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Executive Summary

A key challenge faced by USAF maintenance personnel is the uncertainty associated with

the information provided by diagnostic tools. This uncertainty can make it very difficult for

maintenance technicians to choose an appropriate course of action. The end result is the possible

omission of necessary maintenance actions and performance of unnecessary actions. Both of

these potential mistakes cause additional delays in returning an aircraft to the fleet and increased

requirements for spare parts in the supply chain. Therefore, the objective of this project is to

develop a methodology based on mathematical modeling that can be used to synthesize the

diagnostic information and provide a recommended course of action to the technician.

For a hypothetical system that possesses fundamental characteristics like those systems

utilized by the US Air Force (and many other organizations), we develop a two modeling-based

methodologies for synthesizing diagnostic information and providing an estimated assessment of

the system. First, we define a probabilistic approach for synthesizing imperfect and conflicting

diagnostic information. We define the characteristics of the system of interest and the diagnostics

applied to this system. We demonstrate how probabilistic analysis can be used to provide an

assessment of system status, and, using a numerical example, we demonstrate the potential

effectiveness of the approach.

The probabilistic approach shows great promise as a means of compiling imperfect and

conflicting diagnostic information. However, the approach requires exact monitoring of

component aging and perfect life distribution estimation. Furthermore, our approach requires an

assumption of independent component failures. Therefore, we explore an alternative approach

based on artificial neural networks (ANN). This approach does not suffer from either of the

identified limitations of the probabilistic approach. However, the numerical results associated

with this new approach are not as promising.
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1. Introduction

A key challenge faced by USAF maintenance personnel is the uncertainty associated with

the information provided by diagnostic tools. This uncertainty results from accuracy issues

associated with individual diagnostic tools, as well as inconsistencies across different diagnostic

tools. This uncertainty can make it very difficult for maintenance technicians to choose an

appropriate course of action. The end result is the possible omission of necessary maintenance

actions and performance of unnecessary actions. Both of these potential mistakes cause

additional delays in returning an aircraft to the fleet and increased requirements for spare parts in

the supply chain. Therefore, the objective of this project is to develop a methodology based on

mathematical modeling that can be used to synthesize diagnostic information and provide a

recommended course of action to a technician. This methodology potentially could be

incorporated into a decision-support tool for maintenance technicians.

The activities required to achieve the objective of this project are applied to a

hypothetical system. However, the definition of this hypothetical system is such that the system

possesses fundamental characteristics like those systems utilized by the US Air Force (and many

other organizations). First, we define the system structure and the reliability and maintainability

characteristics of each component in the system. Second, we identify the characteristics of the

diagnostic tools applied to the system. This identification includes a description of the accuracy

of diagnostic information. Third, we develop a set of mathematical and logical models which

synthesize the diagnostic information and provide an estimated assessment of system status.

Finally, we utilize numerical experiments for assessing the capabilities of the defined models.

The remainder of this report is summarized as follows. In Section 2, we summarize the

relevant research literature. Section 3 contains the development an analysis of a probabilistic
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approach to synthesizing imperfect and conflicting diagnostic information. In Section 4, we

explore an alternative approach based on the use of artificial neural networks.

2. Research Literature Review

The purpose of this literature review is to identify existing mathematical modeling

techniques used in the area of diagnostics. Diagnostics is the first step in the repair process and

involves identifying the cause of a failure. Typically, the goal is to isolate the failure to a faulty

module and/or component, and this is done based on system observations and available test data.

Often, the determination that a failure has occurred is one step (e.g., the failure of a built-in test)

and the isolation of that failure is a second step. In other applications, however, failure detection

and isolation are not separable. For example, the diagnostic problem may be formulated as a

classification problem, where the system state is classified as either normal operation, or as one

of several possible failure modes [6]. We are particularly interested in techniques that take into

consideration imperfect test results, which introduce uncertainty into the diagnosis. The two

main types of test error include (1) the test indicates a pass, when in fact, the unit under test has

failed, and (2) the test indicates a fail, when the unit is working properly (a false alarm).

Fault diagnosis in large-scale systems has been a major research area for several decades

and there is considerable literature available. The inter-disciplinary problem of diagnostics is a

concern in all stages of the product life cycle, but particularly during manufacturing and field

maintenance [3]. It has therefore been approached from the perspective of the electronics design

engineer, the diagnostics software developer, the reliability engineer, and others. Many of these

techniques require specific information about the system design, and in fact, the models may be

constructed during the design phase. Because the diagnostics process has traditionally been
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dependent on human involvement, the development of automated diagnostics systems has also

frequently relied on artificial intelligence (Al) techniques.

A well established approach to diagnostics is the Bayesian process. Bayesian inference

can be used to determine the probability that a diagnosis is correct. However, it has the

disadvantage of requiring a priori probability distributions, which may not always be available

[8].

Fenton [3], in his review of AI approaches to diagnostics, states that model-based

diagnosis involves using the model to predict faults from observations and information on the

real device or system. He identifies four types of models and provides numerous references as

examples of their application: fault models (or fault dictionaries), causal models, models based

on structure and behavior, and diagnostic inference models.

Fault models anticipate the types of faults that may occur and only model those. Each

fault type is inserted into the system and the system behavior is monitored. From this, a list of

fault/symptom pairs or fault dictionary is produced. This method has been used primarily for

digital circuit diagnosis. These models are unable to handle unanticipated faults.

A causal model is a directed graph, where nodes represent symptoms and faults, and the

links represent the relationships between them. The strength of each link is often defined using a

numerical weight or probability. The fault hypotheses are ranked or eliminated using Bayesian

techniques. Bayesian networks are a variation on this approach.

Models based on structure and behavior require detailed information on the system

components, their interconnections, and the behavior pattern for each component. This type of

model can theoretically diagnose any fault type, which overcomes the disadvantage of a fault

model, which cannot detect unanticipated errors [3].
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Diagnostic inference models represent the problem as a flow of diagnostic information.

The model consists of two basic elements: tests and conclusions. Tests may be any source of

diagnostic information, including observable symptoms, logistics history and results from

diagnostic tests. Conclusions typically represent faults or units to replace. The dependency

relationship between tests and conclusions is represented using a directed graph.

In [6], the types of models used in diagnostics are identified as physical models,

reliability models, machine learning models, and dependency models. Physical models are based

on the natural laws governing system operation, e.g., material properties (solid, liquid, gas),

finite-element models, thermodynamics, etc. A physics-based failure model usually needs to be

built for each failure mode, and requires intricate knowledge by area experts. Reliability

modeling requires knowledge of the system structure and failure probability distributions.

Machine learning models are purely data dependent models and require historical training data.

Neural networks are the primary example of machine learning models. Dependency models

capture cause and effect relationships. An example of a failure dependency model is provided in

[6].

Deb et al. [2] describe four modeling techniques for diagnosing faults in complex

systems: quantitative, qualitative, structural and dependency. Quantitative models require highly

detailed system information and provide an exact simulation of the system. Qualitative models

are simplified quantitative models. Structural models represent the connectivity and failure

propagation direction in the form of a directed graph. An example is found in [4], where a

directed graph is used to represent the propagation of a fault through the system. Each node

represents a unit (or its failure mode) and a link between two nodes indicates that a fault can

propagate from one to the other. Dependency models (similarly defined in [6]) represent the
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cause-effect relationships in the form of a directed graph, and can deviate significantly from

structural models. According to [2], dependency modeling, which is also referred to elsewhere as

inference modeling, is the primary modeling technique employed in testability analysis tools.

Fenton [3] summarizes the use of fuzzy logic and artificial neural networks in

diagnostics. Fuzzy logic can be used to represent uncertainty and inaccurate data in a diagnostics

environment - approximations rather than exact measurements. It can also be used to incorporate

qualitative judgments from experts into an automated diagnostics system. In traditional sets,

membership is either true (1) or false (0), and there is no concept of partial membership. In fuzzy

sets, partial membership is allowed, so membership is represented by a value between 0 and 1.

Fuzzy logic is typically combined with other modeling approaches. One such application is

found in [8] and several more are identified in [3].

Artificial neural networks (ANNs) are used for a variety of applications, including

diagnostics. ANNs are basically directed graphs with nodes, or neurons, connected by weighted

links. Each link has an associated weight, which typically multiplies the signal transmitted along

that link. Each neuron applies an activation function to its net input (sum of weighted input

signals) to determine its output signal. The net can be single layer (containing only a set of input

units and a set of output units, with a single set of weighted links), or more commonly,

multilayer (one or more layers of nodes between the input and output units). The process of

establishing the weights for each link is called training. The neural net is "trained" with data to

perform a function. In the case of diagnostics, the input data may be the results of diagnostic

tests and the output could be an indication of which subsystem has failed. An ANN is

characterized by its structure of nodes and links, method of training, and activation function.
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In [8], methods to combine system information (such as test results) to improve the

confidence and accuracy of diagnostics are examined. One of the data fusion approaches

proposed uses neural networks. An example is given using engine test cell data, where the output

is a determination of the validity of the sensor signals, and at times, diagnosis of a sensor fault.

In [10), a neural network is presented that attempts to shrink the confidence bounds around

failure prediction. In [11], a self-organizing feature map (SOM) neural network, combined with

fuzzy logic, is implemented. The types of neural networks most commonly used in diagnostics

are multilayer, feed-forward networks with back-propagation training (see [5], [7], and [9]).

Fenton [3] states that ANNs are most useful for their ability to recognize patterns and have

shown promise in application where noise and error is present. Mather et al. [6] acknowledge

that neural nets are useful for modeling phenomena that are hard to model using

parametric/analytical equations. However, they are difficult to validate and do not enhance the

basic understanding of the system under study.

Finally, a method for evaluating the performance of automatic diagnostic systems is

presented in [1]. Three measures of effectiveness for a diagnostics system are defined, which

include the false positive and false negative errors previously mentioned, plus a third measure

defined as false alarm correction. The false alarm correction measures the ability of the

diagnostics system to correct its actions after indicating a false alarm. For the purpose of

comparing various diagnostics systems, the paper develops a method for evaluating the life cycle

cost of a diagnostics system, based on the three measures of effectiveness.

6



3. A Probabilistic Approach

In this section, we define a probabilistic probability approach for synthesizing imperfect

and conflicting diagnostic information. We begin by defining the characteristics of the

hypothetical system of interest, as well as the diagnostics applied to this system. Then, we

demonstrate how probabilistic analysis can be used to provide an assessment of system status

based on component time to failure behavior and the diagnostic results. Using a set of numerical

examples, we then demonstrate the potential effectiveness of the approach.

3.1 System Characteristics

Consider a system comprised of M independent, binary-state (functioning, failed)

components that is required to perform a sequence of missions each having a length of 1. During

each mission, the system is subject to one or more individual component failures. Failed

components can only be replaced, and these replacements (system maintenance) take place only

between missions. Note that functional components neither age nor fail during system

maintenance. Let Tm denote the time to individual failure of a new copy of component m, m = 1,

'2, ... , M, and note that Tm is governed by a Weibull probability distribution having shape

parameter 0m > 1 and scale parameter qm > 0. Therefore, the cumulative distribution function of

Tm is given by

Gm(t)= l-exp(-(t/mY)) (3.1)

Note that the fact that Om > 1, m = 1, 2, ... , M, implies that components have either constant or

increasing failure rates.

Upon completion of each mission, some or all of the components may be failed. A built-

in-test is used to determine if there is one or more failed components, and this test is assumed to

7



be perfect. However, the test does not identify which components are failed. Note that if there

are no failed components, then the system starts its next mission.

If the built-in test reveals that at least one component failed during the previous mission,

then a set of D independent diagnostics are used in an attempt to determine the status of each

component. Each diagnostic provides an independent assessment of the status of some subset of

the components. Let

rI if diagnostic d assesses component m

Ca' = 0 otherwise

d = 1, 2, ... ,D, m = 1, 2, .. M. Furthermore, let

Xd. = 1fl if diagnostic d indicates that component m is failed (3.3)
X 0 otherwise

d = 1, 2, ... , D, m = 1, 2, ... , M. Unfortunately, each diagnostic is subject to Type I (false

positive) and Type II (false negative) errors. Let

{1 if component m is failed
Y { 0 otherwise (3.4)

m = 1, 2, ... , M Then,

cdm = Pr(Xdm = 11. = 0) (3.5)

is the probability that diagnostic d produces a false positive regarding component m and

,6d,,, = Pr(Xd•, = 0IY, = 1) (3.6)

is the probability that diagnostic d fails to detect the failure of component m, d = 1, 2, ... , D, m =

1,2,... ,M.

We assume that, eventually, the failed components are correctly identified and replaced

and the system starts its next mission. However, our focus in this study is on the first attempt at

diagnosing the failed components.
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3.2 The Probabilistic Analysis

Suppose a mission has just ended and the built-in test indicates that there is one or more

failed components. A critical assumption required for the effective use of this probabilistic

approach is that the system manager can track the age of each component in the system. Note

that the age of a component refers to the elapsed mission time since the component was last

replaced. Let am denote the age of component m at the beginning of the last mission, m = 1, 2,

M. Then, the probability that component m failed during the last mission is given by

Pm Gm a)-Gm(am) (3.7)
1-Gm(am)

m = 1, 2, .. M.

Since the built-in test revealed at least one component failure, the set of D diagnostics are

applied to the system. Let D.. denote the set of diagnostics that assess component m, i.e.

D. = {d{1,2,...,OD Cd,,m 1} (3.8)

m 1, 2, ... ,M. Then,

Pr(Xd,, = Xd,m, g = 1)=(I -,6d,. )id, (3.9)

Xd,, = 0, 1;m = 1, 2, ... ,Md• Dm. Also,

Pr(Xd,m : Xdm Y,,, =-O)--a, (1--cdm (3.10)

xd,,,, = 0, 1; m = 1, 2, ... , M; d e D,. Let k[. denote the vector of diagnostic results associated

with component m, and let jm denote a specific realization of Xm, m = 1, 2, ... , M, i.e,

X M [XdmI dEDm (3.11)

and

Tm [XdmIde D] (3.12)

9



Since the D diagnostics are independent,

Pr(OCm =Ixf = Y. =1)= J'-Pr(Xd., =Xdi. Ym =1) (3.13)
dED.

and

Pr(k, =, Yi =0)= 1-HPr(Xd,, =Xd,.I Y. =0) (3.14)

m = 1, 2, ... , M. Applying the law of total probability yields

Pr(k. =•i.)= Pr(m. = i. I Y. = I)p, +Pr(in = Y. = 0)I-p.) (3.15)

m = 1, 2, ... , M. Finally, application of Bayes' Theorem yields

;,.(i,.) Pr(Y. = 11 fc . ) Pr(ý. = i IY. = 1)p. 3.6Pr X' =xi 3.6

in~%- inj

which can be rewritten as

P 1I(1 Pdi. xdf, + (1-P,)rJadxd-;(1 adi -)

71 - '.,jin)= de-, (3.17)

m = 1, 2, ... , M. Thus, ,r j (i,) provides a Bayesian update to the probability of component m

failure based on the diagnostic results.

Based on this probabilistic analysis, we propose the following policy. First, compute p,,

m = 1, 2, ... , M. Second, perform the diagnostics. Third, compute ;',(i,), m = 1, 2, ... , M.

Finally, if

;rM (f > ;"0 (3.18)

then conclude that component m is failed, m = 1, 2, ... , M. Note that the value of M is specified

by the decision-maker.
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3.3 A Simulation-Based Assessment

To facilitate study of the probabilistic policy, we constructed a discrete-event simulation

model of system performance. The model, coded in Visual Basic, mimics the operation, failure,

testing, and initial diagnosis of the system over a sequence of a user-specified number of

missions. The Visual Basic form containing the simulation code, a Visual Basic module required

to run the simulation, and a dll file required to run the simulation are included on the CD

accompanying this report. The inputs to the model include: the number of components, the

Weibull life distribution parameters for each component, the mission length, the number of

diagnostics, the coverage of each diagnostic, and the Type I and II error probabilities for each

component/diagnostic combination.

For the first simulated mission, Weibull random variates are generated and set as the

initial time to failure for each component. The time to failure values are compared to the mission

length to determine if each component can complete the mission. For components that survived

the mission, the remainder of their time to failure is stored. If all components survived the

mission, then the next mission is initiated. If the system suffered at least one component failure,

then initial diagnostics are conducted. Monte Carlo analysis is used to determine the diagnostic

results. The diagnostic results and actual system status are stored as the output of the model.

Prior to starting the next mission, all failed components are renewed and given a new time to

failure drawn from the appropriate Weibull probability distribution. Note that to avoid initial

condition bias, a set of a user-specified number of "warm-up" missions are simulated before data

collection begins.

11*



As a numerical example, we simulated 5000 missions (after 500 warm-up missions) for a

system having M = 10 components that performs sequential missions of length 1 = 0.5. This

system is analyzed using D = 5 diagnostics. The remaining system parameters are:

(=(1.0 1.5 2.5 1.0 2.0 1.0 1.5 1.0 2.0 2.5) (3.19)

i=(1.0 4.0 1.5 5.5 4.5 3.0 2.0 2.5 3.5 5.0) (3.20)

I I I 1 0 0 0 0 0 0

j= 0 0 1 1 1 0 0 0 0 1 (3.21)
1 0 0 0 1 0 0 1 1 1
1 0 0 0 0 1 1 1 0 0

0.01 0.08 0.02 0.04 0.03 0.07 0.1 0.05 0.06 0.09"

0.04 0.02 0.01 0.05 0 0 0 0 0 0

= 0 0 0.08 0.02 0.05 0 0 0 0 0.07 (3.22)

0.02 0 0 0 0.01 0 0 0.10 0.05 0.03

0 0 0 0 0 0.02 0.05 0.04 0 0

"0.04 0.10 0.01 0.02 0.03 0.08 0.09 0.05 0.06 0.07"

0.03 0.05 0.07 0.06 0 0 0 0 0 0

= 0 0 0.01 0.06 0.02 0 0 0 0 0.04 (3.23)

0.06 0 0 0 0.09 0 0 0.01 0.03 0.04

0 0 0 0 0 0.01 0.04 0.07 0 0

Of the 5000 missions simulated, there were 4416 during which the system experienced at

least one failure. For those 4416 missions, there were 9350 component failures (out of a possible

44,160 component-missions). When applied using a threshold of -ro = 0.5, the probabilistic

approach resulted in 151 false positives, 9003 true positives, 347 false negatives and 34,659 true

negatives. To provide a comparison, two additional algorithms were considered: a voting

algorithm and a signal algorithm. With the voting algorithm, a component is deemed to have

failed if a majority of the diagnostics applied to that component indicate failure. With the signal

12



algorithm, a component is deemed to have failed if any of the diagnostics applied to the

component indicate failure. For the same example, the voting algorithm produced 1629 false

positives and 25 false negatives. The signal algorithm produced 4095 false positives and 9 false

negatives.

To further investigate the capability of the probabilistic approach, we conducted a more

thorough numerical experiment using twelve combinations of M and D. These combinations are

enumerated in Table 3.1. For each combination, we randomly generated 1000 scenarios as

follows:

The scenario included 5000 missions (after a warm-up period of 50
missions). Each mission was of length 0.5.

The scale parameter of the Weibull probability distribution for each
component was randomly selected from the set (1.0, 1.5, 2.0, 2.5}.

The shape parameter of the Weibull probability distribution for each
component was randomly selected from the set (1.0, 1.5, ... , 5.5}.

The first diagnostic assesses all components. For all other diagnostics, there
is a 40% chance that the diagnostic covers each component.

For each component/diagnostic combination, the probability of a Type I
error was randomly selected from the range (0.01, 0.05).

For each component/diagnostic combination, the probability of a Type II
error was randomly selected from the range (0.05, 0.10).

For each scenario, we compared the performance of the probabilistic approach (with M = 0.5) to

a voting algorithm. The results are summarized in Table 3.1 and suggest that the probabilistic

approach can improve upon a voting algorithm.
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Probabilistic Approach Voting Algorithm
Combination M D False Positives False Negatives False Positives False Negatives

1 5 2 1.21% 29.54% 1.39% 32.40%
2 5 3 0.94% 20.08% 1.62% 23.34%
3 5 4 0.77% 13.59% 1.85% 16.58%
4 10 3 1.61% 21.66% 1.79% 26.33%
5 10 5 0.99% 10.53% 1.90% 13.60%
6 10 7 0.60% 5.28% 2.03% 7.42%
7 15 5 1.14% 11.07% 1.68% 14.28%
8 15 7 0.69% 5.64% 1.67% 8.02%
9 15 10 0.30% 2.15% 1.83% 3.55%
10 20 5 1.20% 11.21% 1.51% 14.63%
11 20 10 0.32% 2.35% 1.47% 3.82%
12 20 15 0.08% 0.48% 1.84% 1.03%

Table 3.1 Analysis of the Probabilistic Approach
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4. A Neural Network Approach

The probabilistic approach shows great promise as a means of compiling imperfect and

conflicting diagnostic information. However, the approach we use is limited in two ways. First,

our approach requires exact monitoring of component aging and perfect life distribution

estimation. Second, our approach requires an assumption of independent component failures. In

this section, we explore an alternative approach based on artificial neural networks (ANN). This

approach does not suffer from either of the identified limitations of the probabilistic approach.

However, the numerical results associated with this new approach are not as promising.

4.1 System Characteristics

Consider a system comprised of M binary-state (functioning, failed) components that is

required to perform a sequence of missions each having a length of 1. During each mission, the

system is subject to one or more individual component failures as well as some number of

common-cause failures. Failed components can only be replaced, and these replacements

(system maintenance) take place only between missions. Note that functional components do not

age or fail during system maintenance. Let Tm denote the time to individual failure of a new copy

of component m, m = 1, 2, ... , M, and note that T. is governed by a Weibull probability

distribution having shape parameter 9m > 1 and scale parameter 77m > 0. Therefore, the

cumulative distribution function of Tm is given by

Gm(t)= 1-exp(-/(t/lm7) (4.1)

Note that the fact that 90, Ž> 1, m 1, 2, ... , M, implies that components have either constant or

increasing failure rates.
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The system is also subject to F types of random, common-cause failures. Let yfdenote the

probability that common-cause failure type f occurs during a single mission, f = 1, 2, ... , F.

Furthermore, let

l 1 if common- cause failure f affects component m
9f~m = 0 otherwise (4.2)

f= 1, 2,... ,F,m=1,2,...,M.

Upon completion of each mission, some or all of the components may be failed. A built-

in-test is used to determine if there is one or more failed components, and this test is assumed to

be perfect. However, the test does not identify which components are failed. Note that if there

are no failed components, then the system starts its next mission.

If the built-in test reveals that at least one component failed during the previous mission,

then a set of D independent diagnostics are used in an attempt to determine the status of each

component. Each diagnostic provides an independent assessment of the status of some subset of

the components. Let

I if diagnostic d assesses component m
Cd, l0 otherwise (4.3)

d = 1, 2, ... , D, m = 1, 2, ... , M. Furthermore, let

1f0 if diagnostic d indicates that component m is failed
Xd= 10 otherwise (4.4)

d = 1, 2, ... , D, m = 1, 2 ... , M. Unfortunately, each diagnostic is subject to Type I (false

positive) and Type II (false negative) errors. Let

{1 if component m is failed (4.5)

{0 otherwise

m = 1, 2, ... ,M. Then,
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ad.m = Pr(Xd., = %I1 = 0) (4.6)

is the probability that diagnostic d produces a false positive regarding component m and

ld~m = Pr(Xd, = 01Ym = 1) (4.7)

is the probability that diagnostic d fails to detect the failure of component m, d = 1, 2, ... , D, m =

1,2,... ,M.

We assume that, eventually, the failed components are correctly identified and the system

starts its next mission. However, our focus in this study is on the first attempt at diagnosing the

failed components.

4.2 Data Generation

To facilitate study of the ANN-based policy, we constructed a discrete-event simulation

model of system performance. The model, coded in Visual Basic, mimics the operation, failure,

testing, and initial diagnosis of the system over a sequence of a user-specified number of

missions. The Visual Basic form containing the simulation code, a Visual Basic module required

to run the simulation, and a dll file required to run the simulation are included on the CD

accompanying this report. The inputs to the model include: the number of components, the

Weibull life distribution parameters for each component, the mission length, the number of

common-cause failures, the probability of and components affected by each common-cause

failure, the number of diagnostics, the coverage of each diagnostic, and the Type I and II error

probabilities for each component/diagnostic combination.

For the first simulated mission, Weibull random variates are generated and set as the

initial time to failure for each component. The time to failure values are compared to the mission

length to determine if each component can complete the mission. Monte Carlo analysis is used to
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determine if each type of common-cause failure occurs. If a common-cause failure occurs, each

affected component is failed.

For components that survived the mission, the remainder of their time to failure is stored.

If all components survived the mission, then the next mission is initiated. If the system suffered

at least one component failure, then initial diagnostics are conducted. Monte Carlo analysis is

used to determine the diagnostic results. The diagnostic results and actual system status are

stored as the output of the model. Prior to starting the next mission, all failed components are

renewed and given a new time to failure drawn from the appropriate Weibull probability

distribution. Note that to avoid initial condition bias, a set of a user-specified number of "warm-

up" missions are simulated before data collection begins.

4.3 The Use of the Artificial Neural Network

As a numerical example, we simulated 5000 missions (after 500 warm-up missions) for a

system having M = 10 components that performs sequential missions of length 1 = 0.5. In

addition to individual component failures, the system is subject to F = 2 common-cause failures.

Upon failure, this system is analyzed using D = 5 diagnostics. The remaining system parameters

are:

(=(1.0 1.5 2.5 1.0 2.0 1.0 1.5 1.0 2.0 2.5) (4.8)

j=(1.0 4.0 1.5 5.5 4.5 3.0 2.0 2.5 3.5 5.0) (4.9)

=(0.05 0.02) (4.10)

(0 0 1 1 100 00411
0• 0 0 0 0 1 1 1 1 0)
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11 1 1 0 0 0 0 0 0-

j= 0 0 1 1 1 0 0 0 0 1 (4.12)
1ý 0 0 0 1 0 0 1 1 1

0 0 0 0 0 1 1 1 0 0

'0.01 0.08 0.02 0.04 0.03 0.07 0.1 0.05 0.06 0.09"

0.04 0.02 0.01 0.05 0 0 0 0 0 0

C= 0 0 0.08 0.02 0.05 0 0 0 0 0.07 (4.13)

0.02 0 0 0 0.01 0 0 0.10 0.05 0.03

0 0 0 0 0 0.02 0.05 0.04 0 0

'0.04 0.10 0.01 0.02 0.03 0.08 0.09 0.05 0.06 0.07"

0.03 0.05 0.07 0.06 0 0 0 0 0 0

/3= 0 0 0.01 0.06 0.02 0 0 0 0 0.04 (4.14)

0.06 0 0 0 0.09 0 0 0.01 0.03 0.04

0 0 0 0 0 0.01 0.04 0.07 0 0

Of the 5000 missions simulated, there were 4404 during which the system experienced at least

one failure.

Artificial neural networks (ANN) are mathematical algorithms designed to emulate the

biological neuron learning process. These purely data-driven algorithms can be used for function

approximation when the explicit form of the variable relationship (i.e. linear, exponential, etc.) is

unknown. Artificial neural networks use a set of processing elements (or nodes) that are loosely

analogous to neurons in the brain. These nodes are interconnected in a network consisting of

multiple layers. The ANN identifies a pattern of connections between the nodes and uses a

training algorithm to determine weights on these connections. The algorithm transitions from a

random state to a final model through iterative training.

A common concern with the application of ANN is that they require large amounts of

data, which is randomly partitioned into training and testing sets. In addition, there is a high
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learning curve associated with setting the parameters of the training algorithm. In addition to

setting the network architecture, these parameters determine how quickly the network learns, the

learning and transfer functions, and the number of training iterations. The typical benefits of this

approach include the ability to capture data nonlinearities, discontinuities, and interactions and to

accept a very large number of input and output variables.

A back-propagation ANN was developed using NeuralWorks to predict component status

as a function of diagnostic test results. The back-propagation network learns by calculating the

error between desired and actual output and propagating this error information back to each node

in the network. This back-propagated error is used to drive the learning at each node. A variety

of architecture and parameter settings were tested in this research. Based on minimum root mean

squared error, the selected architecture and parameter settings of the implemented ANN are

described in Table 4-1. The implemented ANN results in root mean squared errors of 0.0720 and

0.0747 respectively for the training and testing sets.

For the 2404 missions used to test the ANN, there were 5093 component failures (out of

a possible 24,040 component-missions). When applied to the test set, the ANN approach resulted

in 3967 false positives, 1240 true positives, 3853 false negatives and 14,980 true negatives. To

provide a comparison, two additional algorithms were considered: a voting algorithm and a

signal algorithm. With the voting algorithm, a component is deemed to have failed if a majority

of the diagnostics applied to that component indicate failure. With the signal algorithm, a

component is deemed to have failed if any of the diagnostics applied to the component indicate

failure. For the same example, the voting algorithm produced 875 false positives and 18 false

negatives. The signal algorithm produced 2165 false positives and 5 false negatives.
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Network Setting Description Implemented Setting
Input layer (IL) Layer consisting of one node per input 26 nodes

variable
"Output layer (OL) Layer consisting of one node per 10 nodes

output variable
Hidden layer (HL) Single or multiple layers of nodes HL 1:10 nodes

positioned between the input and HL 2:10 nodes
output layers that determine the HL 3: 5 nodes
number of connections between these
two layers

Training data set Subset of data records (input and 2000 records
output observations) used to train the
ANN

Testing data set Subset of data observations (input and 2404 records
output observations) used to test the
ANN

Learning rule Rule that specifies how connection Delta-rule
weights are changed during the
learning process

Learning rate Coefficients that determine the rate of IL: 0.30
learning for each layer HL 1: 0.25

HL 2: 0.20
HL 3: 0.15

Table 4.1 Back-propagation Network Settings
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