Information Sharing and Interaction in Collaborative Convergence

Daniel Suthersa, Ravi Vatrapub, Richard Medinac, Nathan Dwyerd

a,b,c Dept. of Information and Computer Sciences, University of Hawai‘i at Manoa, USA
d SRI International, USA (affiliation to begin June 2007)
collaborative-representations@hawaii.edu

Abstract: In multiple research literatures, successful collaborative problem solving and learning is analyzed in terms of success of information sharing. In this paper we report analyses of an experimental study that bring the sufficiency of an information sharing account of collaboration into question. One treatment group achieved greater convergence and integration of information in their handling of a complex problem, yet this same group shared less information in a hidden profile design. An additional analysis was conducted to assess whether interaction beyond information sharing accounts for the convergence and integration. The pattern of convergence is more closely mirrored by interactivity quantified as the number of “round trips” addressing the same information items.

Keywords: Collaborative learning, information sharing, interaction, convergence

1 Introduction

A central tenet of much research on group problem solving and learning is that information sharing is the primary operative mechanism of effective group performance. For example, an influential theory of linguistic communication is concerned with the process by which interlocutors verify that they have successfully shared information [3]. In social psychology, a major (and productive) research strategy is the “hidden profile” [13] in which information is distributed across participants and then group processes are tracked and evaluated in terms of how this information is shared. Common findings include the failure to share information and the failure to use information effectively once it has been shared [4]. Dennis states, “In order to reach a group decision, participants engage in three activities simultaneously ….: information recall …., information exchange …., and information processing …. ” Thus, collaboration is characterized primarily in terms of the movement of pre-existing information between cognitive agents so that it may be properly assembled and evaluated. Similarly, Pfister (2005) states, “going from unshared to shared information is the gist of cooperative learning.” This statement presupposes that information exists that is first unshared, and then it becomes shared. Once this pre-existing information is shared, the important work of cooperation has been done. The focus is on the movement of information between individuals, but we might also consider how information is constructed in the interaction between individuals. Fischer and Mandl (2005) found that the relationship between information sharing during collaboration and individual learning outcomes is not correlative. Their results suggest that information sharing does not sufficiently explain outcome measures of convergence, although differences were seen between factual and “application oriented” information. The present paper also questions the adequacy of information sharing as the basis for understanding collaborative outcome.
The analyses presented in this paper were motivated by an interesting combination of empirical results obtained in an experimental study that was based on the hidden profile paradigm [17]. Pairs in one treatment condition performed better on measures related to collaborative knowledge construction: integration of multiple sources of information and convergence on similar solutions. From this, one would expect that the pairs in this treatment condition also shared more information. Problematically, the treatment conditions did not differ in information sharing as evidenced by the information that participants referenced in their essays, nor on their memory for facts one week later. Those results were based on measures of the products of the experimental sessions (essays and a post-test): more direct measures of information sharing were needed. For this, we turned to a different source of data: the session logs.

In the follow-up study reported in the present paper, we measured the information sharing that took place in the sessions by tracing information that was given to only one or the other participant at the outset. Surprisingly, we found that pairs in the higher performing condition shared less information in the session: a serious challenge to the information-sharing explanation of group performance. An alternative explanation was needed, for which we turned to interaction. In information sharing, a participant expresses something in some medium and this expression becomes available to another participant. The smallest way in which interaction can go beyond this basic act is a “round trip” of uptake: the second participant takes up that which was expressed by the first participant by forming a new, related expression, which then becomes available to the first participant. Accordingly, we measured interaction in terms of these round trips. By this measure, participants in the condition that converged more, yet shared less information, interacted more than participants in the other conditions. The incongruence of the information sharing along with the congruence of round trips and other measures to be discussed suggests that it is worth examining the practices by which participants integrate multiple sources of information and converge on common solutions.

The remainder of the paper serves to provide the reader with a more detailed account of how the results were obtained. First we briefly review the experimental context in which this work was done, and summarize the pattern of results that indicated the need to conduct this follow-up study. Then we describe the two analyses of the present study: the information-sharing analysis, which showed an unexpected pattern across treatment conditions, and the round-trip analysis, which revealed a pattern congruent with the original results. We conclude with a discussion of both theoretical and methodological implications.

2 The Original Study

The original study was designed to test the hypothesis that conceptual representations (such as evidence maps) more effectively support collaborative knowledge construction than threaded discussion taken alone. Three software environments were constructed to test this hypothesis. (This is not a study of an applied “system”: the software existed to conduct the research.) A threaded discussion software environment, called “Text,” provided the control condition. Since the viability of the hypothesis may be sensitive to the implementation chosen, two software environments represented the treatment condition: “Graph,” in which all interaction took place in an evidence map with embedded notes; and “Mixed,” in which an evidence map was used alongside a separate threaded discussion with a mechanism for referencing components of the graph. The present paper is concerned with how well information sharing and interaction account for a pattern of results found in the prior study, rather than with the specific questions addressed by that
study. We refer the reader to [17] for details of the study design, but summarize here enough for the reader to understand the source and nature of the data.

2.1 Method

Pairs of participants who were already aquatinted with each other were recruited from introductory natural science courses and assigned to one of three conditions (Graph, Mixed, Text) in a manner that was gender-balanced but was otherwise randomized. The groups were statistically equivalent on academic grade point average and standardized test scores. There were 60 participants forming 30 pairs, with 10 pairs in each of 3 treatment conditions. They were paid $50 US for their participation.

The software for the three conditions was designed with an asynchronous update protocol to simulate asynchronous interaction common in online learning [10]. An action taken by one participant did not appear in the other participant's workspace until after the receiving participant “took a break” by playing a game of Tetris™.

Materials were prepared based on the literature concerning a complex public health problem: the disease known as “ALS-PD” that historically occurred in the native population on the island of Guam. The materials suggested 5 distinct possible causes of the disease, and provided mixed evidence for and against each cause. Relevant evidence was distributed in a hidden profile [13] such that if participants did not share any information each participant would have evidence favoring a suboptimal disease hypothesis. Sharing was required to reject these hypotheses and construct a more complex explanation. The articles included distracter information as well as relevant evidence.

Participants conducted a “warm up” problem to become familiar with the software, and then began the main problem (ALS-PD). At the outset of the main problem and after each break, each participant was presented with a set of four articles on the disease. Participants were directed to use the computer workspace to share information with their partner, and were told that this was necessary to identify the correct cause of the disease and to perform well on the essay and post-test to be given at the end. At the conclusion of their problem solving, each individual was asked to write an essay detailing the disease hypotheses considered and the evidence for and against those hypotheses, and to identify the best explanation for the disease. One week after their session, participants were directed to take an online post-test. This test included questions that tested participants' memory for distracter information, memory for relevant information, and also tested for facts that required integration of multiple items of relevant information. “High integration” questions required integration of information that occurred far apart in the materials. The questions were based on information given uniquely to one or the other participant, enabling us to assess the residue of information sharing.

2.2 Prior Results

Our analyses addressed outcomes, based on content analyses of the essays and scoring of the post-test; and session processes, based on quantitative analyses of elaboration on hypotheses. Details of these analyses are reported in [17]. The traditional criterion of \(\alpha \leq 0.05 \) is used for statistics computed to test hypotheses. However, we view probabilities as properties of the data to be reasoned about, not merely as inputs to a mechanical binary decision procedure [7]. Since this study seeks to uncover possible alternative explanations as well as test hypotheses, we report and interpret p values of 0.1 and below.
The primary result of interest was that pairs in the Graph condition were more likely to converge on the same (not necessarily optimal) conclusion than pairs in the other conditions ($\chi^2(2, N=30)=7.5, p=0.025$): see Figure 1. This suggested that Graph users may have shared more information, but analysis of essay contents did not back up this interpretation: participants in all conditions were equally likely to cite information that was originally given to their partner. Finally, Graph users performed significantly better than Mixed users on the high integration questions of the post-test ($F(2,57)=4.40, p=0.0167$), suggesting that they were able to more effectively bring relevant and distributed information together. However, comparison of participants’ performance on memory for information that they received versus memory for information given to their partners yielded no statistically significant difference, again suggesting that information sharing was not the operative mechanism. It was necessary to look at process measures.

Process analyses in the prior study used one-way ANOVAs to assess the expression and manipulation of hypotheses. Graph and Mixed users expressed hypotheses significantly earlier in the sessions than Text users ($F(2,57)=10.14, p=0.0002$), and Graph users expressed more hypotheses than Text users ($F(2, 57)=4.73, p=0.0126$). Graph and Mixed users elaborated on hypotheses significantly more than participants in the Text condition ($F(2, 57)=6.86, p<0.0021$). These analyses counted individual acts in isolation, and did not directly address information sharing or interaction. However, the individual acts were undertaken in a shared medium, so these results may be indicative of differences in interaction. Therefore, interactive measures should be examined.

3 The Information Sharing Analysis

The essays and post-test are only indirect measures of information sharing. We undertook an analysis to test the possibility that Graph participants achieved integration and convergence by sharing more information during the session.

3.1 Quantifying Information Sharing

Since our analyses are concerned with tracing out information that was uniquely provided to one or the other participant in the source materials, the unit of analysis is defined in terms of “information units” as expressed in the sentences and figures of the source materials. There are 401 total information units that were uniquely provided to one or the other participant. Figure 2 schematizes an information sharing event in terms of an “uptake graph” [15, 16]. An information sharing event consists of the sequence in which (1) Pa perceives information that had been given uniquely to him or her (only unique information is considered so that the analysis will be both possible and relevant), (2) Pa expresses that information (in this study, by posting a message in the threaded discussion or creating or editing an object in the evidence map), and (3) Pb perceives that expression. In order to count such events, we coded expressive acts that were recorded in the session logs with codes identifying the initially unshared information units that were being expressed. It was not necessary to identify what was said about the information; only that it had been expressed. We then identified when the media expression became available in the workspace of the other participant, Pb, and identified...
evidence that Pb perceived that expression. The evidence for perception involved a log file entry indicating that the object was opened (it was necessary to open threaded discussion postings or new graph objects in order to read them). The total number of such events was summed for each pair. (The dyad is the unit of all analyses.)

3.2 Results and Discussion

The 401 information units that were uniquely provided to one or the other participant define the total possible information sharing events under this analysis. Tracing through Figure 2, in order to be perceived the information must first be expressed, so we report both events in order to provide the baseline number of units available for perception. More expressions of the information units were made in the Text condition compared to Mixed and Graph conditions. Closely following this pattern, more perceptions of these expressed information units were made in the Text condition compared to Mixed and Graph conditions. These results are visualized in Figure 3. We then conducted a one-way ANOVA of perceptions of information units between the three treatment groups. The observed difference was significant \((F(2, 27)=13.54, p<0.0001)\). The Bonferroni 95% confidence interval showed that Graph had fewer information sharing events than Text.

From this analysis, it seems implausible that Graph’s convergence and integration outcomes were due to greater information sharing during the session. The distributions in Figure 1 and Figure 3 are completely different. It would have been problematic enough for an information sharing account if there were no significant differences between groups. The result that the Graph participants actually shared fewer information items than Text users is more problematic. What could Graph users be doing that led to their greater integration and convergence? Graph participants may be achieving integration and convergence through collaborative interaction, as well as individual access to the representations. We turn next to a more direct test of this hypothesis.

4 The Round Trip Analysis

“Interaction” is potentially a complex idea: it includes the basic act that we are calling “information sharing” and extends to diverse forms of discourse. To conduct a quantitative analysis we need to identify the simplest possible unit of interaction that is distinguishable from information sharing. The next interactive step that can be taken beyond information sharing is for the recipient of information to express a related idea. In this “round trip,” intersubjectivity forms: the subject has expressed and seen his or her expression interpreted by the other. Therefore we set out to define and count round trips.

4.1 Quantifying Round Trips

In general, a round trip involves the sequence of events shown in Figure 4: (1) participant Pa expresses an idea in a shared medium; (2) this expression becomes available to participant Pb, and Pb perceives the expression; (3) Pb expresses a related idea in the medium; (4) this second expression becomes available to and is perceived by Pa. In order to place this analysis on the same
foundation as the information sharing analysis, we decided to include only round trips that involved an information item that was uniquely given to the originating participant (Pa). This is not a severe restriction on our measure of interactivity: it includes most of the information that is needed to reason about the disease. There are some ambiguities in what constitutes a round trip. Suppose that more than one event of types (3) and (4) are labeled with the same topic. Are these multiple round trips, or one? We are concerned with measuring the degree of interactivity, and it is certainly more interactive if an interlocutor continues to express further thoughts on a topic than if it is addressed once and then ignored. Iterative elaboration, questioning, accumulation of evidence, etc. are good for knowledge building. Therefore, we counted each event of type (4) that accessed a new expression (3) as a new round trip. Based on this reasoning, we wrote queries on the database generated by the information sharing analysis in which we counted the events in which each participant accessed an expression (from their partner) of a topic related to information that was introduced in their own materials. We then summed the number of such events per pair, and thereby compared the average round trips between the treatment groups. Other round trips are possible involving other topics and forms of response that are not captured by our analysis. However, this analysis produces a measure that is directly proportional to the totality of interactions that involve the critical information originally given to one participant.

4.2 Results and Discussion

The results are visualized in Figure 5. More round trips were made in the Graph condition compared to Mixed and Text conditions, following the pattern of Figure 1. A one-way ANOVA on number of round trips between the three treatment groups suggests that these results are not likely if the groups were equivalent on interactivity (F(2, 27)=3.03, p=0.0648), although the pairwise differences did not fall within the Bonferroni 90% confidence interval. The combination of results—more elaboration in the graph condition, a pattern of round trips that is unlikely yet congruent with the pattern of convergence we seek to explain, and an incongruent pattern of information sharing—rules out information sharing as an adequate explanation and is sufficient to suggest that interaction is worthy of further study as the basis for knowledge integration and convergence in collaborative learning.

5 Conclusions

To summarize, in the context of a study designed to evaluate the value of conceptual representations for enhancing collaborative knowledge-building, we found greater convergence and integration in one condition, yet participant’s essays and post-tests did not differ on information that would need to be shared. Further analysis showed that participants in the higher convergence and integration condition shared less information. This result brought the adequacy of an information sharing analysis of collaborative learning into question. Alternative explanations were considered. A strong candidate is level of elaboration: the group that shared the most information elaborated on hypotheses the least. The possibility that interaction between participants is behind the convergence was also considered. An analysis of interaction operationalized as “round trips” addressing unique information items showed strong trends that call for further investigation. The
round trip is the minimal extension of interaction beyond unidirectional information sharing: it is possible that more specific forms of interaction account for the difference in convergence. Given that there were significant results in the timing and number of hypotheses expressed and the elaboration on these hypotheses, and given that essays did not differ on information they relied on, it seems reasonable to expect that interaction was not focused on the information that we traced in this analysis, but rather on the hypotheses. Therefore, further analysis should examine round trips focused on hypotheses rather than data (information units).

The study is limited in that it was not specifically designed to test the hypothesis that round trip interaction rather than information sharing causes the results, but we feel that the results are compelling enough to pursue a program of further research. Much empirical work remains focused on information sharing, while we lack an equally comprehensive research program on whether and how interaction adds value for collaborative learning beyond information sharing. Exceptions include [1, 9, 11, 12]. Some challenges face such a program within the experimental paradigm. In order to study the relative contributions of information sharing versus interaction, one must have a situation in which these activities vary. One approach would be to try to manipulate information sharing and interaction directly. Participation could be scripted [18] or otherwise modeled or constrained to require participants in one condition to share all the information given to them (but not interact), while participants in another condition are required to not only share information but also reply to each other’s contributions. A problem with this approach is the artificiality of interaction that may result from scripting [5]. Another approach would be conduct analyses of the interaction that occurs “naturally” within the settings of these experimental conditions. Analyses can correlate measures of information sharing and of interaction with the dependent variables at the smallest granularity of the pair (or group) rather than at the granularity of treatment conditions.

Practitioners of descriptively analytic paradigms can contribute to the research program by examining successful (and unsuccessful) instances of collaborative knowledge construction to identify the interactional practices by which integration and convergence are accomplished. The present study has provided a minimalist definition of a minimal unit of interaction, the round trip. It has not examined the nature of the round trip. In what way does the second participant interpret the first participant’s contribution? What are the attentional, affective, informational, and interpersonal dimensions of this interpretation [2]? How does it frame future interaction and move the collaboration forward [19]? Given a choice of semiotic resources, what affordances of the medium of interaction are appropriated to enact contributions at each of these levels? Are there regularities we can exploit in such communicative use of media [6]? Nor has it examined interactional structures larger than the round trip. How are acts of intersubjective and intrasubjective uptake composed over time, and what is accomplished interactionally through such composition? Although the empirical work of this paper is conducted within the quantitative experimental paradigm, and demonstrates how interactional variables may be utilized in such a paradigm, we believe that further interactional analysis of the type advocated by recent writers [8, 9, 12, 14] will be valuable to understand what is leading to quantitative results such as these: a dialogue between methodological paradigms is in order.

Acknowledgments
David Burger, Sam Joseph and Niels Pinkwart contributed to the design of the prior study on which this study is based. This work was supported by the National Science Foundation under CAREER award 0093505.
References

