with the name of the nearest gene. SNPs selected for stage 2 replication are
highlighted, with the resulting combined P value after replication (that is, after incorporation
of stage 2 results) indicated by the large diamonds. Blue highlighting indicates SNPs that
were less significantly associated after replication, and pink highlighting indicates SNPs that
were more significantly associated after replication.
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Figure 2.
Regional association plots for five new schizophrenia loci. Regional P value plots for each
of the five new schizophrenia loci: 1p21.3, 2q32.3, 8p23.2, 8q21.3 and 10q24.32-q24.33.
Each plot shows the most associated SNP (key SNP) and its genomic region from the first
column of Table 2: stage 1 scan results for each SNP ± 200 kb to the key SNP are shown.
On the x axis is the genomic position, and on the y axis is −log10 P. Larger SNP symbols
indicate higher LD (based on HapMap 3 data) to the key SNP than smaller SNP symbols.
Color coding (from red to blue) denotes LD information; see also the legend within the plot.
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