
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
8-10 September 2003, Lviv, Ukraine

0-7803-8138-6/03/$17.00 ©2003 IEEE 236

A Tool for the Automatic Design of Electronic Control Systems and
Circuits for Manufacturing Plants

A. Lamas, R. J. Duro

Grupo de Sistemas Autónomos, Universidade da Coruña, alamas@cdf.udc.es, richard@udc.es

Abstract: In this paper we have developed a tool for
automatically designing distributed digital circuits for the
control of all the elements in a manufacturing plant.
These circuits can be implemented as traditional boards
or programmed into the controllers of the machinery
present. The tool is based on evolutionary techniques and
provides a way to obtain the best set of controllers for the
different elements in the plant using as evaluating criteria
parameters related to the global operation of the plant
and not to particular parameters of the electronic circuits
or individual controllers. These parameters may be
productivity, cost, or any other ratio having to do with the
real operation of the bussiness. In this work we have
extended the evolutionary methodologies in order to be
able to design, at the complete system level, combinations
of low level systems (digital electronic circuits) without
any direct specification of their input/output relationships
but rather taking into account the plant they are going to
be working in and the high level constraints imposed on
the whole system.
The resulting tool has been tested in a real kitchen
furniture manufacturing plant using as test bench the
lacquering line within the plant.

Keywords: - Manufacturing plant control, evolution,
genetic algorithms

1. INTRODUCTION

Traditionally the design process in the realm of
engineering of complex systems has involved a recursive
trial and error procedure with the aid of the engineer’s
experience and different CAD and simulation
applications. The more complex a design becomes, the
more difficult it is to explore all the options available to
the engineers working on it. The search space becomes
huge and impossible to explore efficiently. As a
consequence, the current design methodologies involve
the divide and conquer strategy, that is, let us divide the
design into sub-modules of reasonable complexity, design
these and hope that when they are linked together the
whole system works the way we wanted it to. The basic
premise is that we can figure out the way of linking the
modules so that they will perform the assigned task.

This approach has proven to be reasonable in most
cases, but it presents two basic drawbacks. On one hand,
it is based on the designer’s (human) perception of how
things should be. This perception is driven by experience,
intuition, but not exhaustive exploration. On the other, it
is almost impossible to optimize designs, as all non-linear
interactions are usually ignored. In fact, as Jim Torresen
indicates [1] we may very well soon see a limit in
designability. In other words, in order to make the designs
manageable to the human brain, they usually consist of
few modules with simple interactions among them. Thus
it would be desirable to take the human designer out of

the loop, or, at least minimize its participation to the
enunciation of the general specifications of the system in
order to really be able to address complex non linear
systems. Consequently, it would be necessary to provide
some other type of strategy that would allow the design
procedure to become completely automated.
Several authors in the literature have identified this
problem and provided conceptual solutions for limited
domains. In the late eighties and early nineties some
authors, such as Harvey et al. [2], Cliff et al. [3] and Beer
and Gallagher [4] proposed artificial evolution as a means
to automate the design procedure of these types of
systems, leading to the concept of Evolvable Hardware,
introduced by Higuchi [5]. The basic idea of this approach
is to decide on the input/output relationships in our
system, provide some building blocks and let a genetic
algorithm or some type of evolutionary strategy come up
with a composition of these building blocks which
minimizes the error for this training set. One of the fields
where these concepts have been extensively applied is
that of electronic circuit design. Many authors have
resorted to the specification of the required electronic
circuit as a set of input/output pairs and through
parameters controlling FPGAs (Field Programmable Gate
Arrays) or some other type of electronic structure
proceeded to evolve the optimal circuit. Examples of
these are the digital filter design system by Miller [6], the
Adaptive Equalizer by Murakawa [7] or the
methodologies by Lohn et al. [8] or the one by Torresen
applied to a prosthetic hand [9]. Even though these
approaches have been highly successful, they do not
address the main problem of automatic design in complex
real manufacturing plants and that is that, in general, in a
real plant, there will coexist several electronic systems
combined with other types of actuators and sensors and
the input/output pairs, that is, the information one has on
the plant will be for the whole combination of systems. In
fact, these input/output pairs will make no reference to the
variables one would like to handle at the electronic circuit
level (voltages, currents, activations, etc…) but rather
they will refer to ambiguous terms such as productivity,
costs, breakdowns, pile ups, etc…The real plant designer
works, at the plant level, with concepts like increasing
productivity while minimizing breakdowns and avoiding
pile ups at the inputs of certain machines, taking into
account that cost is an additional variable.

In this work we have extended the evolutionary
methodologies in order to be able to design, at the
complete system level, combinations of low level systems
(digital electronic circuits) without any direct
specification of their input/output relationships but rather
taking into account the plant they are going to be working
in and the high level constraints imposed on the whole
system.

 237

Horno Tapete Rodillo

sensor 3 sensor 2 sensor 1

Horno Tapete

sensor 4

OVEN

Chain
Roller Input Conveyor Belt

Output Conveyor Belt

Fig. 1 – Diagram of the plant that must be controlled.

2. METHODOLOGY
The work is based on the ability of evolutionary

systems to obtain optimal structures through the use of
imprecise fitness functions. These functions need not
provide an exact measure of the optimality of the system,
but just a relative indication of how well it is performing
with respect to the other systems in the population.

The basic idea in this work is to introduce as fitness
evaluator in the evolutionary system a simulator of the
whole plant that provides a simulation of the operation of
combinations of individuals under different load
conditions and provides a fitness value at its output that is
related to the high level system constraints we mentioned
before (productivity, energy cost, etc…). This approach,
as anyone who has used plant simulators knows may be
very computer resource consuming, but as we are using
standard simulators and the brunt of the processing is
taken up by the simulation stage we can distribute the
simulation tasks in a cluster of computers and thus
achieve reasonable execution times.
In this particular case we will be evolving digital
electronic circuits made up of logic gates and flip flops so
that temporal aspects of the sensor signals can be taken
into account. The inputs to the circuits will be the data
coming from the sensors positioned throughout the plant
or production line to be controlled. The outputs to the
circuits will act on certain control points modulating the
activities of different machines, conveyor belts, and chain
rollers in the line.
The evolutionary algorithms operate over variable length
chromosomes and the encoding they contemplate is not
direct, as is traditional in genetic algorithms, but rather,
we encode the construction of binary trees. Thus, we
provide certain discrimination between the genotype and
phenotype. All the circuits will correspond to a tree per
output where the root is the output and the nodes as we
branch out correspond to the different digital elements
(nand gates, type D flip flops, etc.) participating in the
structure of the circuit. Obviously, there will be one tree
per output, that is, there will be one tree per element to be
controlled or modulated. There is no restriction on the
number of inputs a given circuit may use in order to
achieve the appropriate values for its outputs. It can

choose to use all the possible inputs, just one of them or
any number it requires.

The genetic operators employed by the evolutionary
system correspond to traditional operators adapted to the
peculiarities of binary tree type phenotypes. These
operators act over the phenotype. In the case of the
crossover operator, it will take portions of two parent

0

0,1

0,2

0 50 100 150 200 25 0 300

generation

F
itn

e
ss

 o
f b

e
st

 in
d

iv
id

u
a

l

0

0,1

0,2

0 50 100 150 200 25 0 300

generation

A
ve

ra
g

e
 F

itn
e

ss

Fig. 2 – Maximum and average fitness of the population

throughout the evolution process.

 238

trees and join them together into an offspring. The
mutation operators will change node values and add or
delete subtrees or connections.

1 0

2 0

3 0

0 50 100 1 50 20 0 250 3 00 35 0

ge neration

M
a

xi
m

u
m

 n
u

m
b

e
r

o
f

b
lo

ck
s

0

1 0

2 0

3 0

0 50 100 1 50 20 0 250 3 00 35 0

ge neration

A
ve

ra
g

e
 n

u
m

b
e

r
o

f b
lo

ck
s

Fig. 3 – Maximum and average number of blocks that

make up the individuals in the population throughout the
evolution process.

In order to evaluate the resulting individuals using
fitness measurements corresponding to the operation of
the whole plant or line it is necessary to evaluate the set
of controllers acting on the plant or a simulation of it for
different conditions of workload and environment. To
achieve this objective, we run simulations of the plants
for which the circuits are being developed on Extend
(production plant simulator) and provide different sets of
workloads to the plant so that we can evaluate the global
parameters to be taken as fitness in each case in a reliable
manner.

This is obviously the most computationally intensive
operation of the system. Each individual in the genetic
population must be evaluated each generation of
evolution. To make the system viable in normal situations
the whole evolutionary tool was programmed in a
distributed manner using MPI (message passing interface)
libraries so that the evaluations could be distributed
among a cluster of computers.

3. EXPERIMENT
In this particular problem we want to control a plant

for a drying oven that takes boards of arbitrary size that
have undergone a lacquering operation. As shown in Fig.
1 the ensemble is made up of two conveyor belts, a chain
roller and an oven. The oven has a fixed load/unload
sequence and can accept up to fifty sets of boards. There
are four sensors, located as shown in Fig. 1 by the red
squares and the objective is to obtain three electronic
circuits that control the two conveyor belts and the chain
roller and provide for the best global productivity without
any pile-ups or unnecessary waits. This is, we want
optimal productivity given the constraints of the oven
with minimum energetic expense. It is important to note
here that when the sequencing of the operations of the
different elements is not perfect a pile up of boards may
occur when the oven is not ready to accept inputs. This
pile up is very costly as the plant must be stopped, the
piled up boards taken out manually and thrown away.
Consequently, this event must be avoided at all costs. In
fact, this is the reason the company that runs the plant
consulted us. They could find no way of avoiding pile ups
without having to resort to very slow speeds and
consequently lower productivities.

This plant will be controlled through the actuation
over the speed of the two conveyor belts and the input
chain roller. The three controllers will be three sequential
digital circuits whose inputs are any or all of the four
sensor values (chosen by the automatic procedure) and
their outputs the speed actuation commands to their
respective belts or roller. We allow the evolutionary
system to make use of nand gates and type D flipflops.
The sensors are infrared sensors that detect the presence
or absence of a board beside them.

As commented in the methodology section, the GA
accepts variable length chromosomes encoding the three
circuits that are needed. The encoding corresponds to a
binary tree representation, as each one of the nodes
participating in the circuits (in this case we have
constrained the possible elements to nand gates and type
D flip flops) present two inputs and one output. The
leaves of the tree are the sensors and the root node
corresponds to the output of the circuit.

The fitness of each chromosome was obtained by
creating the circuits (phenotype) it represents, introducing
them in a model of the plant implemented in Extend
(standard manufacturing plant simulator) and running a
set of simulations with different sequences of boards.

The fitness function for each individual evaluates the
weighed sum of three factors where we included:

• The energy used by the motors that control the

oven input and output transports. The energy
consumed is calculated as the average value of
the difference between the speeds and their
minimum value.

• The delays induced in the unload operation of
the oven when the output transport is busy and in
the load operation of the oven when the input
transport is busy.

• The productivity of the line.

 239

Fig. 4 – Left, circuit after generation 120. Right, circuit after generation 160.

Table 1. Some data on the performance of the resulting circuits

Generation Individual Producti-
vity

Pile ups
Unloading

Pile ups
loading

Energy
input
belt

Energy
input
roller

Energy
output

belt

Nand
gates

Flip-
flops

111 300 111 0 0 0.815 2.13 3.49 8 4
360 300 111 0 0 4.5 1.13 5.4 1 0

The population employed was 300 individuals and we

have considered 1% mutation probability. It was observed
that evolution progressed much better if no restriction was
initially placed on the size of the circuit until good
solutions were obtained. From that point on smaller
circuits with equal or better fitness were prioritized. In
addition to using the fitness function to establish this
priority, we introduced a bias in the mutation operator. In
Fig. 2 we display the evolution of fitness for the best
individual and the average fitness of the population
during the automatic design process. Fig. 3 depicts the
evolution of the number of elements in the circuits in the
population for the best individual and the average of the
population.

Initially the circuits grow in size while improving in
performance. When performance is good, around
generation 120, a new fitness and mutation term, which

produces a bias towards smaller circuits, is introduced.
This allows the circuits to become smaller if they preserve
fitness. It is a strategy that avoids the problems that
adding this constraint to the fitness function alone would
introduce in terms of prioritizing smaller circuits that did
not produce such good results in the operation of the
plant. This introduction of the mutation term can be
observed in the average fitness graph, around generation
130. It tends to reduce average fitness as more of the
population are mutated towards smaller circuits in search
for the good ones. Obviously, as we are using an elitist
GA, the best fitness is preserved.

The resulting circuits are quite complex in generation
111 (see Fig. 4 left for a diagram of the circuit and Table
1 for its characteristics) but become really simple after the
introduction of the bias without any loss of fitness. In
fact,

Fig. 5 – control signals provided by the resulting circuits for the input and output conveyor belts.

 240

the resulting plant operates with the maximum theoretical
productivity and, what is more important, there are never
any pile ups no matter what the sequence of boards was,
which was the main problem before these new circuits
were introduced (see Fig. 4 right for the final circuit and
Fig. 5 for an example of a diagram of the signals it
produces to control input and output belts). The resulting
circuits were compared to a set of controllers obtained by
a group of engineers after exhaustive study and
simulation of the plant for the same task and they perform
either equally or better depending on the set. The main
point here is that the circuits that were automatically
obtained were produced after about 24 hours on a single
PC (which means about one hour using a cluster of 30),
whereas the manually obtained ones implied a process
that took over three weeks.

4. CONCLUSIONS

This paper deals with obtaining the circuits for
controlling manufacturing plants or lines in an automatic
manner. The set of circuits must be obtained so that
performance of the plant as a whole is maximized without
having to explicitly define an individual training set or
function for each individual circuit. To this end we have
developed an evolutionary tool that integrates a standard
plant controller and which, working over a binary tree
representation of the circuits, can obtain in a simple and
straightforward manner the set of controllers for the
whole plant. In addition, the tool was programmed so as
to be executable in a distributed fashion so that the
computation times could be manageable in the case of
complex systems. The results, tested on the case of a real
line in a real manufacturing plant are very satisfactory as
the system was able to obtain maximum productivity
under any workload with very simple circuits.

5. ACKNOWLEDGEMENTS
This work was partially funded by This work was funded
by Xunta de Galicia under project
PGIDIT02PXIB10501PR the MCYT of Spain under
projects TIC2000-0739C0404 and NATO under
PST.CLG.978744.

6. REFERENCES
[1] J. Torresen. Evolvable Hardware as a new computer

architecture International Conference on Advances in
Infrastructure for Electronic Business, Education,
Science, and Medicine on the Internet (SSGRR
2002W). L`Aquila, Italy, January 2002.

[2] I. Harvey, P. Husbands, D. Cliff. Issues in
Evolutionary Robotics, J-A. Meyer, H. Roitblat, and
S. Wilson (Eds.), From Animals to Animats 2.
Proceedings of the Second International Conference
on Simulation of Adaptive Behavior (SAB 92), MIT
Press, Cambridge, MA 1993, pp. 364-373.

[3] D.T. Cliff, P. Husbandsand, I. Harvey. Eds.: J-A.
Meyer, H. Roitblat, S. Wilson. Evolving Visually
Guided Robots. From Animals to Animats 2.
Proceedings of the Second International Conference
on Simulation of Adaptive Behaviour (SAP 92), MIT
Press Bradford Books, Cambridge, MA 1993, pp.
374-383.

[4] R.D. Beer, J.C. Gallagher. Evolving Dynamical
Neural Networks for Adaptive Behavior, Adaptive
Behavior, Vol. 1, No. 1 (1992). pp. 91-122.

[5] T. Higuchi. Evolvable hardware: A first step towards
building a Darwin machine. In Proc. of the 2nd Int.
Conf. on Simulated Behaviour. MIT Press 1993, pp.
417-424.

[6] J. F. Miller. Digital filter design at gate-level using
evolutionary algorithms. In Proc. of the Genetic and
Evolutionary Computation Conference, 1999.

[7] M. Murakawa et al. The GRD chip: Genetic
reconfiguration of DSPs for neural network
processing, IEEE Transactions on Computers, Vol.
48, No. 6 (June 1999). pp. 628-638.

[8] J.D. Lohn, S.P. Colombano. A circuit representation
technique for automated circuit design, IEEE Trans.
On Evolutionary Computation, Vol. 3, No. 3
(September 1999), pp. 205-219.

[9] J. Torresen. Two-step incremental evolution of a
digital logic gate based prosthetic hand controller. In
Evolvable Systems: From Biology to Hardware.
Fourth Int. Conf., ICES'01, Springer-Verlag 2001,
Lecture Notes in Computer Science, Vol. 2210.

