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Abstract: In this paper we have developed a tool for 
automatically designing distributed digital circuits for the 
control of all the elements in a manufacturing plant. 
These circuits can be implemented as traditional boards 
or programmed into the controllers of the machinery 
present. The tool is based on evolutionary techniques and 
provides a way to obtain the best set of controllers for the 
different elements in the plant using as evaluating criteria 
parameters related to the global operation of the plant 
and not to particular parameters of the electronic circuits 
or individual controllers. These parameters may be 
productivity, cost, or any other ratio having to do with the 
real operation of the bussiness. In this work we have 
extended the evolutionary methodologies in order to be 
able to design, at the complete system level, combinations 
of low level systems (digital electronic circuits) without 
any direct specification of their input/output relationships 
but rather taking into account the plant they are going to 
be working in and the high level constraints imposed on 
the whole system. 
The resulting tool has been tested in a real kitchen 
furniture manufacturing plant using as test bench the 
lacquering line within the plant. 
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1. INTRODUCTION 

Traditionally the design process in the realm of 
engineering of complex systems has involved a recursive 
trial and error procedure with the aid of the engineer’s 
experience and different CAD and simulation 
applications. The more complex a design becomes, the 
more difficult it is to explore all the options available to 
the engineers working on it. The search space becomes 
huge and impossible to explore efficiently. As a 
consequence, the current design methodologies involve 
the divide and conquer strategy, that is, let us divide the 
design into sub-modules of reasonable complexity, design 
these and hope that when they are linked together the 
whole system works the way we wanted it to. The basic 
premise is that we can figure out the way of linking the 
modules so that they will perform the assigned task. 

This approach has proven to be reasonable in most 
cases, but it presents two basic drawbacks. On one hand, 
it is based on the designer’s (human) perception of how 
things should be. This perception is driven by experience, 
intuition, but not exhaustive exploration. On the other, it 
is almost impossible to optimize designs, as all non-linear 
interactions are usually ignored. In fact, as Jim Torresen 
indicates [1] we may very well soon see a limit in 
designability. In other words, in order to make the designs 
manageable to the human brain, they usually consist of 
few modules with simple interactions among them. Thus 
it would be desirable to take the human designer out of 

the loop, or, at least minimize its participation to the 
enunciation of the general specifications of the system in 
order to really be able to address complex non linear 
systems. Consequently, it would be necessary to provide 
some other type of strategy that would allow the design 
procedure to become completely automated. 
Several authors in the literature have identified this 
problem and provided conceptual solutions for limited 
domains. In the late eighties and early nineties some 
authors, such as Harvey et al. [2], Cliff et al. [3] and Beer 
and Gallagher [4] proposed artificial evolution as a means 
to automate the design procedure of these types of 
systems, leading to the concept of Evolvable Hardware, 
introduced by Higuchi [5]. The basic idea of this approach 
is to decide on the input/output relationships in our 
system, provide some building blocks and let a genetic 
algorithm or some type of evolutionary strategy come up 
with a composition of these building blocks which 
minimizes the error for this training set. One of the fields 
where these concepts have been extensively applied is 
that of electronic circuit design. Many authors have 
resorted to the specification of the required electronic 
circuit as a set of input/output pairs and through 
parameters controlling FPGAs (Field Programmable Gate 
Arrays) or some other type of electronic structure 
proceeded to evolve the optimal circuit. Examples of 
these are the digital filter design system by Miller [6], the 
Adaptive Equalizer by Murakawa [7] or the 
methodologies by Lohn et al. [8] or the one by Torresen 
applied to a prosthetic hand [9]. Even though these 
approaches have been highly successful, they do not 
address the main problem of automatic design in complex 
real manufacturing plants and that is that, in general, in a 
real plant, there will coexist several electronic systems 
combined with other types of actuators and sensors and 
the input/output pairs, that is, the information one has on 
the plant will be for the whole combination of systems. In 
fact, these input/output pairs will make no reference to the 
variables one would like to handle at the electronic circuit 
level (voltages, currents, activations, etc…) but rather 
they will refer to ambiguous terms such as productivity, 
costs, breakdowns, pile ups, etc…The real plant designer 
works, at the plant level, with concepts like increasing 
productivity while minimizing breakdowns and avoiding 
pile ups at the inputs of certain machines, taking into 
account that cost is an additional variable. 

In this work we have extended the evolutionary 
methodologies in order to be able to design, at the 
complete system level, combinations of low level systems 
(digital electronic circuits) without any direct 
specification of their input/output relationships but rather 
taking into account the plant they are going to be working 
in and the high level constraints imposed on the whole 
system. 
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Fig. 1 – Diagram of the plant that must be controlled. 

2. METHODOLOGY 
The work is based on the ability of evolutionary 

systems to obtain optimal structures through the use of 
imprecise fitness functions. These functions need not 
provide an exact measure of the optimality of the system, 
but just a relative indication of how well it is performing 
with respect to the other systems in the population. 

The basic idea in this work is to introduce as fitness 
evaluator in the evolutionary system a simulator of the 
whole plant that provides a simulation of the operation of 
combinations of individuals under different load 
conditions and provides a fitness value at its output that is 
related to the high level system constraints we mentioned 
before (productivity, energy cost, etc…). This approach, 
as anyone who has used plant simulators knows may be 
very computer resource consuming, but as we are using 
standard simulators and the brunt of the processing is 
taken up by the simulation stage we can distribute the 
simulation tasks in a cluster of computers and thus 
achieve reasonable execution times. 
In this particular case we will be evolving digital 
electronic circuits made up of logic gates and flip flops so 
that temporal aspects of the sensor signals can be taken 
into account. The inputs to the circuits will be the data 
coming from the sensors positioned throughout the plant 
or production line to be controlled. The outputs to the 
circuits will act on certain control points modulating the 
activities of different machines, conveyor belts, and chain 
rollers in the line. 
The evolutionary algorithms operate over variable length 
chromosomes and the encoding they contemplate is not 
direct, as is traditional in genetic algorithms, but rather, 
we encode the construction of binary trees. Thus, we 
provide certain discrimination between the genotype and 
phenotype. All the circuits will correspond to a tree per 
output where the root is the output and the nodes as we 
branch out correspond to the different digital elements 
(nand gates, type D flip flops, etc.) participating in the 
structure of the circuit. Obviously, there will be one tree 
per output, that is, there will be one tree per element to be 
controlled or modulated. There is no restriction on the 
number of inputs a given circuit may use in order to 
achieve the appropriate values for its outputs. It can 

choose to use all the possible inputs, just one of them or 
any number it requires. 

The genetic operators employed by the evolutionary 
system correspond to traditional operators adapted to the 
peculiarities of binary tree type phenotypes. These 
operators act over the phenotype. In the case of the 
crossover operator, it will take portions of two parent 
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Fig. 2 – Maximum and average fitness of the population 

throughout the evolution process. 
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trees and join them together into an offspring. The 
mutation operators will change node values and add or 
delete subtrees or connections. 
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Fig. 3 – Maximum and average number of blocks that 

make up the individuals in the population throughout the 
evolution process. 

In order to evaluate the resulting individuals using 
fitness measurements corresponding to the operation of 
the whole plant or line it is necessary to evaluate the set 
of controllers acting on the plant or a simulation of it for 
different conditions of workload and environment. To 
achieve this objective, we run simulations of the plants 
for which the circuits are being developed on Extend 
(production plant simulator) and provide different sets of 
workloads to the plant so that we can evaluate the global 
parameters to be taken as fitness in each case in a reliable 
manner.  

This is obviously the most computationally intensive 
operation of the system. Each individual in the genetic 
population must be evaluated each generation of 
evolution. To make the system viable in normal situations 
the whole evolutionary tool was programmed in a 
distributed manner using MPI (message passing interface) 
libraries so that the evaluations could be distributed 
among a cluster of computers.  

 

3. EXPERIMENT 
In this particular problem we want to control a plant 

for a drying oven that takes boards of arbitrary size that 
have undergone a lacquering operation. As shown in  Fig. 
1 the ensemble is made up of two conveyor belts, a chain 
roller and an oven. The oven has a fixed load/unload 
sequence and can accept up to fifty sets of boards. There 
are four sensors, located as shown in Fig. 1 by the red 
squares and the objective is to obtain three electronic 
circuits that control the two conveyor belts and the chain 
roller and provide for the best global productivity without 
any pile-ups or unnecessary waits. This is, we want 
optimal productivity given the constraints of the oven 
with minimum energetic expense.  It is important to note 
here that when the sequencing of the operations of the 
different elements is not perfect a pile up of boards may 
occur when the oven is not ready to accept inputs. This 
pile up is very costly as the plant must be stopped, the 
piled up boards taken out manually and thrown away. 
Consequently, this event must be avoided at all costs. In 
fact, this is the reason the company that runs the plant 
consulted us. They could find no way of avoiding pile ups 
without having to resort to very slow speeds and 
consequently lower productivities. 

This plant will be controlled through the actuation 
over the speed of the two conveyor belts and the input 
chain roller. The three controllers will be three sequential 
digital circuits whose inputs are any or all of the four 
sensor values (chosen by the automatic procedure) and 
their outputs the speed actuation commands to their 
respective belts or roller. We allow the evolutionary 
system to make use of nand gates and type D flipflops. 
The sensors are infrared sensors that detect the presence 
or absence of a board beside them. 

As commented in the methodology section, the GA 
accepts variable length chromosomes encoding the three 
circuits that are needed. The encoding corresponds to a 
binary tree representation, as each one of the nodes 
participating in the circuits (in this case we have 
constrained the possible elements to nand gates and type 
D flip flops) present two inputs and one output. The 
leaves of the tree are the sensors and the root node 
corresponds to the output of the circuit. 

The fitness of each chromosome was obtained by 
creating the circuits (phenotype) it represents, introducing 
them in a model of the plant implemented in Extend 
(standard manufacturing plant simulator) and running a 
set of simulations with different sequences of boards. 

The fitness function for each individual evaluates the 
weighed sum of three factors where we included: 

 
• The energy used by the motors that control the 

oven input and output transports. The energy 
consumed is calculated as the average value of 
the difference between the speeds and their 
minimum value.  

• The delays induced in the unload operation of 
the oven when the output transport is busy and in 
the load operation of the oven when the input 
transport is busy. 

• The productivity of the line. 
 



 239 

 

Fig. 4 – Left, circuit after generation 120. Right, circuit after generation 160. 

Table 1. Some data on the performance of the resulting circuits 

Generation Individual Producti-
vity 

Pile ups 
Unloading 

Pile ups 
loading 

Energy 
input 
belt 

Energy 
input 
roller 

Energy 
output 

belt 

Nand 
gates 

Flip-
flops 

111 300 111 0 0 0.815 2.13 3.49 8 4 
360 300 111 0 0 4.5 1.13 5.4 1 0 

 
The population employed was 300 individuals and we 

have considered 1% mutation probability. It was observed 
that evolution progressed much better if no restriction was 
initially placed on the size of the circuit until good 
solutions were obtained. From that point on smaller 
circuits with equal or better fitness were prioritized. In 
addition to using the fitness function to establish this 
priority, we introduced a bias in the mutation operator. In 
Fig. 2 we display the evolution of fitness for the best 
individual and the average fitness of the population 
during the automatic design process.  Fig. 3 depicts the 
evolution of the number of elements in the circuits in the 
population for the best individual and the average of the 
population. 

Initially the circuits grow in size while improving in 
performance. When performance is good, around 
generation 120, a new fitness and mutation term, which 

produces a bias towards smaller circuits, is introduced. 
This allows the circuits to become smaller if they preserve 
fitness. It is a strategy that avoids the problems that 
adding this constraint to the fitness function alone would 
introduce in terms of prioritizing smaller circuits that did 
not produce such good results in the operation of the 
plant. This introduction of the mutation term can be 
observed in the average fitness graph, around generation 
130. It tends to reduce average fitness as more of the 
population are mutated towards smaller circuits in search 
for the good ones. Obviously, as we are using an elitist 
GA, the best fitness is preserved. 

The resulting circuits are quite complex in generation 
111 (see Fig. 4 left for a diagram of the circuit and Table 
1 for its characteristics) but become really simple after the 
introduction of the bias without any loss of fitness. In 
fact, 

 

 

Fig. 5 – control signals provided by the resulting circuits for the input and output conveyor belts. 
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the resulting plant operates with the maximum theoretical 
productivity and, what is more important, there are never 
any pile ups no matter what the sequence of boards was, 
which was the main problem before these new circuits 
were introduced (see Fig. 4 right for the final circuit and 
Fig. 5 for an example of a diagram of the signals it 
produces to control input and output belts). The resulting 
circuits were compared to a set of controllers obtained by 
a group of engineers after exhaustive study and 
simulation of the plant for the same task and they perform 
either equally or better depending on the set. The main 
point here is that the circuits that were automatically 
obtained were produced after about 24 hours on a single 
PC (which means about one hour using a cluster of 30), 
whereas the manually obtained ones implied a process 
that took over three weeks. 
 
4. CONCLUSIONS 

This paper deals with obtaining the circuits for 
controlling manufacturing plants or lines in an automatic 
manner. The set of circuits must be obtained so that 
performance of the plant as a whole is maximized without 
having to explicitly define an individual training set or 
function for each individual circuit. To this end we have 
developed an evolutionary tool that integrates a standard 
plant controller and which, working over a binary tree 
representation of the circuits, can obtain in a simple and 
straightforward manner the set of controllers for the 
whole plant. In addition, the tool was programmed so as 
to be executable in a distributed fashion so that the 
computation times could be manageable in the case of 
complex systems. The results, tested on the case of a real 
line in a real manufacturing plant are very satisfactory as 
the system was able to obtain maximum productivity 
under any workload with very simple circuits.  
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