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1. USING STUDIES INVOLVING HUMANS TO FIND
GENES ASSOCIATED WITH DISEASE
I begin with a survey of the current progress in human

genetics towards finding genes implicated in complex

disease such as asthma, diabetes, heart disease or

cancer. Recent and more comprehensive reviews of this

area may be found in Colhoun et al. (2003), Zondervan

& Cardon (2004) and Hirschhorn & Daly (2005).

In stark contrast to the successful identification of

genes responsible for numerous monogenic diseases

that follow simple Mendelian genetics, progress in

finding the genetic basis of complex diseases in humans

has been slow. This is despite the fact that genetic

effects frequently account for a large proportion (up to

50%) of the variation observed in complex disease. As

most monogenic diseases are rare—only cystic fibrosis

could be described as at all frequent (affecting about

0.25% of Caucasians), the impact of molecular genetic

analysis on common medical conditions has been

minimal. There have been limited successes with

asthma (Van Eerdewegh et al. 2002; Allen et al. 2003;

Zhang et al. 2003; Laitinen et al. 2004), diabetes

(Altshuler et al. 2000; Guo et al. 2004) and Crohn’s

disease (Rioux et al. 2001), but it is clear that the

disease-predisposing alleles identified thus far only

account for a small fraction of the disease cases that

should be attributable to a genetic cause.

The favoured methodology for identifying genetic

variants involved in complex disease is a genetic

association study comparing unrelated cases and

controls (Risch 2000). The basic design of an associ-

ation study is simple: in a collection of unrelated

individuals, one looks for a significant correlation

between the disease status and genotype across the

genome. Because the patients are unrelated, there will

be many historical recombination events separating

each pair of individuals, and hence only genetic markers

(generally single nucleotide polymorphisms, or SNPs)

close to a causative DNA variant(s) will be correlated

with it. In principle, by genotyping a sufficiently dense
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set of SNPs across the genome it should be possible to
map the genes with very high precision.

Two important variables that affect the success of
genetic association studies are the sample size and the
number of SNPs. The sample size required depends on
the effect of an individual disease locus. In a complex
disease there will be multiple loci involved, each
explaining only a small fraction of the disease cases,
possibly acting epistatically. Initially, it was hoped that
there would be at least some loci with moderate to large
effects, where the relative risk (RR) that an individual
has the disease given that it carries a particular allele at
the locus is two or more, meaning the individual is
more than twice as likely to develop the disease if it
carries a disease-predisposing allele. For example, the
asthma-related alleles discovered to date all have RRs
greater than 2 (Cookson 2004). However, many
studies powered to identify such loci have failed to
detect anything; consequently it is now accepted that
most RRs will be of the order of 1.5 or less. The
problem is that as the RR approaches 1 (at which point
there is no correlation with disease status), the sample
size required to detect it increases rapidly. For example,
Zondervan & Cardon 2004 and Colhoun et al. (2003)
suggest that 5000 cases and 5000 controls will be
required to detect a locus with RR 1.2–1.5. While only
1000 cases and 1000 controls are required to detect a
locus with RR 2, at 80% power.

Second, the number of SNPs required for an
association study depends on the pattern of linkage
disequilibrium (LD) in the population. LD measures
the extent to which the genotype at one SNP will be
correlated with that at a nearby SNP. In the simplest
case, where every SNP is typed, it can be reasonably
assumed that the causative variant will be included in
the study (I am ignoring the possibility that the
causative variant is not in fact a SNP at all, but some
more complex alteration in DNA sequence, such as a
polymorphic repetitive sequence, or a combination of
closely linked SNPs). However, genotyping every SNP
is not currently feasible. Instead, we assume that by
typing a sufficiently dense set of SNPs, the remaining
ungenotyped SNPs will be in LD with those whose
genotypes have been determined, and consequently the
effect of all variants can be surveyed. Measures of LD
q 2006 The Royal Society
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tell us to what extent a SNP can be used as a surrogate
for others (Forton et al. 2005; Ke et al. 2005).

Our understanding of LD has recently undergone a
revolution thanks to the efforts of various large-scale
collaborations, especially the International HapMap
Consortium (www.hapmap.org). We now know that
LD is complex and variable, and depends on the
ancestry of the sampled individuals. For example, there
is generally far less LD in Africans than Caucasians,
most probably because at some point in their history
Caucasians passed through a population bottleneck
which both reduced the extent of genetic variation and
introduced long-range correlation along the genome,
which has only gradually decayed over subsequent
generations. Furthermore, SNPs that have arisen as the
result of recent mutation tend to be in LD with much
larger regions of the genome than do ancient variants,
so within a given region some SNPs will show
significant LD with everything else whilst others will
not, in an apparently unpredictable manner.

Understanding the LD structure of the genome is
essential in order to pick SNPs for genotyping: one
can predict the likely genotype of a SNP in an
individual based on the haplotypes determined at the
nearby SNPs. The assumption is that it should be
possible to map all functional variants using such a
strategy. Calculations suggest that a carefully selected
set of about one million SNPs (sometimes called
‘tagging SNPs’) should enable the prediction of the
genotypes at about half of other known but
ungenotyped SNPs (Hirschhorn & Daly 2005).
There already exist SNP microarrays with 0.65
million SNPs, so this task will be technically possible
within a year or so, and while very expensive at
present, genotyping costs are falling dramatically as
array-based technologies become standard. As a
consequence we will require methods that can
analyse billions of genotypes in each study.

The above issues are largely technical in nature and
can be solved, given sufficient resources and technol-
ogy. However, a key assumption behind association
mapping, the ‘common disease–common variant
hypothesis’ is less easily dealt with. This hypothesis
says that disease-predisposing variants will exist at
relatively high frequency (i.e. greater than 1%) in the
population. The variants are thought to be ancient
alleles occurring on specific haplotype backgrounds.
This is precisely the kind of variant that an association
study using tagging SNPs will detect. The alternative
hypothesis is that the disease-predisposing alleles for a
given disease arose from sporadic new mutations,
perhaps around the same gene, but occurring on
different haplotype backgrounds. Different families
with a history of the same disease would owe their
condition to different mutations. They would perhaps
be detectable using a family based strategy which does
not assume a common origin for the disease-predis-
posing allele, but are much harder to detect with an
association study (Pritchard 2001).

So, association studies are best at detecting com-
moner variants and their power to detect a variant
diminishes as the allele frequency of the causative
variant drops. Even an association study based on one
million tagging SNPs and 10 000 individuals would
Phil. Trans. R. Soc. B (2006)
probably fail if the allele frequency falls to less than
0.5%. There are analytical methods that allow for
multiple founder events (Morris et al. 2002) but the
power to detect association will still be low. The best
solution would be to resequence the genomes of the
cases and controls. At present this is impossible, but
technological developments should make at least
partial resequencing feasible within 5 years.

The Wellcome Trust Case Control Consortium is in
the process of performing genome-wide association
studies over a range of diseases (including type I and
type II diabetes, rheumatoid arthritis, susceptibility to
TB and bipolar depression), genotyping 1000 cases per
disease and 3000 shared controls across 0.65 million
SNPs, with an additional 1000 cases per disease for
genotyping SNPs identified as promising candidates.
The results of this experiment are keenly awaited and
will help answer some of the points raised here.

Therefore, over the next 2–3 years we can expect
an answer to the question ‘do genetic association
studies find complex disease alleles?’ If positive, we
will have gained a much deeper understanding of the
etiology of complex disease, which should eventually
lead to improved treatments. Success here can be
defined in two ways. The stronger goal is to find the
major genetic determinants of complex disease, so
that one could predict with accuracy the likelihood
that an individual will develop a given condition,
based on their DNA. A weaker goal, applicable if the
common disease–common variant hypothesis does
not hold, is to find alleles which may only explain a
small proportion of disease cases, but whose
discovery leads to a deeper understanding of the
disease, and hence to possible therapies. It is
possible that, while we may not be able to do the
former, we may succeed with the latter.

If unsuccessful, we will need to develop other tools.
In the longer term, a number of BIOBANK projects
(see http://www.ukbiobank.ac.uk) are being set up in
which very large cohorts (over 10 000) will be recruited
and followed up over many years. These studies will be
large enough to detect genetic effects with small RRs,
but will take many years to produce results.
2. ANIMAL MODELS
What alternatives are available? The rest of this paper
describes the use of rodents, and particularly mice, to
map disease genes. We will see that while many of the
same problems that affect studies in humans are
present in animal studies, the latter have several unique
aspects, which make their use very attractive. A fuller
review of quantitative trait mapping in rodents is given
by Flint et al. (2005).

While disease mapping in humans is usually framed
in terms of dichotomous outcomes (the disease is
absent or present), genetic mapping in rodents more
often deals with quantitative phenotypes. From a
statistical point of view, the difference is minor.
Quantitative phenotypes are modelled in a multiple
linear regression framework, which takes into account
genetic and environmental factors, together with gene–
gene and gene–environment interactions. Dichoto-
mous phenotypes are modelled in a logistic multiple
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regression framework, which is identical to the linear

regression case except that the analysis models the

probability of being a disease case. Therefore in this

discussion a complex phenotype can be either quanti-

tative or dichotomous.

The first requirement for the successful use of

animal models is that the model is relevant to a given

human phenotype. Many such models now exist,

sometimes made by knocking out the mouse gene

orthologous to a known disease gene in humans, or by

making a transgenic animal containing the human

disease gene (e.g. for Huntington’s disease; Cha et al.
1998). It is remarkable that, in general, the mouse

knockout will show a phenotype change related to the

human disease. This suggests the underlying gene

networks for humans and rodents have similar weak

spots, and therefore similar structures.

Other models have been made by selective breeding,

e.g. the non-obese diabetic strain of mice (Makino et al.

1980). In other cases the model comprises an assay that

can be applied to any mouse. For example there are

numerous behavioural tests designed to measure

anxiety. One, the Open Field Test, comprises a brightly

lit arena in which a mouse in introduced and tracked

for five minutes. Since mice avoid being out in the open

in daylight this environment is potentially threatening

to the animal and therefore anxiogenic. The distance

travelled and the amount of excrement (number of fecal

boli) produced are recorded. An anxious mouse is

defined to have low activity and produce many boli. It

might be thought difficult to be certain that a mouse is

anxious, but if the animals are given a drug used to treat

anxiety in humans then their behaviour is modified in

the test, and in the expected direction, suggesting that

this (and other similar) tests do measure anxiety-

related behaviour.

Although knockouts and transgenes are very useful

models, it is obviously hard to make a knockout if one

does not know which gene to target. Random N-ethyl-

N-nitrosourea (ENU) mutagenesis screens (Quwailid

et al. 2004) have been set-up to generate mutants and

then screen them against a battery of phenotypes, but

these are only practical if the phenotype is so extreme

that is can be detected by observing a single animal, and

the mutation must be dominant. Complex diseases do

not fall into this category, and there would be a high

probability that even if the right gene was knocked out,

the affected animal’s phenotype would only differ

marginally from the wild-type; tens or hundreds of

clones of the same animal would have to be tested to see

an effect, which is not feasible when they are generated

randomly.

The International Mouse Knockout Consortium

(Austin et al. 2004) proposes a systematic programme

to make a knockout mouse for each of the ca 28 000

mouse genes. Currently, there exist mouse knockouts

for about 10% of known genes, but they are distributed

across many laboratories and not all are freely available.

This ambitious project, should it be funded, would

make a valuable contribution, but is subject to the same

problems as ENU screens—it is still not feasible to test

all knockouts against a given phenotype.
Phil. Trans. R. Soc. B (2006)
3. QUANTITATIVE TRAIT LOCUS MAPPING
As well as studying induced mutations it is possible to
examine the effects of naturally occurring variation on
the phenotype. The existence of reproducible pheno-
typic differences between inbred strains of mice has for
long been used to demonstrate the importance of
genetic effects on complex phenotypes, including those
that model human disease. Many of these are
documented in the Mouse Phenome database (http://
www.jax.org/phenome). It is on the basis of this
observation that the highly successful field of quanti-
tative trait locus (QTL) mapping is based. Here, a
quantitative trait is any phenotype measured on a
numerical scale. Most phenotypes can be cast into
a numeric form, and so are suitable for QTL analysis.
For example, we define a phenotype called EMO (for
emotionality) from the Open Field Test, as the
difference between the standardized distance and the
standardized number of faeces produced during a five-
minute observation period.

One standard design for QTL mapping is the F2

intercross. Two inbred strains, A and B, are crossed to
produce F1 progeny. All the pairs of homologous
chromosomes comprise one A and one B chromosome.
The F1 are then intercrossed to produce an F2

generation. Meiosis will ensure that each chromosome
is a mixture of A and B, with roughly one cross over per
chromosome. About 200 F2 animals are phenotyped,
and their DNA genotyped using around 100 markers
distributed evenly across the genome. The approximate
locations of quantitative trait loci are determined by
looking for association between the phenotype and the
marker’s genotypes. The F2 intercross is simple yet
extraordinarily powerful at detecting QTL. Over 2000
QTL for a wide variety of traits are recorded in the
mouse genome informatics (MGI) database (www.
informatics.jax.org).

The difficulty with this experimental design is the
lack of mapping resolution. By increasing the number
of animals, it is possible to increase resolution but tens
of thousands of animals would be required to obtain
mapping resolution down to a single gene, which is the
ideal.

In fact, the problem of how to narrow QTL intervals
is a major challenge, analogous to the problem in
human genetics of proceeding from a broad linkage
peak to the gene. In only a handful of cases has the
responsible gene been cloned, and moreover these
cases are all very unusual in that they involve a QTL
explaining over 15% of the total phenotypic variance.
The average detectable QTL explains about 5% of the
variance. Hence, we need high resolution mapping
methods that work for small-effect QTL. This problem
has now become very serious; we are detecting large
numbers of QTL but cloning hardly any genes (Flint
et al. 2005).

The source of the difficulty is that each F2

chromosome only contains about one recombination
event. Adding recombination by intercrossing for more
generations—the Advanced Intercross (AI)—is one
solution (Darvasi & Soller 1995). AI mice have
genomes that are a finer-grained mosaic of the two
founders, A, B, say. The degree of mosaicism increases
with the number of generations in the intercross.
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A generalization of the AI is the Heterogeneous Stock

(HS; McClearn et al. 1970). HS are descended from
eight founder strains, which are mixed together by a

series of intercrosses, and then the population is
maintained in a semi-random mating scheme for

many generations until the genomes are random
mosaics of all eight founders. The advantage of the

HS over the AI is the increased genetic diversity.
However, mapping in an HS is more complicated than

an AI because there are eight possible haplotypes at
each locus, and so single marker association mapping

does not work well; most markers cannot distinguish all
eight strains and of course diallelic SNPs only

distinguish two. Consequently, if a QTL is caused by

a variant which separates the four strains A, B, C, D
from the remaining four E, F, G, H but the nearest

markers happen to distinguish A, B, G, H from C, D,
E, F, then there will be no power to detect the trait

locus using single-marker association.
The solution is to perform a multipoint analysis

where more than one marker is considered at a time
(Mott et al. 2000). The data can be thought of as a

hidden Markov model, in which the observed data are
the genotypes at a sequence of markers, and the hidden

states are the underlying founder strains. The objective
is to calculate the probability that an individual is

descended from a particular pair of founders at a given
locus. We use these descent probabilities to estimate

the phenotypic effect attributable to each founder at the
locus. If these effects are significantly different from one

another then there is evidence for a QTL.
The mosaic structure of AI and HS means that

much greater mapping resolution is possible, provided
a sufficiently dense set of markers (200–300 kb apart) is

used. Mapping accuracy to under a centiMorgan is

achievable, and although this is much better than the
typical F2 resolution of 20 cM, it is not sufficient to

identify a single gene. There are, on average 10 known
genes per Mbp in the mouse and 1 cM is approximately

2 Mbp, although the mapping between physical and
genetic distance is highly variable, with the presence of

recombination hotspots and cold spots. Therefore, we
must expect that HS mapping will only provide us with

a menu of genes for further analysis. For this task one
must either systematically examine each gene, a very

arduous task, or move to a system with an even higher
density of recombinants.

The key is to use a population of mice that have been
maintained in a large mating population for many

generations. HS are typically maintained in a popu-
lation of 40–50 mating pairs. Computer simulations

suggest that if an HS were maintained with 100 pairs
then mapping resolution would be much greater.

However, since this takes time and money, we

investigated the potential for gene mapping of a
standard commercial outbred population called MF1.

The ancestry of MF1 is not known for certain, but we
were able to show by sequencing that the MF1

genomes closely resemble an HS but with a much
higher degree of recombination. Hence they could be

analysed in the same way, and we were able to map a
QTL for behaviour to a resolution of about 100 kb

(Yalcin et al. 2004b).
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Use of outbred populations like MF1 promises
much. However, it is important to demonstrate first
that their genomes really are mosaics of other standard
strains. The issue becomes even more important with
so-called in silico mapping.

In silico mapping (Grupe et al. 2001; Pletcher et al.
2004) uses a panel of standard laboratory strains to
map QTL. The idea is to measure the phenotype on
each strain, using replicates if necessary to reduce the
variance attributable to experimental error. The strains
are genotyped across the genome using a dense set of
markers. QTLs correspond to loci where the strain
distribution patterns of genotypes and phenotypes are
correlated. Strong claims have been made for in silico
mapping (Grupe et al. 2001), which have been
contested by others (Darvasi 2001). One key question
depends on the ancestry of the inbred strains and the
effect it has on the pattern of haplotype sharing. The
assumption behind in silico mapping is that the
genomes of the inbreds are ultra-fine mosaics of a
smaller number of shared haplotypes. Consequently by
genotyping markers at sufficient density one can infer
the genotypes at any intermediate ungenotyped variant
with high certainty.

This assumption is the mouse equivalent of the
human common disease–common variant hypothesis.
Is it true? Studies where inbreds have been resequenced
at a number of loci (Frazer et al. 2004; Yalcin et al.
2004a) indicate that, rather than sharing haplotypes, it
is better to think of the relationship between inbreds as
a mosaic of phylogenetic trees rather than haplotypes.
Locally, almost all variants are consistent with a
particular tree, i.e. the strain distribution pattern of
the variant is consistent with a single mutation arising
on the tree. Variants with the different strain distri-
butions coexist on the same tree, giving rise to patterns,
which can appear random when the data are analysed
for haplotype sharing. The tree topology changes along
the genome. It is not yet clear how variable the tree is,
but this will be known soon now that dense genotype
sets of inbreds have become available (see e.g. http://
www.well.ox.ac.uk/mouse/INBREDS/).

A second question is how many distinct strains are
required for in silico mapping. There is no consensus on
this question, with estimates for the minimum number
of useful strains ranging from 8 to 100. With a smaller
number of strains there is a greater chance that ‘ghost’
QTL may occur, where by chance unlinked loci have
very similar strain distribution patterns yet only one
contains the functional variant. Further, the mapping
resolution should be less with a smaller number of
strains. In silico mapping appears to be most useful in
conjunction with standard QTL mapping strategies
such as the F2 cross, where it can be used to refine a
QTL detected in the cross, for instance by identifying
regions of the genome identical between mouse strains,
and which therefore cannot contain a functional variant
(Cervino et al. 2005).

QTL mapping using Recombinant Inbred Lines
(RIL) is superficially like in silico mapping, but RIL are
uncontroversial. RIL are made by intercrossing two
inbred lines to make a standard F2 population, then
breeding a number of inbred lines by repeated brother–
sister matings for about 20 generations. The resulting

http://www.well.ox.ac.uk/mouse/INBREDS/
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lines are mosaics of the two founder strains. They can
be used for QTL mapping using the in silico method.
The difference is that with RIL there is no doubt as to
the ancestry of the strains; one knows for certain only
two haplotypes are present so one can interpolate
between markers with great certainty. One cannot do
this with the standard inbred strains. Ideally, for in silico
mapping one needs to resequence the strains. There-
fore it is especially welcome that the National Institutes
of Environmental Health Sciences has begun partial
resequencing of 15 common strains (http://www.niehs.
nih.gov/oc/news/micedna.htm) using microarrays. The
cost of resequencing is falling with new technologies, so
it is likely that all standard strains a will be resequenced
eventually.

The problem with current RIL panels is their
relatively poor mapping resolution, approximately
equivalent to an F2 intercross. By contrast, if in silico
mapping can be made to work reliably, it promises
much higher resolution because of the higher density of
recombinants. Again, the comparison with human
genetics is helpful—showing that standard mouse
strains are in effect mosaics of each other is equivalent
to showing the haplotypes found in humans are
mosaics of a small number of blocks. The evidence
thus far suggests that the haplotype block view of the
mouse and human genomes is not the complete
picture, although it captures some of the structure.

The Complex Trait Consortium (http://www.com-
plextrait.org) has proposed making a new panel of 1000
RIL, descended from eight founder strains (Churchill
et al. 2004), somewhat like the HS. Simulations
indicate that one advantage of this panel would be
much improved mapping resolution—down to 0.5 cM
(approx. 1 Mb)—although even this resource would
not deliver single gene resolution, for which one
requires a resolution of about 100 kb.
4. CONGENICS AND CONSOMICS
Congenics are still a mainstay of fine-mapping QTLs in
rodents. By repeatedly backcrossing one strain onto
another, it is possible to create animals with a genomic
region that contains a QTL from one strain and the
remainder of their genome from the other; subsequent
intercrossing makes the genomic segment homozygous
and the mouse fully inbred. Congenics are used to
refine an interval containing a QTL until, in theory, it
only contains a single gene. However, inadequate or
incorrect assumptions about the distribution of
chromosome segments, the population structure, the
marker spacing and the selection strategy may mean
that the breeding does not go as predicted (Visscher
1999). Moreover, attempts to refine QTL identified in
(say) F2 crosses have frequently shown the QTL split
into sub-QTL. There are now a large number of
examples of this phenomenon, including QTLs
influencing seizures (Legare et al. 2000), obesity
(Stylianou et al. 2004), growth (Christians & Keightley
2004), blood pressure (Frantz et al. 2001; Alemayehu
et al. 2002; Garrett & Rapp 2002a,b; Ariyarajah et al.
2004), diabetes (Podolin et al. 1998), antibody
production (Puel et al. 1998) and infection (Bihl et al.
1999).
Phil. Trans. R. Soc. B (2006)
Consomics, also called chromosome substitution
strains (CSS), are congenics where one entire chromo-
some is derived from one strain and the remainder from
another. QTL mapping occurs by the relatively simple
process of comparing the phenotypes of each strain
with the parental background strain. CSS were first
used to map QTL in mice in 1999 (Matin et al. 1999);
theoretical aspects were described four years ago for
mice (Nadeau et al. 2000), and more recently for rats
(Roman et al. 2002; Cowley et al. 2004). The method
has a long history in plant (Law 1966) and Drosophila
genetics (Caligari & Mather 1975). The first complete
CSS set, created from A/J and C57BL/6 strains, was
produced earlier this year and used to detect QTLs
across the mouse genome (Singer et al. 2004, 2005).

The ease of QTL detection using CSS follows from
two features: first, the background genetic variance is
reduced so each QTL explains a greater proportion of
the total phenotypic variation. Second, a lower
significance level is needed for QTL detection because,
compared to the 100 odd markers tested in an F2, only
21 comparisons need be made. Singer and colleagues
point out that the F2 intercross requires at least 35%
more animals for QTL detection (Singer et al. 2004,
2005). Nevertheless, Belknap estimates that to detect a
6% QTL with 50% power will need 20 CSS and 20
parental animals for each comparison; or between 3
and 400 animals (depending on how many background
animals are used) for a genome scan (Belknap 2003).
That number agrees with the actual figure of 435
animals used to map QTLs in the first mouse CSS
experiment (Singer et al. 2004, 2005). Note that this is
not a substantial saving on the numbers used for an F2

intercross.
A comparison between parental and CSS strains will

only map a QTL to a chromosome. For higher
resolution mapping, CSS allow the rapid creation of a
congenic, either by interval specific congenic strains or
recombinant progeny testing (Darvasi 1998). Because
of the relative increase in effect size, congenic
construction and recombinant progeny testing will be
easier and require 3–4 generations to reduce the
interval to 1 cM, rather than the 9–10 generations
required when starting from an F2 intercross (Belknap
2003).

QTL mapping in a CSS delivers researchers faster to
the same, point that classical strategies have led them,
but no further. The main drawback of the method is
that it makes no allowances for the fractionation of a
large QTL effect into many smaller effect loci. This is
the problem that has for so long beset the use of
congenics for QTL dissection and gene identification.
CSS mapping is a powerful method for the identifi-
cation of small effect QTL, but it does not offer
advantages over other methods for the identification of
genes.
5. QUANTITATIVE COMPLEMENTATION
How do we confirm that a gene is a quantitative trait
gene (QTG)? At best, QTL analysis finds regions
which will contain only a handful of genes, and at
worst, several hundred. It has proved very difficult to

http://www.niehs.nih.gov/oc/news/micedna.htm
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move from QTL to gene unless the QTL contains only
one gene.

To make matters worse, there is no consensus on
how much proof is required, although proposals have
been made (Abiola et al. 2003). In Mendelian diseases,
it is often the case that the identified variant also
disrupts gene function, either by deleting part of a gene
or causing premature termination of the transcript, and
so the problem is non-existent. For complex traits the
causal variant may lie outside of the gene in a control
element, and have a subtle effect on gene expression or
on splicing. Therefore, the end game in complex
disease mapping is doubly hard: there may be several
variants with equal claim to be the quantitative trait
nucleotide (indeed there may be more than one) and it
is not clear on which gene(s) the variant(s) acts. It is
common for a QTL identified as a broad peak in an F2

intercross to fractionate into several smaller peaks when
mapped at higher resolution. The effect attributable to
each sub-QTL will be smaller which makes the
mapping harder.

The gold standard would be to show that mutating a
single nucleotide on an otherwise unchanged genetic
background causes the change in phenotype, but
chromosomal engineering is extremely time-consum-
ing and expensive. Instead, a number of other criteria
have been adopted. A list of 20 ‘cloned’ quantitative
genes is listed in (Flint et al. 2005). The weight of
evidence in favour of each gene varies considerably. For
instance, Ferraro and colleagues propose kcnj10 as the
gene at a seizure susceptibility locus on the basis of
finding sequence variants in coding regions and gene
expression in the relevant tissue, but have to consider
data for 120 genes within the critical region (Ferraro
et al. 2004); Shirley and colleagues apply similar criteria
for the candidacy of Mpdz, but have a much smaller
interval, with only three known and three predicted
genes to validate, and so are able to make a more
convincing case for gene identification (Shirley et al.
2004).

Here we discuss one promising method called
quantitative complementation (QC) to test if a gene
is functional, and which is applicable to any gene. QC
originated in work on the fruit fly Drosophila (Long et al.
1996). The idea is to look for an interaction between
the gene to be tested and the variant causing the trait
variation. It does not require one to know where the
variant is on the genome.

The experimental design requires the offspring from
four crosses. An inbred animal bearing one QTL allele
(for example ‘high’) is mated to an inbred animal with a
null allele of the gene of interest (‘m’) and also to the
co-isogenic wild-type animal (‘wt’). A similar pair of
crosses is established, but this time using an inbred
strain with the alternative QTL allele (‘low’). If the
difference in mean phenotype between the high/m and
low/m genotypes is greater than that between the
high/wt and low/wt genotypes then we have evidence of
quantitative failure of the mutation to complement the
QTL alleles. This is detected as a statistical ‘Cross’ (m
or wt) by ‘Line’ (high or low) interaction in a two-way
analysis of variance.

One interpretation of a significant interaction is that
the expression of the wt (i.e. functional) gene is
Phil. Trans. R. Soc. B (2006)
modulated by a QTL allele on the homologous
chromosome. It should be noted that the test does
not implicate any particular QTL, which could be
anywhere on the genome where the high and low
strains differ. Furthermore, a negative result is not
conclusive, since it could mean either the gene is not
under the control of a QTL or that the gene is under
the control of a nearby QTL allele on the same
chromosome.

QC tests need co-isogenic wild-types, which can be
difficult to obtain in mice. Knockouts created in a 129
strain are usually backcrossed onto a different strain
(typically C57BL/6) so that often no pure co-isogenic
wild-type is available. However when the experimenter
has only the hybrid to work with, the problem of mixed
background can sometimes be overcome by taking
advantage of the mosaic nature of the mouse genome:
some regions of the 129 strain will be identical to the
strain onto which it has been backcrossed. Where the
targeted region occurs in such a region (or in a region
which is known from genetic crosses not to carry QTLs
that influence the trait of interest), and the rest of the
129 strain has been removed by repeated backcrossing,
then it should be possible to find an appropriate co-
isogenic wild-type. For example, by extensive re-
sequencing of the 129, C57BL/6J and DBA/2J strains,
we showed that inbred C57BL/6 could be combined
with a targeted mutation of the rgs2 gene in a QC test
(Yalcin et al. 2004b). This arduous task can be avoided
in the future once the relevant strains have been fully
resequenced. Alternatively, knockouts could be made
and maintained on a single background or obtained by
screening the DNA of mutagenized inbred mice
(Coghill et al. 1999).
6. DISCUSSION
The great strength of genetic mapping is that it treats
the organism as a black box: the method seeks to find
those DNA variants that are highly correlated with the
trait variation. No assumptions are made about the
biology that links the DNA to the trait. Therefore, it is
ideal for the genetic dissection of complicated traits
such as behaviour. However, viewed from another
standpoint this is also the method’s weakness—it may
tell us which variants are functional, but not how. In
fact it need not even tell us which genes are involved,
since the functional variant may be distant from the
gene on which it acts, and even lie within the intron of
another gene.

Unfortunately our current understanding of gene
function is too limited to let us predict a priori which
genes are involved with a particular trait, and educated
guesses based on gene expression or other functional
data are not much better. While the state of genome
annotation could definitely be improved, even if all
genes were fully annotated using all the information in
the published literature, our knowledge would still be
incomplete.

One problem is that it is misleading to think of a
gene as being for something; in reality many genes will
influence a trait, and a single gene will influence many
traits.
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Systems biology may be defined as the study of the
web of gene interactions, and is a better way to think
about gene function. However, current studies using
gene expression and protein interaction data, while a
leap forward, are still incomplete and approximate. It is
not yet clear how to integrate all the data together to
produce a model of the cellular machine.

There has been some debate on the best strategy to
dissect gene networks. At the risk of painting a
caricature, protagonists of the old-fashioned gene-by-
gene approach would maintain that it is better to know
a small number of big truths than a large number of
small ones. Therefore, it is better first to identify
individual genes of large effect in a genome scan and
then work into the network by looking for interactions
with those genes, and so on. The alternative view
embraces complexity, and looks for clusters of genes
with correlated patterns of expression, ignoring the
individual effects of genes on the phenotype. The task
then is to determine which genes are causal to the
phenotype and which are merely correlated with it
(Ghazalpour et al. 2005; Schadt et al. 2005).

Can genetics help? One way to predict locus–locus
interactions might be to search for epistasis, by which we
mean two loci whose joint effect on the trait is
significantly different from the sum of the individual
locus effects. Recent studies have indicated that epistasis
may be common, particularly in developmental traits
(Carlborg & Haley 2004), although there is less
evidence for epistasis in behaviour (Flint et al. 2004).

Another recent development has been the use of RIL
panels to map QTL where the phenotype is the
expression level of a gene (called an eQTL), deter-
mined from a series of microarray experiments applied
across the RIL panel. There is an eQTL that maps
close (given the achievable mapping resolution) to the
corresponding gene in about 60% of the genes surveyed
(Doss et al. 2005). However, there are also a number of
loci that affect the expression of many genes. These are
most likely transcription factors. Thus one can begin to
construct a gene interaction network from this type of
experiment (Chesler et al. 2005).

In his Nobel Lecture Sydney Brenner (2003) wrote:
Phil. T
My second gedanken project is called Humanity’s

Genes. It arose in my mind during a discussion of a

proposal to take the inbred lines of mice, and extensively

intercross them to generate 30,000 different mice

representing different mosaics of the initial gene pools.

Specially trained mouse phenotypers would then

analyse the physiological properties in these mice and

correlate them with their individual genomes. Unfortu-

nately, the latter is the difficult task, as today there is no

reasonable technology that can achieve this in any

depth. However, suppose technology existed which

made it easy to characterize 30,000 genomes, perhaps

even to the point of resequencing them, would we bother

to do this work with mice? We could go directly to

humans, where we already have large numbers of diverse

genomes, with skilled and expensively trained pheno-

typers, called doctors, studying them. Thus, since the

technology does not exist, it now needs to be invented to

provide the means of accurately analyzing large

populations of genomes for detailed studies of natural

human genetic variation and its correlation with
rans. R. Soc. B (2006)
phenotypes of health and disease. I believe that this

will be the major challenge in human biology and

medicine in the next decade. I am convinced that we will

make our significant discoveries in humans and that the

mouse will be used to validate the human findings by

genetic synthesis, much in the same way as the chemist

confirms a structure analysis by chemical synthesis.
At first sight this argument may seem persuasive, but
the problems we have described that confront human
association studies may limit the effectiveness of a
research programme based entirely on the observation
of patients under uncontrolled environmental con-
ditions. Present efforts to integrate clinical work with
human genetics (the so-called Genetics Knowledge
Parks) are in their infancy. While they promise much,
there are considerable ethical, technological and
sociological issues to be addressed. Patients may give
limited consent to permit their medical records and
DNA be analysed, but it is harder to imagine that the
majority of healthy individuals would be prepared to act
as guinea pigs and permit the level of detailed and
repeated measurement possible on animal models, in a
controlled environment. On the other hand, it is now
clear that very large sample sizes are required in order
for association studies on humans to succeed, so we
may require something of equivalent scope and
ambition.

While there are no serious proposals to make 30 000
mosaic mice, there are plans underway to make up to
1000 (Churchill et al. 2004). The statistical methods
required to analyse mosaic mice exist and have been
used successfully in the analysis of HS and other
outbred stocks (Mott et al. 2000). The Complex Trait
Consortium (www.complextrait.org) has already begun
breeding the first few hundred lines, which should be
available for use by about the year 2010. Simulations
indicate that even a modest set of 100–200 lines would
be very useful for QTL mapping.

Finally, the clonal nature of inbred strains and
knockouts means that experiments can be repeated
under varying environmental conditions while keeping
the genetics constant. This is impossible with humans.
Thus it may be the case that the mouse will be the
primary tool to discover the genes underlying complex
disease, and candidate gene studies in humans used as
a follow up to confirm the findings. It is also important
to recognize that, even when a disease-predisposing
allele has been found, turning this discovery into a
therapy will require us to understand the underlying
molecular biology. For ethical reasons it is not usually
possible to use living human subjects, but requires
extensive use of cell lines and animal models. Therefore
the combination of comprehensive panels of mouse
knockouts and mosaics will be extremely powerful in
answering a wide range of medical and biological
questions.

In summary, I have presented a comparison of the
achievements and prospects for complex disease
mapping using human and mouse genetics, emphasiz-
ing the parallels and differences. Both fields are facing
difficulties when applied to complex diseases, but the
mouse has a wider range of resources, despite being
hampered by relatively low funding compared to

http://www.complextrait.org
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human genetics. Most probably a combined approach
of mouse genetics and transcriptomics together with
studies involving humans will yield the fastest progress.
The point is that the tools to do this work are either
available now or under development. All that is
required is the vision, cooperation, energy and money
to use them wisely.

This work was funded by a grant from the Wellcome Trust. I
thank Jonathan Flint for helpful comments on the
manuscript.
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