Examples of cyclically-interval non-colorable bipartite graphs

R.R. Kamalian

Abstract. For an undirected, simple, finite, connected graph G, we denote by $V(G)$ and $E(G)$ the sets of its vertices and edges, respectively. A function $\varphi : E(G) \to \{1, 2, \ldots, t\}$ is called a proper edge t-coloring of a graph G if adjacent edges are colored differently and each of t colors is used. An arbitrary nonempty subset of consecutive integers is called an interval. If φ is a proper edge t-coloring of a graph G and $x \in V(G)$, then $S_G(x, \varphi)$ denotes the set of colors of edges of G which are incident with x. A proper edge t-coloring φ of a graph G is called a cyclically-interval t-coloring if for any $x \in V(G)$ at least one of the following two conditions holds: a) $S_G(x, \varphi)$ is an interval, b) $\{1, 2, \ldots, t\} \setminus S_G(x, \varphi)$ is an interval. For any $t \in \mathbb{N}$, let \mathcal{M}_t be the set of graphs for which there exists a cyclically-interval t-coloring, and let

$$\mathcal{M} \equiv \bigcup_{t \geq 1} \mathcal{M}_t.$$

Examples of bipartite graphs that do not belong to the class \mathcal{M} are constructed.

Mathematics subject classification: 05C15.

Keywords and phrases: cyclically-interval edge coloring, bipartite graph.

1 Introduction

We consider undirected, simple, finite, and connected graphs. For a graph G we denote by $V(G)$ and $E(G)$ the sets of its vertices and edges, respectively. For a graph G, we denote by $\Delta(G)$ and $\chi'(G)$ the maximum degree of a vertex of G and the chromatic index of G [14], respectively. The terms and concepts which are not defined can be found in [17].

For an arbitrary finite set A, we denote by $|A|$ the number of elements of A. The set of positive integers is denoted by \mathbb{N}. An arbitrary nonempty subset of consecutive integers is called an interval. An interval with the minimum element p and the maximum element q is denoted by $[p, q]$.

For any $t \in \mathbb{N}$ and arbitrary integers i_1, i_2 satisfying the conditions $i_1 \in [1, t]$, $i_2 \in [1, t]$, we define [8,9] the sets $\text{intcyc}_1((i_1, i_2), t)$, $\text{intcyc}_1((i_1, i_2), t)$, $\text{intcyc}_2((i_1, i_2), t)$, $\text{intcyc}_2((i_1, i_2), t)$ as follows:

$$\text{intcyc}_1((i_1, i_2), t) \equiv [\min\{i_1, i_2\}, \max\{i_1, i_2\}],$$

$$\text{intcyc}_2((i_1, i_2), t) \equiv \text{intcyc}_1((i_1, i_2), t) \setminus \{i_1\} \cup \{i_2\},$$

© R.R. Kamalian 2013
\intcyc_{2}(i_{1}, i_{2}), t) \equiv [1, t] \setminus \intcyc_{1}([i_{1}, i_{2}), t],
\intcyc_{2}([i_{1}, i_{2}), t) \equiv [1, t] \setminus \intcyc_{1}((i_{1}, i_{2}), t).

If \(t \in \mathbb{N} \) and \(Q \) is a non-empty subset of the set \(\mathbb{N} \), then \(Q \) is called a \(t \)-cyclic interval if there exist integers \(i_{1}, i_{2}, j_{0} \) satisfying the conditions \(i_{1} \in [1, t], i_{2} \in [1, t], j_{0} \in \{1, 2\} \), \(Q = \intcyc_{j_{0}}([i_{1}, i_{2}), t] \).

A function \(\varphi : E(G) \to [1, t] \) is called a proper edge \(t \)-coloring of a graph \(G \) if adjacent edges are colored differently and each of \(t \) colors is used.

For a graph \(G \) and a positive integer \(t \), where \(\chi'(G) \leq t \leq |E(G)| \), we denote by \(\alpha(G, t) \) the set of all proper edge \(t \)-colorings of \(G \). Let us set
\[
\alpha(G) \equiv \bigcup_{t=\chi'(G)}^{\alpha(G, t)} \alpha(G, t).
\]

If \(G \) is a graph, \(\varphi \in \alpha(G) \), and \(x \in V(G) \), then the set \(\{\varphi(e) / e \in E(G), e \text{ is incident with } x\} \) is denoted by \(S_{G}(x, \varphi) \).

A proper edge \(t \)-coloring \(\varphi \) of a graph \(G \) is called a cyclically-interval \(t \)-coloring of \(G \), if for any \(x \in V(G) \) at least one of the following two conditions holds: a) \(S_{G}(x, \varphi) \) is an interval, b) \([1, t] \setminus S_{G}(x, \varphi) \) is an interval.

For any \(t \in \mathbb{N} \), we denote by \(\mathcal{M}_{t} \) the set of graphs for which there exists a cyclically-interval \(t \)-coloring. Let
\[
\mathcal{M} \equiv \bigcup_{t \geq 1} \mathcal{M}_{t}.
\]

For an arbitrary tree \(D \), it was shown in \[8\] that \(D \in \mathcal{M} \), and, moreover, all possible values of \(t \) were found for which \(D \in \mathcal{M}_{t} \). For an arbitrary simple cycle \(C \), it was shown in \[7, 10\] that \(C \in \mathcal{M} \), and, moreover, all possible values of \(t \) were found for which \(C \in \mathcal{M}_{t} \). Some interesting results on this and related topics were obtained in \[1, 3, 4, 11, 13, 15, 16\].

In this paper, the examples of bipartite graphs that do not belong to the class \(\mathcal{M} \) are constructed.

For any integer \(m \geq 2 \), set:
\[
V_{0, m} \equiv \{x_{0}\}, \quad V_{1, m} \equiv \{x_{i,j} / 1 \leq i < j \leq m\},
V_{2, m} \equiv \{y_{p,q} / 1 \leq p \leq m, 1 \leq q \leq m\},
E'_{m} \equiv \{(x_{0}, y_{p,q}) / 1 \leq p \leq m, 1 \leq q \leq m\}.
\]

For any integers \(i, j, m \) satisfying the inequalities \(m \geq 2 \), \(1 \leq i < j \leq m \), set:
\[
E''_{i,j,m} \equiv \{(x_{i,j}, y_{j,q}) / 1 \leq q \leq m\} \cup \{(x_{i,j}, y_{j,q}) / 1 \leq q \leq m\}.
\]

For any integer \(m \geq 2 \), let us define a graph \(G(m) \) by the following way:
\[
G(m) \equiv \left(\bigcup_{k=0}^{2} V_{k,m}, E'_{m} \cup \bigcup_{1 \leq i < j \leq m} E''_{i,j,m} \right).
\]
It is not difficult to see that for any integer $m \geq 2$, $G(m)$ is a bipartite graph with $\Delta(G(m)) = \chi'(G(m)) = m^2$, $|V(G(m))| = \frac{3m^2 - m}{2} + 1$, $|E(G(m))| = m^3$.

Theorem 1. For any integer $m \geq 8$, $G(m) \notin \mathcal{M}$.

Proof. Assume the contrary. It means that there exist integers m_0, t_0, k_0, satisfying the conditions $m_0 \geq 8$, $m_0^2 \leq t_0 \leq m_0^3$, $t_0 = m_0^2 + k_0$, $0 \leq k_0 \leq m_3^3 - m_0^2$, $G(m_0) \in \mathcal{M}_{t_0}$.

Let φ_0 be a cyclically-interval t_0-coloring of the graph $G(m_0)$. Without loss of generality, we can suppose that $S_{G(m_0)}(x_0, \varphi_0) = [1, m_0^2]$. Let us consider the edges e' and e'' of the graph $G(m_0)$, which are incident with the vertex x_0 and satisfy the equalities $\varphi_0(e') = 1$, $\varphi_0(e'') = \lfloor \frac{m_0^2}{2} \rfloor$.

Suppose that $e' = (x_0, y)$, $e'' = (x_0, y')$. Clearly, there exists a vertex $\bar{x} \in V_{1,m_0}$ in the graph $G(m_0)$ which is adjacent to the vertices y' and y''. It is not difficult to see that $S_{G(m_0)}(y', \varphi_0) \cup S_{G(m_0)}(\bar{x}, \varphi_0) \cup S_{G(m_0)}(y'', \varphi_0)$ is a t_0-cyclic interval.

Clearly, the inequalities $m_0^2 + k_0 - 4m_0 + 4 > 4m_0 - 2$ and $4m_0 - 1 \leq \lfloor \frac{m_0^2}{2} \rfloor \leq m_0^2 + k_0 - 4m_0 + 3$ are true. Consequently, $\lfloor \frac{m_0^2}{2} \rfloor \leq \intcyc_2((4m_0 - 2, m_0^2 + k_0 - 4m_0 + 4), m_0^2 + k_0)$. But it is incompatible with the evident relations $\lfloor \frac{m_0^2}{2} \rfloor \leq S_{G(m_0)}(y'', \varphi_0)$ and $S_{G(m_0)}(y', \varphi_0) \cup S_{G(m_0)}(\bar{x}, \varphi_0) \cup S_{G(m_0)}(y'', \varphi_0) \subseteq \intcyc_2((4m_0 - 2, m_0^2 + k_0 - 4m_0 + 4), m_0^2 + k_0)$. Contradiction.

The author thanks P.A. Petrosyan for his attention to this work.

References

R.R. Kamalian
Institute for Informatics and Automation Problems
National Academy of Sciences of RA, 0014 Yerevan,
Republic of Armenia
E-mail: rrkamalian@yahoo.com