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ABSTRACT

Most modern network protocols give adequate support for traditional
applications such as file transfer and remote login. Distributed appli-
cations, however, have different requirements (e.g., efficient at-
most-once remote procedure call even in the face of processor
failures). Instead of using ad-hoc protocols to meet each of the new
requirements, we have designed a new protocol, called the Fast Local
Internet Protocol (FLIP), that provides a clean and simple integrated
approach to these new requirements. FLIP is an unreliable message
protocol that provides both point-to-point communication and multi-
cast communication, and requires almost no network management.
Furthermore, by using FLIP we have simplified higher-level proto-
cols such as remote procedure call and group communication, and
enhanced support for process migration and security. A prototype
implementation of FLIP has been built as part of the new kernel for
the Amoeba distributed operating system, and is in daily use. Meas-
urements of its performance are presented.

1. INTRODUCTION
Most network protocols are designed to support a reliable bit stream between a

single sender and a single receiver. For applications such as remote login sessions or
bulk file transfer these protocols are adequate. However, distributed operating systems
have special requirements such as achieving transparency, specific remote procedure
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call (RPC) semantics even in the face of processor crashes, group communication,
security, network management, and wide-area networking. Furthermore, applications
on distributed operating systems often use a complex local internetwork of communica-
tion subsystems including Ethernets, high-speed multiprocessor buses, hypercubes, and
optical fibers. These kinds of communication are not well supported by protocols such
as TCP/IP, X.25, and OSI TP4.

As part of our ongoing research on the Amoeba distributed operating system, we
have designed, implemented, and evaluated a new internet protocol that, in many
respects, is better suited for distributed computing than existing protocols. This new
protocol, called FLIP (Fast Local Internet Protocol), is the subject of this paper.

Although the ISO OSI protocols are not widely used, the OSI model is con-
venient for describing where functionality can be put in a protocol hierarchy [Zimmer-
man 1980]. In Figure 1, we show the OSI model, along with TCP/IP and FLIP protocol
hierarchies. Very briefly, FLIP is a connectionless (datagram) protocol, roughly analo-
gous to IP, but with increased functionality and specifically designed to support a
high-performance RPC protocol rather than a byte-stream protocol like TCP or OSI
TP4.
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7 Application User-defined User-defined

6 Presentation User-defined Amoeba Interface Language (AIL)

5 Session Not used RPC and Group communication

4 Transport TCP or UDP Not needed

3 Network IP FLIP

2 Data Link E.g., Ethernet E.g., Ethernet

1 Physical E.g., Coaxial cable E.g., Coaxial cable
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Fig. 1. Layers of functionality in OSI, TCP/IP, and FLIP.

The outline of the rest of this paper is as follows. In Section 2 we will describe
the requirements that a distributed operating system places on the underlying protocol.
In Section 3 we will discuss the FLIP service definition; that is, what FLIP provides.
In Section 4 we will discuss the interface between FLIP and higher layers. In Section 5
we will discuss the protocol itself. In Section 6 we will discuss how FLIP can be im-
plemented. In Section 7 we present measurements we have made of its performance.
In Section 8 we will compare it to related work. Finally, in Section 9 we will draw our
conclusions. The appendix describes the protocol itself in detail.
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2. DISTRIBUTED SYSTEM REQUIREMENTS
Distributed systems place different requirements on the operating system than do

traditional network systems. Network systems run all of a user’s applications on a sin-
gle workstation. Workstations run a copy of the complete operating system; the only
thing that is shared is the file system. Applications are sequential; they make no use of
any available parallelism. In such an environment, file transfer and remote login are
the two basic applications that the communication mechanisms in the operating system
must support. In a distributed system the situation is radically different. A user pro-
cess may run anywhere in the system, to allow efficient sharing of computing cycles.
Applications are rewritten to take advantage of the available parallelism. For example,
distributed systems can provide a version of the UNIX† make program that allows com-
pilations to run in parallel. Other applications may be rewritten to provide fault toler-
ance by using the redundancy of hardware. In such an environment file transfer is only
one of the many applications that depend on the communication mechanisms provided
by the operating system.

In this section, we will investigate the requirements for communication in a dis-
tributed system and outline the approach taken by FLIP. We identify six requirements:
transparency, remote procedure call, group communication, security, network manage-
ment, and wide-area networking. We discuss each of these requirements in turn. It
should be noted that many existing network and distributed systems meet all or a subset
of the requirements, but in this paper we argue that the implementation of these sys-
tems can often be simplified by using a better network protocol.

Transparency
An important goal for distributed systems, such as Amoeba [Tanenbaum et al.

1990; Mullender et al. 1990], Chorus [Rozier et al. 1988], Clouds [Dasgupta et al.
1991], Sprite [Ousterhout et al. 1988], and V [Cheriton 1988b], is transparency. Distri-
buted systems are built from a large number of processors connected by LANs, buses,
and other communication media. No matter where a process runs, it should be able to
communicate with any other process in the system using a single mechanism that is in-
dependent of where the processes are located. The communication system must be able
to route messages along the ‘‘best’’ route from one process to another. For example, if
two processes can reach each other through a LAN and high-speed bus, the communi-
cation system should use the bus. The users, however, should not have to specify
which route is taken.

Most communication protocols do not provide the transparency that is required
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by applications running on a distributed system. Addresses in these protocols identify a
host instead of a process. Once a process is started on a machine, it is tied to that
machine. For example, if the process is migrated to another processor, the process has
to inform its communication partners that it has moved. To overcome such problems,
distributed systems require that an address identifies a process, not a host.

Remote Procedure Call
Distributed operating systems are typically structured around the client-server

paradigm. In this model, a user process, called the client, requests another user pro-
cess, called the server, to perform some work for it by sending the server a message
and then blocking until the server sends back a reply. The communication mechanism
used to implement the client-server model is called RPC [Birrell and Nelson 1984].

The RPC abstraction lets the programmer think in terms of normal procedure
calls, which are well understood and have been around for a long time. This is in sharp
contrast with, for example, the ISO OSI model. In this model, communication is treat-
ed as an input/output device, with user primitives for sending messages and getting in-
dications of message arrivals. Many people think that input/output should not be the
central abstraction of a modern programming language. Therefore, most distributed
system builders, language designers, and programmers prefer RPC.

Group Communication
Although RPC is a good abstraction for the request/reply type of communica-

tions, there is a large body of applications that require a group of several processes to
interact closely. Group communication allows a message to be sent reliably from 1
sender to n receivers. Many applications profit from such a communication primitive.
For example, applications may replicate data to achieve fault tolerance. Such applica-
tions can profit from group communication to keep the replicated data consistent [Bir-
man and Joseph 87]. Another way of using group communication is in building effi-
cient distributed shared memory [Tanenbaum et al. 1992]. Interestingly enough, many
networks provide mechanisms to do broadcast or multicast at the data-link layer. For
example, Ethernet and some token rings, two commonly used LANs, both provide
broadcast and multicast. Future networks, like Gigabit LANs, are also likely to imple-
ment multicasting or broadcasting to support high-performance applications such as
multimedia [Kung 1992]. Communication protocols, however, often hide these useful
capabilities from the applications. Although broadcast can be done by sending n
point-to-point messages and waiting for n acknowledgements, this algorithm is ineffi-
cient and wastes bandwidth. Therefore many researchers have proposed other algo-
rithms that use data-link broadcast to implement reliable broadcast efficiently.

One of the difficulties in making a protocol that allows user applications to use
the data-link broadcast or multicast capability of a network is routing. A group address
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has to be mapped on one or more data-link addresses, possibly on different networks.
The protocol has to make sure that messages will not loop and that a minimum number
of messages are used to transmit user data to the group. Groups may change over time,
so routing tables have to be dynamically updated. Furthermore, to achieve good per-
formance, the routing protocol should use a data-link multicast address to send a mes-
sage to a number of receivers whenever possible.

Security
Although security cannot be provided by a communication protocol alone, a good

protocol can provide mechanisms to build a secure, yet efficient distributed system.
With current protocols, addresses can often be faked, making it possible for a process
to impersonate an important service. For example, in many systems a user process can
impersonate the file server once it knows the address of the file server (which is typi-
cally public knowledge). Most protocols do not provide any support for encryption of
data. Users must decide whether or not to use encryption. Once they have decided to
do so, they have to encrypt every message, even if both source and destination are lo-
cated in the same secure room. A protocol provides much better performance by
avoiding encryption if it knows a network is trusted, and using encryption if the net-
work is not trusted.

Network Management
In an environment with many processors and networks, it often happens that a

processor has to be taken down for maintenance or a network has to be reconfigured.
With current software, reconfiguring a network typically requires manual intervention
by a system administrator to assign new network numbers and to update the configura-
tion files. Furthermore, taking some machines down often introduces communication
failures for the rest of the machines. Ideally, a protocol makes it possible that network
management can be done without any manual intervention.

Wide-Area Networking
Most processes in a distributed system communicate with services that are locat-

ed nearby. For example, to read a file, users normally do an RPC with their local file
server and not with a file server in another domain on another continent. Although
communication with another domain must be possible, it should not introduce a perfor-
mance loss for the more common, local case.

- 5 -



Why a New Protocol?
None of the current protocols addresses the requirements for distributed systems

and applications adequately. The TCP and OSI protocols are connection-oriented and
require a setup before any message can be sent. In a distributed system, processes are
often short-lived and perform mostly small RPCs. In such an environment the time
spent in setting up a connection is wasted. Indeed, almost none of the current RPC im-
plementations are based on connections. Although IP is a connectionless protocol, it
still has some serious disadvantages. Because addresses in IP identify hosts instead of
processes, systems based on IP are less transparent, making certain functionality, such
as process migration, harder to implement.

To meet the distributed system requirements using IP, a new protocol was in-
vented for each subset of requirements. For example, The Internet Control Message
Protocol (ICMP) has been introduced to implement dynamic routing and to cope par-
tially with network changes [Postel 1981b]. The Address Resolution Protocol (ARP)
has been introduced to map IP addresses on data-link addresses [Plummer 1982]. The
Reverse Address Resolution Protocol (RARP) has been introduced to acquire an IP ad-
dress [Finlayson et al. 1984]. Internet Group Management Protocol (IGMP) has been
introduced to implement group communication [Deering 1988]. The Versatile Mes-
sage Transport Protocol (VMTP) has been introduced to meet the requirements for
group communication and a secure, efficient, and at-most-once RPC protocol [Cheriton
1986].

A big advantage of this approach is that one can adjust to new requirements
without throwing away existing software. However, it is sometimes better to start from
scratch. The main contribution of this paper is a protocol (FLIP) that addresses these
requirements in a clean, simple, and integrated way. The following FLIP properties al-
low us to achieve the requirements:

1. FLIP identifies entities with a location-independent 64-bit identifier. An
entity can, for example, be a process.

2. FLIP uses a one-way mapping between the ‘‘private’’ address, used to re-
gister an endpoint of a network connection, and the ‘‘public’’ address used
to advertise the endpoint.

3. FLIP routes messages based on the 64-bit identifier.

4. FLIP discovers routes on demand.

5. FLIP uses a bit in the message header to request transmission of sensitive
messages across trusted networks.

In the next sections we will present FLIP, discuss our experience using it, and its
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performance in the Amoeba distributed system. FLIP is the basis for all communica-
tion within Amoeba and is in day to day use.

3. FLIP SERVICE DEFINITION
FLIP is a connectionless protocol that is designed to support transparency, effi-

cient RPC, group communication, secure communication, and easy network manage-
ment. This section describes the services that FLIP delivers.

Communication takes place between Network Service Access Points (NSAPs),
which are addressed by 64-bit numbers. NSAPs are location-independent, and can
move from one node to another (possibly on different physical networks), taking their
addresses with them. Nodes on an internetwork can have more than one NSAP, typi-
cally one or more for each entity (e.g., process). FLIP ensures that this is transparent to
its users. FLIP messages are transmitted unreliably between NSAPs and may be lost,
damaged, or reordered. The maximum size of a FLIP message is 232−1 bytes. As with
many other protocols, if a message is too large for a particular network, it will be frag-
mented into smaller chunks, called fragments. A fragment typically fits in a single net-
work packet. The reverse operation, re-assembly, is (theoretically) possible, but re-
ceiving entities have to be able to deal with fragmented messages.

The address space for NSAPs is subdivided into 256 56-bit address spaces, re-
quiring 64 bits in all. The null address is reserved as the broadcast address. In this pa-
per we will define the semantics of only one of the address spaces, called the standard
space, and leave the others undefined. Later these other address spaces may be used to
add additional services.

The entities choose their own NSAP addresses at random (i.e., stochastically)
from the standard space for four reasons. First, it makes it exceedingly improbable that
an address is already in use by another, independent NSAP, providing a very high pro-
bability of uniqueness. (The probability of two NSAPs generating the same address is
much lower than the probability of a person configuring two machines with the same
address by accident.) Second, if an entity crashes and restarts, it chooses a new NSAP
address, avoiding problems with distinguishing reincarnations (which, for example, is
needed to implement at-most-once RPC semantics). Third, forging an address is hard,
which, as we will see, is useful for security. Finally, an NSAP address is location-
independent, and a migrating entity can use the same address on a new processor as on
the old one.

Each physical machine is connected to the internetwork by a FLIP box. The
FLIP box can either be a software layer in the operating system of the host, or be run
on a separate communications processor. A FLIP box consists of several modules. An
example of a FLIP box is shown in Figure 2.

The packet switch is the heart of the FLIP box. It transfers FLIP fragments in
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Host

Host interface

Packet switch

Network interfaces

Ethernet
Token

Ring

FLIP box

Fig. 2. A FLIP box consists of an host interface, packet switch, and network inter-

faces.

packets between physical networks, and between the host and the networks. It main-
tains a dynamic hint cache mapping NSAP addresses on data-link addresses, called the
routing table, which it uses for routing fragments. As far as the packet switch is con-
cerned, the attached host is just another network. The host interface module provides
the interface between the FLIP box and the attached host (if any). A FLIP box with
one physical network and an interface module can be viewed as a traditional network
interface. A FLIP box with more than one physical network and no interface module is
a router in the traditional sense.

4. THE HOST INTERFACE
In principle, the interface between a host and a FLIP box can be independent of

the FLIP protocol, but for efficiency and simplicity, we have designed an interface that
is based on the FLIP protocol itself. The interface consists of seven downcalls (for out-
going traffic) and two upcalls (for incoming traffic), as shown in Figure 3.

An entity allocates an entry in the interface by calling flip3init . The call allo-
cates an entry in a table and stores the pointers for the two upcalls in this table. Furth-
ermore, it stores an identifier used by higher layers. An allocated interface is removed
by calling flip3end.

By calling flip3register one or more times, an entity registers NSAP addresses
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Flip3init(ident, receive, notdeliver) → ifno Allocate an entry in the interface
222222222222222222222222222222222222222222222222222222222222222222222222222

Flip3end(ifno) Close entry in the interface
222222222222222222222222222222222222222222222222222222222222222222222222222

Flip3register(ifno, Private-Address) → EP Listen to address
222222222222222222222222222222222222222222222222222222222222222222222222222

Flip3unregister(ifno, EP) Remove address
222222222222222222222222222222222222222222222222222222222222222222222222222

Flip3unicast(ifno, msg, flags, dst, EP, length) Send a message to dst
222222222222222222222222222222222222222222222222222222222222222222222222222

Flip3multicast(ifno, msg, flags, dst, EP, length, ndst) Send a multicast message
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Fig. 3. Interface between host and packet switch. A fragment description contains

the data, destination and source, message identifier, offset, fragment length, total

length, and flags of a received fragment (see next section).

with the interface. An entity can register more than one address with the interface
(e.g., its own address to receive messages directed to the entity itself and the null ad-
dress to receive broadcast messages). The address specified, the Private-Address, is
not the (public) address that is used by another entity as the destination of a FLIP mes-
sage. However, public and private addresses are related using the following function
on the low-order 56 bits:

Public-Address = One-Way-Encryption(Private-Address)

The One-Way-Encryption function generates the Public-Address from the Private-
Address in such a way that one cannot deduce the Private-Address from the Public-
Address. Entities that know the (public) address of an NSAP (because they have com-
municated with it) are not able to receive messages on that address, because they do not
know the corresponding private address. Because of the special function of the null ad-
dress, the following property is needed:

One-Way-Encryption(Address) = 0 if and only if Address = 0

The One-Way-Encryption function is currently defined using DES
[National Bureau of Standards 1977]. If the 56 lower bits of the Private-Address are
null, the Public-Address is defined to be null as well. The null address is used for
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broadcasting, and need not be encrypted. Otherwise, the 56 lower bits of the Private-
Address are used as a DES key to crypt a 64-bit null block. If the result happens to be
null, the result is again encrypted, effectively swapping the result of the encrypted null
address with the encrypted address that results in the null address. The remaining 8
bits of the Private-Address, concatenated with the 56 lower bits of the result, form the
Public-Address.

Flip3register encrypts a Private-Address and stores the corresponding Public-
Address in the routing table of the packet switch. A special flag in the entry of the
routing table signifies that the address is local, and may not be removed (as we will see
in Section 5). A small EP-identifier (End Point Identifier) for the entry is returned.
Calling flip3unregister removes the specified entry from the routing table.

There are three calls to send an arbitrary-length message to a Public-Address.
They differ in the number of destinations to which msg is sent. None of them guaran-
tee delivery. Flip3unicast tries to send a message point-to-point to one NSAP.
Flip3multicast tries to send a message to at least ndst NSAPs. Flip3broadcast tries to
send a message to all NSAPs within a virtual distance hopcnt. If a message is passed to
the interface, the interface first checks if the destination address is present in the rout-
ing table and if it thinks enough NSAPs are listening to the destination address. If so,
the interface prepends a FLIP header to the message and sends it off. Otherwise, the
interface tries to locate the destination address by broadcasting a LOCATE message, as
explained in the next section. If sufficient NSAPs have responded to the LOCATE mes-
sage, the message is sent away. If not, the upcall notdeliver will be called to inform the
entity that the destination could not be located. When calling one of the send routines,
an entity can also set a bit in flags that specifies that the destination address should be
located, even if it is in the routing table. This can be useful, for example, if the RPC
layer already knows that the destination NSAP has moved. Using the flags parameter
the user can also specify that security is necessary.

When a fragment of a message arrives at the interface, it is passed to the ap-
propriate entity using the upcall receive.

This interface delivers the bare bones services that are needed to build higher-
level protocols, such as RPC. Given the current low error-rates of networks, we decid-
ed not to guarantee reliable communication at the network level, to avoid duplication of
work at higher levels [Saltzer et al. 1986]. Higher-level protocols, such as RPC, send
acknowledgement messages anyway, so given the fact that networks are very reliable it
is a waste of bandwidth to send acknowledgement messages at the FLIP level as well.
Furthermore, users will never call the interface directly, but use RPC or group com-
munication.
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5. THE FLIP PROTOCOL
A FLIP box implements unreliable message communication between NSAPs by

exchanging FLIP fragments and by updating the routing table when a fragment arrives.
In this section, we will describe the layout of a FLIP fragment and tell how the routing
table is managed.

5.1. The FLIP Fragment Format
Similar to fragments in many other protocols, a FLIP fragment is made up of two

parts: the FLIP header and the data. The general format of a FLIP header is depicted in
Figure 4. A header consists of a 40-byte fixed part and a variable part. The fixed part
of the header contains general information about the fragment. The Actual Hop Count
contains the weight of the path from the source. It is incremented at each FLIP box
with the weight of the network over which the fragment will be routed. If the Actual
Hop Count exceeds the Maximum Hop Count, the fragment will be discarded. The
Reserved (Res.) field is reserved for future use.

7 6 5 4 3 2 1 0

Max HopCnt Actual HopCnt Res. Flags Type Vers.

0 Destination Address

0 Source Address

Length Message Identifier

Total Length Offset

Variable Part

Fig. 4. General format of a FLIP fragment.

The Flags field contains administrative information about the fragment (see
Fig. 5). Bits 0, 1, and 2 are specified by the sender. If bit 0 is set in Flags, the integer
fields (hop counts, lengths, Message Identifier, Offset) are encoded in big endian (most
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significant byte first), otherwise in little endian [Cohen 1981]. If bit 1 is set in Flags,
there is an additional section right after the header. This Variable Part contains param-
eters that may be used as hints to improve routing, end-to-end flow control, encryption,
or other, but is never necessary for the correct working of the protocol. Bit 2 indicates
that the fragment must not be routed over untrusted networks. If fragments only travel
over trusted networks, the contents need not be encrypted. Each system administrator
can switch his own network interfaces from trusted to untrusted or the other way
around.

22222222222222222222222222222222222222222222222222222222222222222222222

Bit Name Cleared Set2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

0 Endian Little endian Big endian
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1 Variable Part Absent Present
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2 Security Not required Don’t route over untrusted networks
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3 Reserved2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

4 Unreachable Location unknown Can’t route over trusted networks only
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6 Reserved
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Fig. 5. Bits (4 input and 4 output) in the Flags field.

Bits 4 and 5 are set by the FLIP boxes (but never cleared). Bit 4 is set if a frag-
ment that is not to be routed over untrusted networks (bit 2 is set) is returned because
no trusted network was available for transmission. Bit 5 is set if a fragment was routed
over an untrusted network (this can only happen if the Security bit, bit 2, was not set).
Using bits 2, 4, and 5 in the Flags field, FLIP can efficiently send messages over trust-
ed networks, because it knows that encryption of messages is not needed.

The Type field in the FLIP header describes which of the (six) messages types
this is (see below). The Version field describes the version of the FLIP protocol; the
version described here is 1. The Destination Address and the Source Address are ad-
dresses from the standard space and identify, respectively, the destination and source
NSAPs. The null Destination Address is the broadcast address; it maps to all ad-
dresses. The Length field describes the total length in bytes of the fragment excluding
the FLIP header. The Message Identifier is used to keep multiple fragments of a mes-
sage together, as well as to identify retransmissions if necessary. Total Length is the
total length in bytes of the message of which this fragment is a part, with Offset the
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byte offset in the message. If the message fits in a single fragment, Total length is
equal to Length and Offset is equal to zero.

The Variable Part consists of the number of bytes in the Variable Part and a list
of parameters. The parameters are coded as byte (octet) strings as follows:

Bytes 0 1 2 … Size+1
22222222222222222222222222222222222222222222

Code Size
2222222222222222222222222222222222222222222211
1

11
1

11
1

11
1

11
1

11
1

The (non-zero) Code field gives the type of the parameter. The Size field gives the size
of the data in this parameter. Parameters are concatenated to form the complete Vari-
able Part. The total length of the Variable Part must be a multiple of four bytes, if
necessary by padding with null bytes.

5.2. The FLIP Routing Protocol
The basic function of the FLIP protocol is to route an arbitrary-length message

from the source NSAP to the destination NSAP. In an internetwork, destinations are
reachable through any one of several routes. Some of these routes may be more desir-
able than others. For example, some of them may be faster, or more secure, than oth-
ers. To be able to select a route, each FLIP box has information about the networks it
is connected to.

In the current implementation of FLIP, the routing information of each network
connected to the FLIP box is coded in a network weight and a secure flag. A low net-
work weight means that the network is desirable to forward a fragment on. The net-
work weight can be based, for example, on the physical properties of the network such
as bandwidth and delay. Each time a fragment makes a hop from one FLIP box to
another FLIP box its Actual Hop Count is increased with the weight of the network
over which it is routed (or it is discarded if its Actual Hop Count becomes greater than
its Maximum Hop Count)†. A more sophisticated network weight can be based on the
type of the fragment, which may be described in the Variable Part of the header. The
secure flag indicates whether sensitive data can be sent unencrypted over the network
or not.

At each FLIP box a message is routed using information stored in the routing
table. The routing table is a cache of hints of the form:

(Address, Network, Location, Hop Count, Trusted, Age, Local)

Address identifies one or more NSAPs. Network is the hardware-dependent network
interface on which Address can be reached (e.g., Ethernet interface). Location is the
data-link address of the next hop (e.g., the Ethernet address of the next hop). Hop

333333333333333
† Hop Count is a misnomer, but it is maintained for historical reasons.
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Count is the weight of the route to Address. Trusted indicates whether this is a secure
route towards the destination, that is, sensitive data can be transmitted unencrypted.
Age gives the age of the tuple, which is periodically increased by the FLIP box. Each
time a fragment from Address is received, the Age field is set to 0. Local indicates if
the address is registered locally by the host interface. If the Age field reaches a certain
value and the address is not local, the entry is removed. This allows the routing table to
forget routes and to accommodate network topology changes. The Age field is also
used to decide which entries can be purged, if the routing table fills up.

The FLIP protocol makes it possible for routing tables to automatically adapt to
changes in the network topology. The protocol is based on six message types (see
Fig. 6). The precise protocol is given in the Appendix; here we will give a short
description. If a host wants to send a message to a FLIP address that is not in its rout-
ing table, it tries to locate the destination by broadcasting a LOCATE message‡. LO-

CATE messages are propagated to all FLIP boxes until the Actual Hop Count becomes
larger than the Maximum Hop Count. If a FLIP box has the destination address in its
routing table, it sends back an HEREIS message in response to the LOCATE. User data is
transmitted in UNIDATA or in MULTIDATA messages. UNIDATA messages are used for
point-to-point communication and are forwarded through one route to the destination.
MULTIDATA messages are used for multicast communication and are forwarded
through routes to all the destinations. If a network supports a multicast facility, FLIP
will send one message for all destinations that are located on the same network. Other-
wise, it will make a copy for each location in the routing table and send point-to-point
messages.

If a FLIP box receives a UNIDATA message with an unknown destination, it turns
the message into a NOTHERE message and sends it back to the source. If a FLIP box re-
ceives a UNIDATA message that should not be routed over untrusted networks (as indi-
cated by the Security bit), and that cannot be routed over trusted networks, it turns the
message into an UNTRUSTED message and sends it back to the source just like a NOT-

HERE message. Moreover, it sets the Unreachable bit in the message (regardless of its
current value). For a message of any other type, including a MULTIDATA message, if
the Security bit is set, and the message cannot be routed over trusted networks, it is
simply dropped. If, for a NOTHERE or a UNTRUSTED message, a FLIP box on the way
back knows an alternative route, it turns the message back into a UNIDATA message and
sends it along the alternative route. If, for a NOTHERE message, no FLIP box knows an
alternative route, the message is returned to the source NSAP and each FLIP box re-
moves information about this route from the routing table.

LOCATE messages must be used with care. They should be started with a Max-
imum Hop Count of one, and incremented each time a new locate is done. This limits
333333333333333
‡ We assume that a network has a broadcast facility. For networks that do not have such a facility, we
are considering adding a name server.
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Fig. 6. FLIP message types.

the volume of broadcasts needed to locate the destination. Even though the hop counts
are a powerful mechanism for locating a destination and for finding the best route, if
routing tables become inconsistent, LOCATE messages may flood the internetwork (e.g.,
if a loop exists in the information stored in the routing tables in the internetwork). To
avoid this situation, each FLIP box maintains, in addition to its routing table, a cache of
(Source Address, Message Identifier, Offset, Destination Network, Location) tuples,
with a standard timeout on each entry. For each received broadcast message, after up-
dating the routing table, it checks whether the tuple is already in the cache. If not, it is
stored there. Otherwise, the timeout is reset and the message is discarded. This avoids
broadcast messages flooding the network if there is a loop in the network topology.

To illustrate how the FLIP box works, let us look at an example of how the RPC
layer sends a point-to-point message to another process in the network topology depict-
ed in Figure 7. The topology consists of three machines. It is not very realistic, but it
allows us to explain some important properties of FLIP using a very simple internet-
work. When a FLIP box boots, it reads information about its configuration from a table
(i.e., the type of networks it is connected to and information about these networks, such
as the maximum packet size). This information tells the machine how many interfaces
it has, the type of the interfaces, and some network dependent information, such as the
weight of the network and whether the network has a multicast facility. After a FLIP
box is initialized, it starts running with an empty routing table.

The example network topology contains two network types: a VME-bus and an
Ethernet. Because a VME-bus is faster than an Ethernet, the weight given to the
VME-bus is lower than the weight given to the Ethernet. Every FLIP box is reachable
from another host through different routes. There is, for example, a path of weight 1
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from A to B, but also a path of weight 4 (from A to C over the Ethernet and then from C
to B over the VME-bus).

A B C
VME-bus

1

VME-bus

1

Ethernet 3

Fig. 7. An example network topology. FLIP box A and C both have two network

interfaces: one for the VME-bus and one for the Ethernet. FLIP box B has 3 net-

work interfaces: two to the VME-bus and one to the Ethernet. The VME-bus has

weight 1 and the Ethernet has weight 3.

Let us now consider the case that the RPC layer sends a message from process
P 1 on host A to process P 2 running on host B. When both processes start, the RPC
layers register the FLIP addresses for the processes with their own FLIP box. The RPC
layer of P 1 sends a message by calling flip3unicast with the public address of P 2 as
the destination address (we assume that P 1 knows the public address of P 2). Because
the address of P 2 is not initially present in the routing table of A, A buffers the message
and starts to locate P 2 by sending a LOCATE message with Max Hop Count set to 1.
A’s FLIP box will forward this message on the VME-bus, but not on the Ethernet, be-
cause to forward a message across the Ethernet the Maximum Hop Count must be at
least 3. When the LOCATE message arrives at B, the FLIP address of P 1 will be entered
in B’s routing table along with the weight of the route to P 1 , the VME-bus address of
A, and the network interface on which A is reachable. Because the public address of
P 2 is registered with B’s routing table, B will return an HEREIS message. When the
HEREIS message arrives at A, A enters P 2’s public address in its routing table and sends
the message that is waiting to be sent to P 2 . Lower layers in the FLIP box will cut the
message in fragments, if necessary. B receives the message for P 2 from the VME-bus
and will forward it to the RPC layer of P 2 by calling receive . From now on, the routes
to both P 1 and P 2 are known to A and B, so they can exchange messages without hav-
ing to locate each other.

Now, assume that P 2 migrates to host C. The RPC layer unregisters the address
at host B and registers it at host C. Thus, P 2 has removed its address from B’s routing
table and has registered it with C’s routing table. The next FLIP UNIDATA message of
a message that arrives at B from A, will be returned to A as a FLIP NOTHERE message,
because the address of P 2 is not present in B’s routing table. When A receives the
NOTHERE message, it will invalidate the route to P 2 . As A does not know an alterna-
tive route with the same or less weight to P 2 , it will pass the NOTHERE message to the
interface. The interface forwards the message to P 1’s RPC layer by calling notdeliver.
P 1’s RPC layer can now retransmit the message by calling flip3unicast again. As the
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route to P 2 has been invalidated, the interface will buffer the message and start by lo-
cating P 2 with Max Hop Count set to 1. After a timeout it will locate with Max Hop
Count set to 2. Then, it will find a route to P 2: a hop across the VME-bus to B and
another hop across the VME-bus from B to C. It will enter this new route with weight
2 in its routing table and forward the message across the VME-bus to B. When B re-
ceives the message, it will forward the message to C. From then on, P 1 and P 2 can ex-
change messages without locating each other again.

If the topology changes and, for example, A is disconnected from the VME-bus,
the route to P 2 in A’s routing table will be removed after a period of time, because no
messages will arrive via the VME-bus and therefore the age field of the entry in the
routing table will reach the value that causes it to be removed. If P 1 then tries to send
a message to P 2 , the interface will again start by locating P 2’s public address. This
time it will find a route with weight 3; one hop across the Ethernet. If P 1 sends a new
message before the route to P 2 is purged from A’s routing table, A will forward the
message across the VME-bus and the message will be lost (assuming that the driver for
the VME-bus does not return any error). In this case, the RPC layer has to tell the in-
terface explicitly (using the flags parameter of flip3unicast) to purge the routing table
entry. It does this, for example, if it did not receive an acknowledgement after a
number of retrials.

Finally, assume that instead of A, B is disconnected from the VME-bus. A will
first use its route with weight 2 and send the message to B across the VME-bus. If B
does not know yet that the route over the VME-bus to C disappeared, it will forward
the message over the VME-bus and the message will be lost. Otherwise, it will send
the message as a NOTHERE message back to A, because the Max Hop Count is set by A
to 2. In both cases, A will send the message to C using the Ethernet, possibly after do-
ing another locate.

6. USING FLIP UNDER AMOEBA
FLIP is the basis for all communication within the Amoeba distributed system

[Tanenbaum et al. 1990; Mullender et al. 1990]. The configuration at the Vrije Univer-
siteit is depicted in Figure 8. The pool processors, the I80486 router, and the special-
ized servers run the Amoeba kernel. The workstations and the SPARC router run ei-
ther Amoeba or a version of UNIX containing a FLIP driver, so UNIX and Amoeba
processes can communicate transparently. All the 70 machines are connected through
3 Ethernets and the processors in the MC68030 pool are also connected by VME-buses.
We also implemented FLIP accross TCP/IP and UDP/IP, so that we can use TCP/IP
connections as a data link. This implementation is the basis for a small scale WAN
project that connects multiple sites in The Netherlands, and has been tested across the
Atlantic as well.

The Amoeba software consists of two pieces: a microkernel, which runs on every
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Processor
pools

Student
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network
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network

Workstations

Fig. 8. The FLIP internetwork at the Vrije Universiteit. It contains three different

machine architectures with different endianness and two types of networks: Ether-

net and VME-buses. On average ten people are using the Amoeba system every

day to develop system software, and distributed and parallel applications.

processor, and a collection of servers that provide most of the traditional operating sys-
tem functionality. Besides process management, memory management, and low-level
I/O, the Amoeba kernel provides interfaces for two communication protocols: RPC and
group communication (see Fig. 9) [Kaashoek and Tanenbaum 1991]. Both protocols
use the FLIP box interface to send and receive messages. We will now describe how
FLIP meets each of the distributed system requirements listed in Section 2.

Transparency
The primary goal of Amoeba is to build a transparent distributed operating sys-

tem. To the average user, Amoeba looks like a traditional timesharing system. The
difference is that each command typed by the user makes use of multiple machines
spread around the network. The machines include process servers, file servers, directo-
ry servers, compute servers, and others, but the user is not aware of any of this. At the
terminal, it just looks like an ordinary time sharing system.

An important distinction between Amoeba and other distributed systems is that
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Group communication RPC

FLIP interface

FLIP packet switch

Ethernet Shared Memory

Fig. 9. Communication layers in the Amoeba kernel for a pool processor.

Amoeba is not based on the workstation model of distributed computing, but on a pro-
cessor pool model. When a users logs in, it is to the system as a whole, not to a specif-
ic machine. Machines do not have owners. As commands are started up, in general
they do not run on the same machine as the shell. Instead the system automatically
looks around for approximately the most lightly loaded host to run each new command
on. Thus, all resources belong to the system as a whole, and are managed by it. They
are not dedicated to specific users, except for short periods of time to run individual
processes. This model attempts to give the user complete transparency

To achieve this degree of transparency a two-level naming scheme is used: capa-
bilities and FLIP addresses. Each object (e.g., a file) is named by a capability [Tanen-
baum et al. 1986]. Associated with each object type is a service (a single process or a
group of processes) that manages the object. When a client wants to perform an opera-
tion on an object, it sends a request message to the service that manages the object.
The service is addressed by a port that is part of the capability. In short, capabilities
are persistent names that identify objects.

To make capabilities easy to use, users can register them with the directory ser-
vice. The directory service allows users to register capabilities under an ASCII string.
Futhermore, it also implements a UNIX-like access protection scheme.

Within the kernel, ports are mapped onto one or more FLIP addresses, one for
each server. When a client wants to perform an operation on an object, it provides the
kernel with the capability of the object. The kernel extracts the port from the capability
and looks in its port cache for a FLIP address that listens to the port. Using the FLIP
address, the kernel sends messages, relying on the FLIP box to deliver the messages to
the right location. If there is no mapping from port to FLIP address in the cache, the
kernel uses flip3broadcast to locate the port. The FLIP addresses of the responders to
the LOCATE request are stored with the port in the port cache to avoid future locates.
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This locate procedure has the important side effect that at the same time the FLIP
boxes build up their routing tables, so a second locate at the FLIP level is avoided. In
the common case that networks do not change rapidly and processes migrate infre-
quently, no LOCATE messages are sent.

At-Most-Once RPC
The RPC layer in the Amoeba kernel provides an interface for at-most-once

RPC, so when the RPC returns the invoker knows whether (1) it was executed exactly
once, or (2) it was not executed at all, or (3) it arrived at one server before contact was
lost due to communication errors or a crash. One of the problems in achieving at-
most-once semantics is deciding if a new incoming request has been executed or not.
With FLIP, this problem is easily solved. Each time a server is started, the server
chooses a new FLIP address. Thus, all requests sent to a crashed server will fail au-
tomatically, because the old FLIP address is unknown. During one incarnation of the
server, the server can decide, based on sequence numbers in the message, whether the
request was executed or not.

Our implementation of RPC is very similar to Birrell and Nelson’s [Birrell and
Nelson 1984], except for two important differences. First, because FLIP addresses are
64-bit large and location-independent, our implementation has no need for a unique
identifier; the FLIP address is the unique identifier. Second, our implementation does
not use the next request as an acknowledgement for the last reply. Instead, our imple-
mentation sends an explicit acknowledgement when the reply is received. This simpli-
fies the implementation of the RPC layer. Furthermore, sending the acknowledgement
is not in the critical path of an RPC (see the next section).

Group Communication
Group communication in Amoeba is based on the protocols described in

[Kaashoek et al. 1989; Kaashoek and Tanenbaum 1991]. Amoeba provides a primitive
to send a message to a group of processes reliably. Furthermore, this primitive guaran-
tees that all broadcast messages within a group are totally ordered. The group com-
munication protocols make heavy use of flip3multicast. This has the advantage that a
group of n processes can be addressed using one FLIP address, even if they are located
on multiple networks.

As explained in Section 5.2, we treat the ability of a network to send multicast
messages as an optimization over sending n separate point-to-point messages. If the
FLIP box discovers that a FLIP address is routed to n locations on the same network, it
asks the network dependent layer to return a multicast address for the n locations. It is
then up to the network layer to create such a multicast address and to make sure that the
n locations will listen to it. After the network layer has done so, it returns to the packet
switch a multicast address and a list of locations that listen to the multicast address.
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From then on, the packet switch can use the multicast address. The implementation of
the Ethernet layer does this as soon as the FLIP box maps an address on two locations
onto the same network.

Thus, the FLIP protocol does all the routing of multicast messages, and recog-
nizes when a data-link multicast could be used to reduce the number of messages.
Once it recognizes the possibility of optimization, it leaves it up to a network depen-
dent layer to perform it. The reason that FLIP itself cannot perform the optimization is
that FLIP does not know about the data link addresses for multicast.

Security
Security in Amoeba is implemented using the FLIP support for security.

Although FLIP does not encrypt messages itself, it provides two mechanisms for sup-
porting security. First, messages can be marked sensitive by the sender (using the
Security bit), so that they will not be routed over untrusted networks. Second, mes-
sages going through FLIP may be marked unsafe (using the Unsafe bit), so that the re-
ceiver can tell whether or not there is a safe route to the sender. If, based on this infor-
mation, a process thinks there is a safe route to the destination, it can try to send secure
messages unencrypted, but with the Security bit set. If this message is bounced with
the Unreachable bit set, no trusted path exists after all. This can only happen due to
configuration changes. The process then encrypts the message, and retransmits it with
the Security bit cleared.

Our implementation of secure RPC is in an experimental phase and is not yet in
day to day use; we are still studying how to do secure group communication. Like
many secure systems, Amoeba secure RPCs are based on a shared key between the
client and the server and its implementation is roughly similar to Birrell’s [Birrell
1985]. The main difference is that our implementation uses FLIP’s knowledge about
trusted and untrusted networks. The Amoeba processor pools and specialized servers
are located in one single room and together form a trusted network. Thus, all commun-
ication between processes in the processor pool and, for example, the file service does
not have to be encrypted. However, as soon as a FLIP message leaves this network, it
is guaranteed to be encrypted (if it is part of a secure RPC). This encryption is trans-
parent to the user. Our expectation is that we can build a complete secure system with
acceptable performance, because the common case does not require encryption. Furth-
ermore, it is not necessary that all processors be equipped with encryption hardware.

Network Management
Little network management is required in Amoeba. FLIP can deal automatically

with network changes: we add machines, networks, or reconfigure our systems just by
plugging or unplugging cables. When a machine comes up, it does not have to send out
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ARP or RARP requests and wait until a server responds; instead it can be used as soon
as it is plugged into the network.

The only network management that is required has to do with trusted and untrust-
ed networks. FLIP relies on the system administrator to mark a network interface as
‘‘trusted’’ or ‘‘untrusted,’’ because FLIP itself cannot determine if a network can be
considered trusted. In our implementation only the system administrator can toggle
this property.

Wide-Area Communication
Although FLIP has been used successfully in small WANs, it does not scale well

enough to be used as the WAN communication protocol in a large WAN. Addresses
form a flat name space that is not large enough to address all the machines in the world
and still ‘‘guarantee’’ uniqueness. Furthermore, the way FLIP uses broadcast makes it
less suitable for a WAN. We traded scalability for functionality. Moreover, we be-
lieve that WAN communication should not be done at the network layer, but at a higher
layer in the protocol hierarchy.

There are three reasons for doing so. First, most communication is local within
one domain†. Thus, we decided we did not want to give up on flexibility and perfor-
mance, because a message could go to a remote domain.

A second reason to make a distinction between a local and remote domain is that
protocols on a WAN link differ from protocols used in a distributed system. WAN
links are mostly owned by phone companies that are not interested in fast RPCs. Furth-
ermore, different protocols on WANs are used to cope with the higher error rates and
the lower bandwidth of WAN links. Thus, making a protocol suitable for WAN com-
munication at the network layer could very well turn out to be a bad design decision,
because at the boundary of a domain the messages may have to be converted to the pro-
tocols that are used on the WAN link.

The third reason has to do with administration of domains. WAN communica-
tion typically costs more money than communicating across a LAN. Transparently
paying large amounts of money is unacceptable for most people. Furthermore, even if
there is no boundary at the network layer, there is still a logical boundary. Administra-
tors control domains independently and they like to have control over what traffic is
leaving and entering their domain. An administrator might want to keep ‘‘dangerous
messages’’ out of his domain. If communication is transparent at the network layer,
this is hard to achieve, as recently demonstrated by the worm on the Internet [Spafford
1989].

In the Amoeba system we have implemented WAN communication above the
RPC layer [Van Renesse et al. 1987]. If a client wants to access a service in another
333333333333333
† Measurements taken at our department show that 80% of all IP messages are destined for a host on the
same network, 12% stay within the department, and that 8% are destined for some other IP site.
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domain, it does an RPC to a server agent in its domain. The server agent sends the
RPC to the WAN server, which forwards the RPC to the WAN service in the server’s
domain using the appropriate protocol for the WAN link. The WAN service in the
server’s domain creates a client agent that executes the same RPC and it will find the
server.

7. PERFORMANCE OF FLIP
An important measure of success for any protocol is its performance. We have

compared the performance of Amoeba 5.0 RPC (with FLIP) with Amoeba 4.0 RPC
(pre-FLIP version) and with other RPC implementations on identical hardware. The
delay was measured by performing 10,000 0-byte RPCs. The throughput was meas-
ured by sending maximum-size RPCs. In Amoeba 4.0 this is measured by sending
30,000-byte RPCs; in Amoeba 5.0 this is measured by sending 100,000-byte RPCs
(which is still smaller than the maximum possible size); in SunOS using 8-Kbyte
RPCs; in Sprite using 16-Kbyte RPCs; and in Peregrine using 48,000-byte RPCs. To
make direct comparisons possible we also measured Amoeba 5.0 RPC with the sizes
used for the other systems. All measurements were made on Sun3/60s and a 10 Mbit/s
Ethernet.

The first row in the table in Figure 10 gives the performance of RPC using the
protocols in Amoeba 4.0. The second row in the table gives the performance for the
new RPC implementation on top of FLIP. The delay in Amoeba 4.0 is lower than in
Amoeba 5.0, because Amoeba 4.0 RPC is implemented over bare Ethernet and requires
all machines in a domain to be on one network, so it does not have to do routing and the
implementation can be tuned for the case of one network interface. In spite of the over-
head for routing, the throughput in Amoeba 5.0 is 30% higher, largely because Amoeba
4.0 uses a stop-and-wait protocol, while Amoeba 5.0 uses a blast protocol [Zwaenepoel
1985] to send large messages. This enables user processes in Amoeba 5.0 RPC to get
87% of the total physical bandwidth of an Ethernet (the FLIP and RPC protocols in-
cluding headers use 90% of the total bandwidth).

For comparison, the delay of a 0-byte RPC in SunOS is 6.7 msec and the
bandwidth for an 8-Kbyte RPC is 325 Kbyte/s (the maximum RPC size for SunOS is 8
Kbyte). This is due to the fact that SunOS copies each message several times before it
is given to the network driver, due to its implementation on UDP/IP, and due to the
higher cost for context switching. In Sprite, the delay is 2.0 msec and the maximum
throughput is 821 Kbyte/s (these numbers are measured kernel to kernel). Although
Sprite’s kernel-to-kernel RPC does not do routing, the delay of the null RPC is almost
the same as the delay for Amoeba 5.0, while Amoeba’s delay is measured user-to-user.
Sprite also uses a blast protocol for large messages, but its throughput is still less than
the throughput achieved by Amoeba 5.0. This can be explained by the fact that Amoe-
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Fig. 10. Performance numbers for different RPC implementations on Sun3/60s.

The Sprite numbers are measured from kernel to kernel. The others are measured

from user to user. The fourth column gives the bandwidth for Amoeba 5.0 RPC us-

ing the data size for the system measured in each row.

ba keeps its buffer contiguously in memory and that it has a much better context
switching time [Douglis et al. 1991].

Compared to Peregrine’s RPC [Johnson and Zwaenepoel 1991], Amoeba’s delay
for a 0-byte RPC is high and Amoeba’s maximum throughput is low. Peregrine
achieves on identical hardware a delay of 589 µsec and a bandwidth of 1139 Kbyte/s.
Peregrine’s performance for the null RPC is only 289 µsec above the minimum possi-
ble hardware latency. Peregrine achieves this performance by directly remapping the
Ethernet receive buffer in the server machine to become the new thread’s stack and by
using preallocated and initialized message headers. Furthermore, Peregrine uses a
two-message RPC protocol, while Amoeba is using a three-message RPC protocol,
although the third message is only partly in the critical path. Peregrine achieves a high
throughput by overlapping the copying of data from a packet with the transmission of
the next packet. The last packet is, like the single-packet case, directly remapped,
avoiding the copying of data. We believe that we can apply many of Peregrine’s op-
timizations in Amoeba, which will probably result in a similar performance as
Peregrine’s. For more performance numbers on these and other RPC implementations
see [Tanenbaum et al. 1990]. Thus, in addition to providing more functionality, FLIP
makes it also possible to achieve very good performance.

To determine the overhead in FLIP, we measured the time spent in each layer
during a null RPC (see Fig. 11). The overhead due to FLIP is 21% of the total delay for
a null RPC. From the numbers given one can also compute what the costs are if the
server and client were located on different networks. Each additional hop over another
Ethernet increases the delay of a null RPC by 975 µsecs.
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Fig. 11. (a) The Amoeba RPC protocol and (b) the time spent in the critical path of

each layer for a null RPC. The RPC protocol for a small RPC uses three messages:

1) a request message from the client to the server; 2) a reply message that ack-

nowledges the request and unblocks the client; 3) an acknowledgement for the re-

ply, so that the server can clean up its state. The acknowledgement is only for a

small part in the critical path. The Ethernet time is the time spent on the wire plus

the time spent in the driver and taking the interrupt.

The delay for sending a null broadcast reliably and totally ordered for varying
group sizes is depicted in Figure 12. The experiment measures the delay seen by the
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Fig. 12. Delay for sending a broadcast to a group varying from 1 to 30 members.

sender when sending a message to a group of receivers varying in size from 1 to 30
members. The experiment was done on slightly different hardware, a collection of
20Mhz MC68030 boards, as we do not have 30 Sun3/60s. (The null RPC time on these
boards is 2.5 msec.) The delay measured is independent of the number of receivers, be-
cause FLIP dynamically switches from using point-to-point to using the hardware mul-
ticast facility provided by the Ethernet.

8. DISCUSSION AND COMPARISON
Many communication protocols have been introduced in the last decade. Some

of them are accepted as official standards or are used by a large user community, such
as X.25 [Zimmerman 1980] and IP; others are tailored to specific applications, such as
the Express Transfer Protocol (XTP) [Saunders and Weaver 1990]. In a distributed
system like Amoeba many entities are short-lived and send small messages. In such an
environment, setting up connections would be a waste of time and resources. We
therefore decided to make FLIP a connectionless protocol. In this section, we compare
FLIP to other connectionless protocols and discuss the advantages and disadvantages of
FLIP over these other protocols.

However, before comparing FLIP to other connectionless protocols, we first
summarize the requirements that distributed computing imposes on the communication
system and the support that FLIP offers to meet these requirements (see Fig. 13).
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Fig. 13. How FLIP meets distributed systems requirements discussed in section 2.

8.1. Discussion
The main property of FLIP that gives good support for distributed computing is a

combination of dynamic routing and the fact that FLIP addresses identify logical enti-
ties (processes or groups) rather than machines. Dynamic routing is done in a way
roughly similar to transparent bridges [Backes 1988]. Each FLIP box keeps a cache of
hints that is dynamically updated by FLIP messages. To keep routing tables up-to-date
with the network topology, FLIP headers have a type field and include hop counts. The
combination of dynamic routing tables and communication between entities simplifies
the implementation of higher-level protocols such as RPC and group communication
and gives enhanced support for process migration. Furthermore, little network
management is required.

The only requirement for which FLIP does not have full support is wide-area net-
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working. We think, however, that wide-area communication should not be done at the
network layer, but in higher layers.

The costs for the functionality of FLIP can be divided roughly into 3 areas: limit-
ed scalability, costs for broadcast, and memory for routing tables. By using a flat name
space we lose on scalability, but gain the ability to make addresses location-
independent and on the ability to do routing on a per-entity basis. One could envision
adding a domain identifier to the FLIP header, so that FLIP would scale to larger inter-
networks. Using a domain identifier, all the good properties of FLIP would exist in a
single domain, but not between two domains.

A danger in our current implementation of FLIP is that addresses might clash.
Two processes could accidentally register the same FLIP address. In this case, mes-
sages sent to process A may end up at process B. However, as long as the same pro-
cess is not talking to A and B at the same time and routes to A and B do not intersect,
most of the messages will still be delivered correctly†. In the current situation with a
good random generator and seed, clashes of FLIP addresses do not occur. Of course, if
the number of entities increases enormously, the chance of clashes increases.

By using locate messages we have the ability to reconfigure networks dynamical-
ly and move processes around. The costs are that FLIP will generate more broadcasts
than a protocol like IP and that there is a startup cost involved in locating a destination.
Furthermore, there is a danger that FLIP could cause a flood of broadcasts. To avoid
this we have introduced a hop count in the header, kept state (1 Kbyte) in each kernel to
break loops, and limited the number of broadcasts per second that a FLIP box can for-
ward. The net result is that Amoeba in the environment depicted in Figure 8 (which
contains loops) on average generates only 1.6 broadcasts per second to locate ports and
0.1 broadcasts per seccond to locate FLIP addresses (measured over a 60 hour time
period: 3 working days and two nights). Given the fact that it takes approximately 500
µsec to process a broadcast, we are paying only 0.1% of the CPU for dealing with
broadcasts. We find this a good tradeoff.

We locate destinations by expanding the scope of each broadcast. This has the
disadvantage that networks close by will receive more broadcasts than networks further
away. Furthermore, it introduces a potentially longer delay for destinations far away or
destinations that do not exist. Because the RPC implementation caches mappings of
ports to FLIP addresses and the FLIP implementation caches the mapping of FLIP ad-
dresses to locations, very little locating takes place, so the number of broadcasts is low.
Most of the broadcasts are due to attempts to locate services that no longer exist. In a
large internetwork the number of broadcasts could be too high and the delay too long.
In such an environment, one could implement a scheme which caches unreachable

333333333333333
† As soon as we started running FLIP on all our machines, we came across this problem, because many
of the pseudo-random generators were at that time fed with the same seed.
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ports and FLIP addresses to reduce the number of broadcasts for non-existing services.
This scheme is, however, not trivial to implement correctly.

By using routing tables in each kernel, we can do routing on a per-process basis.
The cost for doing this is that each kernel must keep such a table. In our current en-
vironment, we are using tables that can store 100 FLIP addresses; this requires only 6
Kbyte of storage.

8.2. Comparison
The rest of this section discusses alternative solutions for communication in dis-

tributed systems. One of the most widely used internet protocols is IP [Postel 1981a;
Comer 1992]. In IP, an address identifies a host. Thus, if a process is migrated from
one host to another host, it must change its IP address and tell other processes that it did
so. Because IP uses a hierarchical address space, machines cannot be disconnected
from one network and connected to another network without changing their IP ad-
dresses, although a new extension to IP has been proposed to deal with mobile comput-
ers [Ioannidis et al. 1991]. FLIP’s flat address space also has some disadvantages.
Routing tables are larger. Instead of having one entry for a collection of addresses on
one network, FLIP needs a separate entry for every address. With the flat address
space, FLIP also scales less well to wide-area communication. Another fundamental
difference between IP and FLIP is IP’s limit to the size of a message (64 Kbyte).
Higher-level protocols have to break messages in 64 Kbyte fragments and reassemble
them at the other side. As a result, IP does not benefit from communication links that
allow packets larger than 64 Kbyte. A final fundamental difference is that IP provides
limited support for secure communication. For example, the standard IP specification
does not provide secure routing.

Besides these fundamental differences, there are also a number of differences
that are dependent on the IP implementation and routing protocol used. The Internet
Control Message Protocol improves end-to-end flow control and routing [Postel
1981b]. However, there are still many problems. For example, many IP implementa-
tions make a distinction between a router and a host. A router does routing, and a host
runs processes and does not do routing. If the network topology changes, it often hap-
pens that machines have to be restarted or reconfigured manually. Furthermore, all
ongoing communication between a machine that is about to be moved and other
machines will have to be aborted. As most departments own a large number of
machines and many networks, these changes need to be done more often than any sys-
tem administrator cares for. FLIP eliminates almost all need for network management;
system administrators can install, move, or remove machines without making changes
to the configuration tables.

Another protocol that has been especially designed for distributed operating sys-
tems is the Versatile Message Transaction Protocol (VMTP) [Cheriton 1986, 1988a].
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Like FLIP, VMTP provides a base to build higher-level protocols, and has been used
for the protocols in the V distributed system [Cheriton 1988b]. Unlike FLIP, VMTP is
a transport protocol, which relies on an internet protocol for routing. Therefore VMTP
may be implemented on top of FLIP, providing the VMTP abstraction with the advan-
tages of FLIP.

Three types of addresses exist in VMTP. They differ in the time that they are us-
able. T-stable addresses, for example, are guaranteed not to be reused for at least T
seconds after they become invalid. This allows a timer-based implementation of at-
most-once Remote Procedure Call. If one were to run VMTP on FLIP, such timed ad-
dresses would not be needed, because the 56 bits of an address would almost certainly
be unique and an entity can pick a new address at any time. VMTP is a reliable tran-
sport protocol, and uses a single mechanism for fragmentation and flow control on all
network types. To be able to implement this protocol efficiently, the designers also put
an artificial upper bound on the size of a network message. Due to this artificial upper
bound, and the fact that networks differ greatly in their physical properties, VMTP may
perform well on one network and less well on another.

The routing algorithm that FLIP uses for MULTIDATA packets is similar to the
single-spanning-tree multicast routing algorithm discussed by Deering and Cheriton
[Deering and Cheriton 1990]. In the same paper, the authors also discuss more sophis-
ticated multicast routing algorithms. These algorithms could be implemented in FLIP
using the Variable Part of the header.

9. CONCLUSION
In this paper we have discussed protocol requirements for distributed systems

and proposed a new protocol that meets them. Current internet protocols do not ad-
dress various problems, leaving the solution to higher-level protocols. This leads to
more complex protocols, that cannot perform well, because they cannot take advantage
of hardware support. We presented the FLIP protocol that supports many of the re-
quirements of distributed systems in an integrated way. FLIP addresses management
of internetworks, efficient and secure communication, and transparency of location and
migration.

FLIP is used in the Amoeba 5.0 distributed operating system to implement RPC
and group communication over a collection of different networks. The advantages over
Amoeba 4.0 include better scaling, easier management, and higher bandwidth.
Round-trip delay is currently higher, but this can probably be improved by careful cod-
ing and tuning.

There is more work to be done. For example, we have no experience with large
networks containing thousands of subnets. However, since Amoeba implements wide-
area communication transparently in user space, using X.25 or TCP links between
Amoeba sites, this is at least conceivable. Additionally, locating endpoints with
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location-independent addresses can be a problem, and we are currently considering a
location service for a possibly large network of subnets that may or may not support
hardware multicast.

ACKNOWLEDGEMENTS
Henri Bal, Brian Bershad, Leendert van Doorn, Fred Douglis, Philip Homburg,
Wiebren de Jonge, Sape Mullender, Greg Sharp, Mark Wood, and Willy Zwaenepoel
provided comments on drafts of this paper, which improved its content and presenta-
tion substantially. Wiebren de Jonge also suggested a clean and nice improvement to
the one-way-function used in the host interface. We would also wish to thank the re-
ferees for their input, which further helped to improve the paper.

REFERENCES

Backes, F., “Transparent Bridges for Interconnection of IEEE 802 LANs,” IEEE Net-
work, Vol. 2, No. 1, pp. 5-9, Jan. 1988.

Birman, K. P. and Joseph, T. A., “Exploiting Virtual Synchrony in Distributed Sys-
tems,” Proc. Eleventh ACM Symposium on Operating Systems Principles, pp.
123-138, Austin, TX, Nov. 87.

Birrell, A. D., “Secure Communication Using Remote Procedure Calls,” ACM Trans.
Comp. Syst., Vol. 3, No. 1, pp. 1-14, Feb. 1985.

Birrell, A. D. and Nelson, B. J., “Implementing Remote Procedure Calls,” ACM Trans.
Comp. Syst., Vol. 2, No. 1, pp. 39-59, Feb. 1984.

Cheriton, D. R., “VMTP: A Transport Protocol for the Next Generation of Communi-
cation Systems,” Proc. SIGCOMM 86, pp. 406-415, Stowe, VT, Aug. 1986.

Cheriton, D. R., “VMTP: Versatile Message Transaction Protocol,” RFC 1045, SRI
Network Information Center, Feb. 1988a.

Cheriton, D. R., “The V Distributed System,” Commun. ACM, Vol. 31, No. 3, pp. 314-
333, Mar. 1988b.

Cohen, D., “On Holy Wars and a Plea for Peace,” IEEE Computer, Vol. 14, pp. 48-54,
Oct. 1981.

Comer, D. E., “Internetworking with TCP/IP 2nd ed.,” Prentice-Hall, Englewood
Cliffs, NJ, 1992.

Dasgupta, P., Leblanc, R. J., Ahamad, M., and Ramachandran, U., “The Clouds Distri-
buted Operating System,” IEEE Computer, Vol. 24, No. 11, pp. 34-44, Nov.
1991.

- 31 -



Deering, S. E., “Host Extensions for IP Multicasting,” RFC 1112, SRI Network Infor-
mation Center, Aug. 1988.

Deering, S. E. and Cheriton, D. R., “Multicast Routing in Datagram Internetworks and
Extended LANs,” ACM Trans. Comp. Syst., Vol. 8, No. 2, pp. 85-110, May 1990.

Douglis, F., Kaashoek, M. F., Tanenbaum, A. S., and Ousterhout, J. K., “A Comparison
of Two Distributed Systems: Amoeba and Sprite,” Computing Systems, Vol. 4,
No. 4, pp. 353-384, 1991.

Finlayson, R., Mann, T., Mogul, J., and Theimer, M., “A Reverse Address Resolution
Protocol,” RFC 903, SRI Network Information Center, June 1984.

Ioannidis, J., Duchamp, D., and Maguire Jr., G. Q., “IP-based Protocols for Mobile In-
ternetworking,” Proc. SIGCOMM 91 Conference on Communications Architec-
tures and Protocols, pp. 235-245, Zürich, Zwitserland, Sep. 1991.

Johnson, D. B. and Zwaenepoel, W., “The Peregrine High-Performance RPC System,”
TR91-151, Rice University, Mar. 1991.

Kaashoek, M. F. and Tanenbaum, A. S., “Group Communication in the Amoeba Distri-
buted Operating System,” Proc. Eleventh International Conference on Distribut-
ed Computing Systems, pp. 222-230, Arlington, TX, May 1991.

Kaashoek, M. F., Tanenbaum, A. S., Flynn Hummel, S., and Bal, H. E., “An Efficient
Reliable Broadcast Protocol,” Operating Systems Review, Vol. 23, No. 4, pp. 5-
20, Oct. 1989.

Kung, H. T., “Gigabit Local Area Networks: a Systems Perspective,” IEEE Communi-
cations Magazine, Vol. 30, No. 4, pp. 79-89, Apr. 1992.

Mullender, S. J., Van Rossum, G., Tanenbaum, A. S., Van Renesse, R., and Van
Staveren, H., “Amoeba: A Distributed Operating System for the 1990s,” IEEE
Computer, Vol. 23, No. 5, pp. 44-53, May 1990.

National Bureau of Standards, “Data Encryption Standard,” Fed. Inf. Process. Stand.
Publ. 46, Jan. 1977.

Ousterhout, J. K., Cherenson, A. R., Douglis, F., Nelson, M. N., and Welch, B. B.,
“The Sprite Network Operating System,” IEEE Computer, pp. 23-36, Feb. 1988.

Plummer, D. C., “An Ethernet Address Resolution Protocol,” RFC 826, SRI Network
Information Center, Nov. 1982.

Postel, J., “Internet Protocol,” RFC 791, SRI Network Information Center, Sep. 1981a.

- 32 -



Postel, J., “Internet Control Message Protocol,” RFC 792, SRI Network Information
Center, Sep. 1981b.

Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M.,
Herrmann, F., Kaiser, C., Langlois, S., Leonard, P., and Neuhauser, W., “Chorus
Distributed Operating System,” Computing Systems, Vol. 1, No. 4, pp. 305-370,
1988.

Saltzer, J. H., Reed, D. P., and Clark, D. D., “End-to-End Arguments in System
Design,” ACM Trans. Comp. Syst., Vol. 2, No. 4, pp. 277-288, Nov. 1986.

Saunders, R. M. and Weaver, A. C., “The Xpress Transfer Protocol (XTP) - A Tutori-
al,” Computer Communication Review, Vol. 20, No. 5, pp. 67-80, Oct. 1990.

Spafford, E. H., “The Internet Worm: Crisis and Aftermath,” Commun. ACM, Vol. 32,
No. 6, pp. 678-688, June 1989.

Tanenbaum, A. S., Kaashoek, M. F., and Bal, H. E., “Parallel Programming Using
Shared Objects and Broadcasting,” IEEE Computer, Vol. 25, pp. 10-19, Aug.
1992.

Tanenbaum, A. S., Mullender, S. J., and Van Renesse, R., “Using Sparse Capabilities
in a Distributed Operating System,” Proc. Sixth International Conference on Dis-
tributed Computing Systems, pp. 558-563, Cambridge, MA, May 1986.

Tanenbaum, A. S., Van Renesse, R., Van Staveren, H., Sharp, G., Mullender, S. J., Jan-
sen, A., and Van Rossum, G., “Experiences with the Amoeba Distributed Operat-
ing System,” Commun. ACM, Vol. 33, No. 12, pp. 46-63, Dec. 1990.

Van Renesse, R., Tanenbaum, A. S., Van Staveren, H., and Hall, J., “Connecting RPC-
based Distributed Systems Using Wide-area Networks,” Proc. Seventh Interna-
tional Conference on Distributed Computing Systems, pp. 28-34, Berlin, Sep.
1987.

Zimmerman, H., “OSI Reference Model - The ISO Model of Architecture for Open
Systems Interconnection,” IEEE Trans. on Communications, Vol. 28, pp. 425-
432, Apr. 1980.

Zwaenepoel, W., “Protocols for Large Data Transfers over Local Networks,” Proc.
Ninth Data Communications Symposium, pp. 22-32, Whistler Mountain, Canada,
Sep. 1985.

- 33 -



APPENDIX
The FLIP protocol makes it possible that routing tables automatically adapt to

changes in the network topology. The protocol is based on 6 message types. We will
discuss in detail the actions undertaken by the packet switch when receiving a FLIP
fragment.

If a fragment arrives over an untrusted network, the Unsafe bit in the Flags field
is set. This also happens when a fragment is sent over an untrusted network. Further-
more, FLIP refuses to send a fragment with the Security bit set over an untrusted net-
work. We have omitted these details from the protocol description below to make it
easier to understand.

222222222222222222222222222222222222222222222222222222222222222222222222
LOCATE222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

/* Remember that source can be reached through network ntw on location loc. */
UpdateRoutingTable(pkt→source, ntw, loc, pkt→act3hop, pkt→flags & UNSAFE);
if (pkt→act3hop == pkt→max3hop and

lookup(pkt→destination, &dsthop, ntw, pkt→flags & SECURITY)) {
/* Destination is known; send HEREIS message back. */
pkt→type = HEREIS;
pkt→max3hop = pkt→act3hop + dsthop;
pkt→act3hop −= Networkweight[ntw];
pkt3send(pkt, ntw, loc);

} else { /* destination is unknown or incorrect */
/* Forget all routes to destination, except those on ntw */
RemoveFromRoutingTable(pkt→destination, ALLNTW, ALLLOC, ntw);
/* Forward pkt on all other networks, if the hop count and security allow it */
pkt3broadcast(pkt, ntw, pkt→max3hop − pkt→act3hop, pkt→flags & SECURITY);
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Fig. 14. The protocol for LOCATE messages. A LOCATE message is broadcast, while

the route to the source address is remembered.

The LOCATE message is to find the network location of a NSAP (see Fig. 14). It
is broadcast to all FLIP boxes. If a FLIP box receives a LOCATE message, it stores the
tuple (Source Address, Network, Location, Actual Hop Count, Flags & UNSAFE) in
its routing table, so that a reply to the LOCATE message can find its way back. If the
Actual Hop Count in the LOCATE message is equal to the Maximum Hop Count, the
Destination Address is in the routing table, the destination network is safe (if neces-
sary), and the destination network is not equal to the source network, the LOCATE mes-
sage is turned into an HEREIS message and sent back to the Source Address. The Max-
imum Hop Count of the HEREIS message is set to the Actual Hop Count of the LOCATE

message plus the hop count in the routing table. If the Actual Hop Count in the LO-
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CATE message is less than the Maximum Hop Count, the entries for Destination Ad-
dress in the routing table are removed, except for the entries that route the address to
the network on which the LOCATE arrived, and the message is broadcast on the other
networks.

It is important that the packet switch only sends an HEREIS message back if the
Actual Hop Count of the LOCATE message is equal to the Maximum Hop Count. By us-
ing a large Maximum Hop Count the sender of the LOCATE message can force an inter-
face module to respond instead of a packet switch and at the same time invalidate any
old routing information for the address that is located. If the address to be located is re-
gistered at an interface on a distance smaller than Maximum Hop Count, this scheme
works correctly, because an interface always sends an HEREIS back for an address that
is registered with it.

222222222222222222222222222222222222222222222222222222222222222222222222222
HEREIS222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

hops = pkt→max3hop − pkt→act3hop;
AddToRoutingTable(pkt→destination, ntw, loc, hops, pkt→flags & UNSAFE);
if (route(pkt→source, &dstntw, &dstloc, ntw, pkt→act3hop, pkt→flags & SECURITY)) {

/* A network is found that is different from the network on which
* pkt arrived and on which the destination is reachable. */
pkt→act3hop −= Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);

} else discard(pkt); /* Source is unknown, too far away, or unsafe. */22222222222222222222222222222222222222222222222222222222222222222222222222211
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Fig. 15. The protocol for HEREIS messages. HEREIS messages are returned to the

source in response to LOCATE messages, while the route to the destination (of the

LOCATE message) is remembered.

An HEREIS message is sent as a reply to a LOCATE message (see Fig. 15). If an
HEREIS message arrives, the tuple (Destination Address, Network, Location, Actual
Hop Count, Flags & UNSAFE) is added to the routing table. If the Source Address is
in the routing table and the network on which the source can be reached is not equal to
the network on which the message arrived and the incremented Actual Hop Count does
not exceed the Maximum Hop Count, the message is forwarded. Otherwise, the mes-
sage is discarded. If the destination network is equal to the source network, route()
will return false; the message is discarded.

UNIDATA messages are used to transfer fragments of a message between two
NSAPs. When such a message arrives, the tuple (Source Address, Network, Location,
Actual Hop Count, Flags & UNSAFE) is stored in the routing table (see Fig. 16). If the
Destination Address is in the routing table, the destination network is not equal to the
source network, the incremented Actual Hop Count does not exceed the Maximum Hop
Count, and the destination network is safe, the message is fragmented (if needed), and
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UpdateRoutingTable(pkt→source, ntw, loc, pkt→act3hop, pkt→flags & UNSAFE);
hops = pkt→max3hop − pkt→act3hop;
switch (route(pkt→destination, &dstntw, &dstloc, ntw, hops, pkt→flags & SECURITY)) {

case OK: /* forward message */
pkt→act3hop += Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);
break;

case TooFarAway: /* send pkt back to source. */
pkt→type = NOTHERE;
pkt→acthop −= Networkweight[ntw];
pkt3send(pkt, ntw, loc);
break;

case Unsafe: /* send pkt back to source. */
pkt→type = UNTRUSTED;
pkt→flags |= UNREACHABLE;
pkt→acthop −= Networkweight[ntw];
pkt3send(pkt, ntw, loc);
break;

}
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Fig. 16. The protocol for UNIDATA messages. If the destination is known and, if

necessary, safe, the message is forwarded. If the destination is unknown, the mes-

sage is returned as a NOTHERE message. If the message can only be transfered over

trusted networks, and the destination network is untrusted, the message is returned

as an UNTRUSTED message.

each fragment is forwarded. If there are multiple choices in the routing table, one is
chosen, based on an implementation-defined heuristic, such as the safety or the
minimum number of hops. The null destination address maps to all networks and loca-
tions.

If the Destination Address of a UNIDATA message is not in the routing table, or
the destination network is unsafe, the message is transformed into a NOTHERE message
by setting the Type to NOTHERE, and is returned to the Source Address. The data in the
message is not discarded, unless the decremented Actual Hop Count was zero.

If the Maximum Hop Count minus the Actual Hop Count of a UNIDATA message
is less than the Hop Count stored in the routing table, the implementor can decide to
send a NOTHERE message back to the sender. Chances are that the message would not
have reached its destination. A new locate of the Destination Address will re-establish
the route, and update the routing tables. If the destination network is untrusted, then
the Unreachable bit is set, and the message is returned as an UNTRUSTED message.

If a NOTHERE message arrives at a FLIP box, the corresponding entry in the rout-
ing table is invalidated (see Fig.17). If another route is present in the routing table, the
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RemoveFromRoutingTable(pkt→destination, ntw, loc, NONTW);
hops = pkt→max3hop − pkt→act3hop;
if (route(pkt→destination, &dstntw, &dstloc, ntw, hops, pkt→flags & SECURITY) {

/* There is another route to destination; use it. */
pkt→type = UNIDATA;
pkt→act3hop += Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);

} else if (route(pkt→source, &dstntw, &dstloc, ntw, hops, pkt→flags & SECURITY)) {
/* Forward to original source. */
pkt→act3hop −= Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);

} else discard(pkt); /* Source is unknown, too far away, or untrusted. */22222222222222222222222222222222222222222222222222222222222222222222222221
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Fig. 17. The protocol for NOTHERE messages. If there is an alternative route, try

that one. Otherwise forward back to the original source.

Type field is set back to UNIDATA. Now operation continues as if a UNIDATA message
arrived, except that the routing table operation is skipped. This way an alternate route,
if available, will be tried automatically. If not, the NOTHERE is forwarded to its source
(if still safe).

222222222222222222222222222222222222222222222222222222222222222
UNTRUSTED222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

UpdateRoutingTable(pkt→destination, ntw, loc, pkt→act3hop, UNSAFE);
hops = pkt→max3hop − pkt→act3hop;
if (route(pkt→destination, &dstntw, &dstloc, ntw, hops, SECURE) {

/* There is another safe route to destination; use it. */
pkt→type = UNIDATA;
pkt→act3hop += Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);

} else if (route(pkt→source, &dstntw, &dstloc, ntw, hops, SECURE)) {
/* Return to source (if still safe). */
pkt→act3hop −= Networkweight[dstntw];
pkt3send(pkt, dstntw, dstloc);

} else discard(pkt); /* Source is unknown, too far away, or untrusted. */2222222222222222222222222222222222222222222222222222222222222221
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Fig. 18. The protocol for an UNTRUSTED message. If there is an alternative safe

route, try that one. Otherwise return to its original source.

If an UNTRUSTED message arrives at a FLIP box (see Fig. 18), the route in the
routing table is updated, and a new safe route, if present, is tried. If there is no such
route, the message is forwarded back to the original source (but only if there exists a
route back that is safe).

A MULTIDATA message is transfered like a UNIDATA message (see Fig. 19).
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UpdateRoutingTable(pkt→source, ntw, loc, pkt→act3hop, pkt→flags & UNSAFE);
/* See if there are any known (and safe) destinations. */
if (list = lookup(dstaddr, &dsthop, ntw, pkt→flags & SECURITY)) {

/* Send message to all locations on list, if the hop count allows it. */
pkt3multicast(list, pkt→max3hop − pkt→act3hop);
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Fig. 19. The protocol for MULTIDATA messages. Forward to all known destina-

tions.

However, if there are multiple entries of the Destination Address in the routing table,
the message is forwarded to all destinations instead of just one. If there is no entry for
the Destination Address, or the destination network is unsafe, the message is discarded
and not returned as a NOTHERE message. FLIP does not assume that a network has
support for multicast. If a network has such a capability, FLIP will try to take advan-
tage of it. If not, the message is sent point-to-point to all destinations on the network.
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