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Abstract— The efficient diagnosis of hardware and software
faults in parallel and distributed systems remains a challenge in
today’s most prolific decentralized environments. System-level
fault diagnosis is concerned with the identification of all faulty
components among a set of hundreds (or even thousands) of
interconnected units, usually by thoroughly examining a collec-
tion of test outcomes carried out by the nodes under a specific
test model. This task has non-polynomial complexity and can
be posed as a combinatorial optimization problem. Here, we
apply a binary version of the Particle Swarm Optimization
meta-heuristic approach to solve the system-level fault diagnosis
problem (BPSO-FD) under the invalidation and comparison
diagnosis models. Our method is computationally simpler than
those already published in literature and, according to our
empirical results, BPSO-FD quickly and reliably identifies the
true ensemble of faulty units and scales well for large parallel
and distributed systems.

I. INTRODUCTION

Distributed and parallel systems continue to increasingly
permeate societies nowadays. From cellular networks to
distributed database management systems, the emergence of
innovative architectural and communication protocols has
given rise to the next generation of decentralized systems
such as wireless sensor and robot networks and cloud
computing [17]. On the other hand, many groundbreaking
research projects largely rest on powerful multiprocessor
systems due to their unrivaled processing capabilities, rapid
growth and improved affordability.

It is from the standpoint of these technological advance-
ments that we witness a revival among the scientific commu-
nity when it comes to fault tolerance protocols, as processing
units in decentralized systems are subject to both hardware
and software faults. Since undetected faults lead to system
errors with unpredictable results, efficiently diagnosing the
system’s status (i.e., identifying which nodes are faulty and
which are fault-free) still remains a serious challenge for
committed researchers.

The aforementioned problem is known as “system-level
fault diagnosis” and has drawn a significant amount of
research over the last thirty years. Different test models [7]
[12] [15] have been proposed in literature, each relying on
the common assumption that every system unit is tested by
several other units. Two well known models are the invali-
dation and the comparison models. They constitute classical
benchmarks in the field. Both models assume that each test
outcome indicates the status of the tested node and and the
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system’s statuses are diagnosed from the results of the tests.
The collection of all test outcomes is referred to as the
input syndrome and stands as the major fault identification
vehicle. Thorough examination of the input syndrome under
the set of rules enforced by each test model turns out
to be a non-polynomial complexity problem. Furthermore,
given the discrete nature of the node assignment process
(every node is labeled as either faulty or fault-free), system-
level fault diagnosis can be modeled as a combinatorial
optimization problem, whose (optimal) solution is the set
of node assignments that entirely matches the system’s input
syndrome.

Although several algorithms have been put forward with
this goal in mind (e.g. branch-and-bound [8] [11] [16],
logical framework [1], etc.), it wasn’t until a few years ago
that nature-inspired meta-heuristic optimization approaches
[18] were brought into the context of fault identification
in distributed systems. This sort of methods have become
very popular among the optimization community for their
proved ability to overcome local optima through a parallel
exploration of the search space and the exploitation of
social communication mechanisms to drive the population
toward promising search regions. Ant colonies [5], genetic
algorithms (GA) [3] and artificial immune systems (AIS) [19]
have all proved successful in reliably and quickly spotting
the ensemble of damaged nodes within reasonable time and
space bounds, even exhibiting a good performance in large-
size systems.

Yet the implementation of these meta-heuristic algorithms
could be rendered computationally prohibitive in many real-
life scenarios given their underlying intricacy. In the former
case of artificial ant colonies, the authors maintained two
sets of pheromone trails and heuristic information per node,
whereas GA and AIS develop their search strategy on the
basis of the procreation (either by recombination or cloning)
of the individuals in their population. It is clear that memory
and computing power requirements can severely restrict the
settings in which the previous methods will be of any
use in practical terms, e.g. an ordinary sensor, acting as a
cluster-head in a wireless sensor network with cluster-based
topology, is responsible for processing the test outcomes
reported by all sensors in its cluster.

While parallelization stands as a feasible workaround
[4] to alleviate complexity issues, simpler optimization ap-
proaches will yield greater long-term benefits. We propose
the application of a discrete (binary) version of the successful
Particle Swarm Optimization (PSO) meta-heuristic algorithm
to solve the system-level fault diagnosis problem. In our
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approach, each particle encodes a possible set of faulty
units and moves for the search space trying to find the
possible set of faulty units that matches the collection of
test outcomes contained in the input syndrome. Despite
being PSO a population-based optimization method [9], it
has the advantage that the number of individuals remains
constant throughout the algorithm’s execution (as opposed
to evolutionary computation representatives) and each search
agent only requires a minimal amount of storage (contrary
to the ant colony systems in which environment-mediated
communication is done in the form of pheromone deposit
for each edge/node of the problem graph). Being this so,
the simplicity of our PSO-based algorithm is an appealing
feature which opens the door to its applicability in resource-
constrained environments. Moreover, our method was tested
under two widespread diagnosis models, exhibiting a fast
convergence to the actual set of faulty nodes and good
scalability properties.

The manuscript has been shaped as follows. Section II
is related work while Section III elaborates on the two most
commonly used fault diagnosis models. The fundamentals of
the original PSO formulation for the continuous case and its
adaptation to the discrete world are the subject of Section
IV. Then we dissect our binary PSO algorithm (Section
V), provide simulation results (Section VI) and outline final
remarks (Section VII).

II. RELATED WORK

The extent to which a system can proactively react to
underlying hardware or software faults depends on how fast
those anomalies can be detected. No wonder then that con-
vergence time in fault identification is a highly sought-after
goal for any competitive diagnosis method. The explained
methods in this section have the same goal: to find a set of
faulty nodes from the input syndrome.

For example, authors in [8] and [11] put forward branch-
and-bound-based heuristics whose time complexity is O(n3),
where n is the system size (number of units). Sullivan [16]
introduced a backtracking-based enhancement to [8] which
caused the time complexity to drop to O(t3 + |E|), where t
is the number of tolerated faults and |E| the total number
of tests carried out in the system. This bound becomes
more relevant as fewer units are found defective among a
large group of nodes. In practical scenarios, however, this
consideration does not always hold. In [1], Ayeb presented a
logical-framework-based fault diagnosis algorithm that runs
in O(n2

√
t/
√

log n). The problem with all these approaches
is their tendency to get stuck in suboptimal solutions (sets of
faulty nodes), as the examination of the search space tends
to be not comprehensive. This behavior leads to incorrect
guesses on the nodes’ status, which impacts the system’s
overall ability to recover successfully from potential failures
caused by undiagnosed faults.

As stated in Section I, evolutionary and heuristic al-
gorithms were applied to system-level fault diagnosis by
Elhadef et al [3] [19], in particular genetic algorithms (GA)
and artificial immune systems (AIS). Both methods suffer

from a lack of adequate population diversity given the biased
exploration brought about by an adaptive mutation operator
(openly criticized in [19] but finally adopted). Mutating
genes according to their fitness values not only narrows the
search capabilities of the approaches, but in this context
can also be deceptive, since a gene with high fitness value
doesn’t always correspond to a correctly guessed node, as
explained in Section V later on. More important, the worst-
case identification of faulty nodes turns severely hindered
in large systems composed of hundreds or thousands of
nodes. This is due to the enormous number of individuals
generated across the algorithm lifetime in an attempt to find
the optimal solution, which consequently triggered the need
for a parallel version [4]. Such demeanor is made even
worst in the AIS-based model [19], where the number of
elitist (fittest) antibodies and the number of clones per elitist
antibody are both set to be the population size. These are no
longer concerns in our binary PSO implementation given that
the number of individuals is never altered and an unbiased
exploration takes place, i.e. all components of the binary
vector representing the candidate solution are allowed to
change.

More recently, an algorithm inspired on ant colony op-
timization (ACO) [18] was devised for system-level fault
diagnosis [5] and tester under two test models. The chief
idea is to have every ant construct a full tour of the graph
and label each node as faulty/fault-free as it goes by. Unlike
widely recognized ACO models, authors don’t use neither
pheromone nor heuristic values to perform internodal transi-
tions but to guess the node’s status. The drawback here lies
in the redundant storage of dual sets of pheromone trails and
heuristic information per node for each ant journey, which
aggravates the memory consumption issue in very large
systems. Furthermore, it is not clear what is the heuristic
value assigned to a node by a “flying ant”, as no link
between the current and “leaping-to” nodes might exist.
Another downside of their meta-heuristic implementation is
the handling of infeasible solutions, which are discarded by
default, thus wasting valuable information gathered during
the ant’s tour along the graph. Our PSO-derived approach
requires less information at the search agent level (particle),
gracefully turns infeasible into feasible candidate solutions
and is theoretically simpler than its ant-based peer.

III. FAULT DIAGNOSIS MODELS

Several models to identify faults in distributed systems
appear in literature. In this section, we will focus on the
popular invalidation and comparison models. Both of them
assume that each entity is capable of testing a particular
subset of the other entities in the system and every test has a
binary character. A test outcome indicates whether the node
is either faulty (1) or fault-free (0). Moreover, the group of all
faulty units in a system is called the fault set. One attribute
of the so-called t-diagnosable systems is that they can only
have at most t faulty nodes.

Although both diagnosis models represent the problem in
a graph-like fashion and use the collection of test outcomes
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as a means to figure out what the status of every node is,
yet the graph representation and implicit assumptions on the
test results are model-specific.

A. The PMC Model

In the invalidation or PMC model (named after its authors
in [15]), the problem is represented as a directed graph G =
(V,E) with V = {v1, v2, . . . , vn} being the set of entities
(processors, sensors, etc.) and E the set of edges. Each edge
eij ∈ E stands for a test performed by node vi upon node
vj and whose binary outcome is denoted as σij . The set of
all test outcomes is called a syndrome and is symbolized
by σ. Since a syndrome σ is a physical manifestation of an
underlying fault set F , we usually write σF .

According to the PMC model, the system has an stationary
nature, i.e. the statuses of all nodes do not change during the
diagnosis phase. It is also assumed that tests carried out by
fault-free nodes are always correct while those executed by
faulty devices are unreliable, i.e. yield arbitrary results.

Let vi ∈ V be any node in G. Then the set of nodes
tested by vi is Γ(vi) = {vj ∈ V : eij ∈ E} and σ(vi) =
{σij ∈ σ : j ∈ Γ(vi)} is the subset of the syndrome σ
containing the results of the tests realized by vi. In a similar
way, Γ−1(vi) = {vj ∈ V : eji ∈ E} is the set of vi’s testers
and σ−1(vi) = {σji ∈ σ : j ∈ Γ−1(vi)} the outcomes of all
tests carried out upon vi.

Definition III.1 A fault set F ⊆ V is consistent with the
syndrome σ under the PMC model if ∀ eij ∈ E, neither
σij = 0 where vi ∈ V − F and vj ∈ F , nor σij = 1 where
vi, vj ∈ V − F , holds.

The above definition states that only fault-free nodes al-
ways give correct results. This assumption will play a pivotal
role later on during the generation of candidate syndromes
as part of the quest for the true fault set.

B. Comparison Model

In the comparison model [14], nodes perform tests in a
pairwise fashion, i.e. some pairs of units test each other. The
comparison between the two test outcomes (match/mismatch)
stands as the foundation for deriving the nodes’ statuses.
More formally, in a comparison-based scenario, an undi-
rected graph G = (V,E) is used to model the system, where
V is the set of units and E the collection of edges. Now
each edge eij has an associated weight σij = 0 when the
two test results carried out by units vi and vj are identical
and σij = 1 otherwise. As in the PMC model, the collection
of all edge weights (test comparisons) creates the syndrome
σ.

The comparison model also regards the system as static,
likewise PMC. Now the main assumption is that two fault-
free units yield identical test outcomes whereas any couple
of faulty and fault-free nodes will yield mismatching results.
However divergent standpoints arise when it comes to the test
comparison of two faulty nodes. The asymmetric version of
the comparison model [12] considers that two damaged nodes
will always produce a disagreement while in the symmetric
version [7], both a match and a mismatch are likely choices.

Let vi ∈ V be any node in G. Then the set of neighbors
of vi is Γ(vi) = {vj ∈ V : eij ∈ E} and σ(vi) = {σij ∈ σ :
j ∈ Γ(vi)} is the subset of the syndrome σ containing the
test agreements/disagreements involving vi.

Definition III.2 A fault set F ⊆ V is consistent with
the syndrome σ under the comparison model if ∀ eij ∈ E,
neither σij = 0 where vi ∈ V − F and vj ∈ F (or vi ∈ F
and vj ∈ V − F ), nor σij = 1 where vi, vj ∈ V − F , holds.

C. More on t-Diagnosable Systems

From the previous two subsections one may realize that,
given an input syndrome σ which is compliant with the spec-
ifications of some model, multiple faults sets could possibly
give rise to it. This makes system-level fault diagnosis a non-
deterministic problem, which is of course very undesirable
since the actual set of faulty units cannot be guessed with
full certainty. To prevent this, we introduce the following
definition.

Definition III.3 A system of n units is t-diagnosable if
and only if the number of faulty units doesn’t exceed t and
for any consistent syndrome σ, there is only one fault set F
that originated it.

In the sequel, we confine ourselves to a type of system
which is easy to generate and known to be t-diagnosable.
As such, it will be used in our experiments.

Definition III.4 A system represented by a test graph G =
(V,E) with n = |V | is a Gt(n) design iff i) n ≥ 2t + 1 and
ii) each node is tested by t others.

For the PMC model, it was proved in [6] that Gt(n) system
in which no two units test each other is t−diagnosable. As to
the comparison model, recall that we consider a single link
between any two entities, so the Gt(n) design fits very well
once it was demonstrated to be t-diagnosable for this model
too [14]. Figures 1 and 2 display a Gt(n) graph under the
PMC and symmetric comparison models, respectively.
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Fig. 1. A G2(8) test assignment graph under the PMC model. The directed
edge labels represent test outcomes.

Finally, let us point out that, irrespective of the diagnosis
model being used, the problem of fault detection in dis-
tributed and parallel systems can be posed as a combinatorial
optimization problem if we undertake a quest, over the
discrete space of all possible fault sets F , of the actual fault
set F which univocally generates the known input syndrome
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Fig. 2. A G2(8) graph under the symmetric comparison model. The
undirected edge labels represent the comparison result of pairwise test
outcomes.

σF . This task has non-polynomial time complexity [21] and
calls for the application of heuristic methods to informedly
navigate over the search space until F is found. The next
section is devoted to outline the fundamentals of one of such
meta-heuristic procedures.

IV. PARTICLE SWARM OPTIMIZATION

One of the most widespread swarm intelligence algorithms
[18] is Particle Swarm Optimization (PSO), which exploits
the social behavior of some animal communities like bird
flocks or fish schools in the pursuit of desirable locations
in a given area, e.g. birds flocking to a food source. The
inherently collaborative nature of these biological swarm
systems led to the design of an optimization procedure for
efficiently exploring non-linear, non-differential and multi-
modal, real-valued search spaces. Originally introduced by
Kennedy and Eberhart in 1995 [9], PSO has earned a well-
deserved renown among population-based meta-heuristic ap-
proaches for its intuitive description, algorithmic simplicity
and proven competence to reach the global optimum in a
wide array of challenging optimization landscapes. As such,
it has become one of the most active research areas in bio-
inspired optimization models.

In PSO, a swarm S of search agents (particles) con-
currently moves throughout a continuous search space in
its quest for the global optimum of any multidimensional
function. The swarm size is n and each particle represents a
candidate solution to the optimization problem. The i-th par-
ticle is defined by a position vector �xi = (xi1, xi2, . . . , xid)
where d is the dimensionality of the search space and a
velocity vector �vi = (vi1, vi2, . . . , vid). The position of
every agent is evaluated according to a problem-dependent
fitness function f : �d → � and each particle remembers
its best-ever-found position �pi = (pi1, pi2, . . . , pid). This is
the cognitive component of PSO, often referred to as the
particle’s “local best”.

Additionally, a neighborhood is defined for every particle
as the subset of individuals which it is able to communicate
with. The first PSO model used an Euclidean neighborhood
by measuring the actual distance among particles (as an imi-
tation of the biological models) to determine the nearest ones.

This formulation was indeed computationally-intensive and
became eventually replaced with topological neighborhoods,
which do not regard the particles’ vicinity. Among them,
the so-called “global-best” neighborhood allows full com-
munication among all swarm individuals. A good analysis
of “local-best” versus ”global-best” neighborhood definitions
can be found in [2]. The particle’s view of its neighborhood
determines the “social” component of PSO.

Particles fly along the search space attracted by their best
individual solution (“local best”) and the best solution �pg

found by any particle in their neighborhood (“global best”).
The entire swarm is updated at each time step by modifying
the velocity and position of each particle in every dimension
according to the following rules:

vij = χ (vij + c1ε1(pij − xij) + c2ε2(pgj − xij)) (1)

xij = xij + vij (2)

where c1, c2 are called “acceleration constants”, ε1 and ε2
are independent random numbers uniquely generated at every
update for each dimension j ∈ {1 . . . d}, χ is the “constric-
tion factor” meant to balance the global and local exploration
of the algorithm. This parameter plays a fundamental role in
the algorithm achieving good convergence capabilities and
can be computed as shown in (3). Most implementations
adjust the values of c1 and c2 to 2.05 to obtain ϕ > 4 to
guarantee the convergence, because when ϕ < 4 the swarm
would “spiral” toward and around the best solution found in
the search space [2].

χ =
2

|2− ϕ−
√

ϕ2 − 4ϕ| , ϕ = c1 + c2 (3)

The algorithm terminates usually after a certain number of
iterations. Notice that PSO doesn’t generate new individuals
unlike evolutionary approaches but dynamically modifies
the swarm members, which is a remarkable feature that
saves time and memory when dealing with overly complex
systems.

A. Binary PSO

Though at first conceived for coping with continuous
optimization problems, PSO has undergone many further
developments since its early inception that make it now fit
for finding the most promising combination of discrete vector
components that optimizes a given scenario. The first PSO
plunge into the realm of combinatorial optimization took
place shortly after its birth when a discrete or binary version
of the algorithm was put forward by its authors [10].

In discrete PSO, each particle is encoded as a binary
vector of length d and the position update equation in (2)
is redefined as a probabilistic rule based on a sigmoidal
transformation applied to the real-valued particle velocity.

xij =
{

1, if r ≤ 1
1+e−vij

0, otherwise
(4)
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where r ∼ U(0, 1). Expression (4) forces the particle’s
components to be binary values while still allows the swarm
members to benefit from the cognitive and social components
of the original PSO formulation for the velocity calculation
in a continuous search space. The simplicity behind this idea
is one of the major appeals of the algorithm, which in turn
has become the focus of more intensive research for speeding
up convergence.

V. BPSO-FD: THE PROPOSED APPROACH

We model system-level fault diagnosis as a combinatorial
search problem undertaken by a binary PSO approach. The
goal is to find, among many possible fault sets (see Section
III), the true set F that entirely matches the collection of
test outcomes contained in the input syndrome σF . In our
approach the diagnosis process needs to run in a separate
node.

A. Particle Encoding and Initialization

In BPSO-FD, each particle stands for a candidate fault set
F . Therefore, we encode its position �xi as a binary vector
whose dimensionality d = |V | is given by the system size
(number of distributed or parallel components in the system).
The status of the j-th node (j ∈ {1..d}) will be denoted by
xij = 1 if we guess that vj is faulty or xij = 0 otherwise.

At the algorithm outset, all particle velocities are randomly
initialized with real values in [0, 1] whereas for each particle
position, it is first decided at random the number of faulty
units nf ∼ U(1, t) the particle will encode and then nf bits
will be arbitrarily set to one. By doing so, we are trying to
promote diversity in the initial swarm since the cardinality
of the initial fault sets will vary stochastically within the
feasible bounds imposed by a t-diagnosable system.

For the potential fault set F encoded by each particle,
we generate its corresponding candidate syndrome σF as a
previous step to compute the particle’s fitness.

B. Fitness Function

The quality of any particle (fault set F ) in our problem can
be measured as the resemblance between the input syndrome
σF and the candidate syndrome σF . The computation of the
latter one and of the fitness function itself is strongly model-
dependent although they share some similarities.

1) Candidate Syndrome Generation: Out of all diagnosis
models considered in this study, only the asymmetric com-
parison model is entirely deterministic. That is, given the
assumption of which nodes are faulty and which are fault-
free (particle encoding), we follow the asymmetric model
rules stated in Section III-B and assign a label to every edge
eij in the test assignment graph G. The collection of these
labeled edges becomes our candidate syndrome σF .

Since the invalidation and symmetric comparison mod-
els have a non-deterministic nature concerning the tests
carried out by faulty nodes (in the former case) and the
agreement/disagreement between a pair of mutually-tested
damaged devices (in the latter case), one can make the

reasonable assumption that these edges in the candidate
syndrome are equal to those in the input syndrome, i.e.

σF (vi) = σF (vi) ∀ vi ∈ F

Then we generate the remaining edge labels in σF in full
compliance with the rules defined for each model, which
were clearly portrayed in Section III-B.

2) The Particle Fitness: A particle is said to have bet-
ter quality (fitness) than others if the candidate syndrome
associated with its encoding (fault set F ) resembles the
input syndrome better. From the local viewpoint of node
vi, this is equivalent to count how many labels of the
incoming/outgoing edges coincide in both syndromes. For
the comparison models, expression (5) models the node-level
similarity.

f (σF , σF , vi) =
|σF (vi) ∩ σF (vi)|

|Γ(vi)| (5)

For the PMC model, we are to take into account that all
nodes will be tested but not necessarily testers. Equations (6)
to (8) model the similarity from vi’s viewpoint as a tester
node, tested node and both viewpoints, respectively.

f+1 (σF , σF , vi) =

{
1, if |Γ(vi)| = 0
|σF (vi) ∩ σF (vi)|

|Γ(vi)| , otherwise
(6)

f−1 (σF , σF , vi) =
|σ−1

F (vi) ∩ σ−1

F
(vi)|

|Γ−1(vi)| (7)

f (σF , σF , vi) =
f+1 (σF , σF , vi) + f−1 (σF , σF , vi)

2
(8)

Now we can define in (9), regardless of the diagnosis
model used, the overall resemblance function between the
input and candidate syndromes, which in turns becomes the
fitness function for BPSO-FD.

f(σF , σF ) =

∑
vi∈V

f (σF , σF , vi)

|V | (9)

The above equation can be seen as the correctness proba-
bility of the potential fault set F being the actual fault set F .
Because we are working with t-diagnosable systems solely,
then it is guaranteed that there is a unique fault set F that
makes σF = σF . Remark that (5) and (8) take values in
[0, 1], which consequently defines the image of (9) to be the
same interval.

C. Position Update Rule

We have used expression (10) introduced in a recent study
[20] which has yielded better experimental results for our
problem.

xij =

{
1, if r ≤ 1

1+ e−1.5·d·vij

0, otherwise
(10)

where d = |V | is the particle dimensionality.
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D. Handling Infeasible Solutions

The application of the stochastic rule in (10) to every
component of the particle’s encoding can lead us to an
infeasible solution, which is a certain configuration of node
guesses in which either all units are fault-free or there are
more than t faulty units. Both scenarios are unacceptable in
t-diagnosable systems and are to be dealt with. We gracefully
manage this situation in the following way:

1) Compute the node-level resemblance by either (5) or
(8) depending on the underlying diagnosis model.

2) If the particle encoding is the zero vector, generate a
random number b ∈ [1..t] and flip (turn to 1) the b bits
with the lowest fitness values. Otherwise, let k be the
number of 1’s in the particle (notice that k > t). Then
generate a random number b ∈ [k − t..k − 1] and flip
(turn to 0) the b bits set to 1 with the lowest fitness
values.

The above procedure turns infeasible into feasible particles
by flipping the bits with lowest local resemblance to the input
syndrome, in an attempt to accelerate the convergence of the
algorithm towards the actual fault set.

E. Stop Criterion

Unlike many common PSO implementations, our algo-
rithm doesn’t stop when it reaches an upper bound in the
number of iterations to carry out but when it finds the actual
fault set F , i.e. a particle encoding F with fitness value
f(σF , σF ) = 1. This fault set F is proved to be unique
in t-diagnosable systems [6] [14].

F. The BPSO-FD Algorithm

Algorithm 1 unfolds the entire pseudo-code for the BPSO-
FD scheme.

VI. SIMULATION RESULTS

We have empirically tested the performance of BPSO-
FD under t-diagnosable systems of various sizes for both
invalidation and comparison diagnosis models. Our algorithm
has been contrasted to the one in [19], which employs an
artificial immune system (AIS) as the optimization approach,
in terms of (1) number of individuals (candidate fault sets)
probed before identifying the true fault set and (2) the CPU
time needed to find F . The simulations were conducted on
an Intel Core2 Duo E4500 2.2GHz with 2 GB of RAM and
both schemes were coded in Java using JDK 1.6 and the
t-diagnosable systems tried are G24(50) and G49(100).

We used the AIS parameter configuration outlined in [19]
whereas for BPSO-FD we set our parameters as follows:
n = 10, c1 = c2 = 2.05 and implemented the particle
neighborhood after the “global best” topology with the use
of constriction factor for the velocity update rule.

For each of the above systems, the number of faults x has
been varied from 1 to t and for every value of x, we have
randomly generated 100 fault sets of cardinality x and their
average results and standard deviations have been reported. In
all cases, both BPSO-FD and AIS succeeded in discovering

Algorithm 1 Binary PSO to Fault Diagnosis (BPSO-FD)
Require: input syndrome σF , consts c1, c2, swarm size n

1: iteration ← 0
2: compute constriction factor χ using (3)
3: initialize swarm as shown in Section V-A
4: repeat
5: iteration ← iteration +1
6: for each particle i in the swarm do
7: update particle velocity �vi using (1)
8: update particle position �xi using (10)
9: if �xi infeasible then

10: apply feasibility scheme in Section V-D
11: end if
12: end for
13: for each particle i in the swarm do
14: F ← �xi; generate σF as shown in Section V-B.1
15: compute the fitness f(σF , σF ) using (5) – (9)
16: update local best �pi accordingly
17: end for
18: update global best �pg accordingly
19: until f( �pg, σF ) = 1 or iteraction >= 10000

return �pg

the actual fault set yet they exhibit remarkable performance
differences.

A. Performance under the PMC Model

Figure 3 displays the behavior of AIS and BPSO-FD with
the invalidation diagnosis model. As expected, an increase in
the number of faulty nodes to be detected results in a greater
amount of allocated computational resources, i.e. number
of search agents (particles or antibodies) and running time.
Nevertheless, we witness a nearly constant growth rate for
BPSO-FD in both types of resources for the G24(50) graph
as opposed to AIS which undergoes a polynomial growth
pace (in some cases it is actually exponential).

Furthermore, observe the huge gap in the number of
candidate fault sets explored by both schemes (42x wide
in its peak) and execution time consumed (5.2x longer in
the worst scenario) in order to arrive at the actual set F . The
rapid convergence of the binary PSO method to the optimum
is due to the presence of the constriction factor in the velocity
update equation (1) which enforces a greater exploitation of
the best solutions found by the swarm and also to the use
of the global best topology, which has been proved to be
quite effective in unimodal optimization functions like (9).
We contrast this behavior with the erratic convergence rate
portrayed by AIS, whose reliance upon cloning and adaptive
mutation operators leads to a poor and aimless exploration
of the discrete search space.

Regarding the G49(100) system, Figures 3(c) and 3(d)
reveal that BPSO-FD behaves in a disappointing fashion for
the worst case when it comes to the number of solutions
explored for systems with up to 33 faults, yet from that point
on it shows better performance than AIS. However it always
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Fig. 3. Performance metrics for BPSO-FD and AIS under the PMC model.

shows itself far superior to its competitor in the average case
under any fault set cardinality. It is worthwhile mentioning
that AIS managed to reduce the gap between its average and
worst case performance in this medium-size system.

B. Performance under the Comparison Model

The findings uncovered by Figure 4 for the asymmetric
comparison model are even more encouraging. For the small
system, the breach between the nature-inspired and the
evolutionary representatives is more noticeable, with low
values of standard deviations for the average case in the total
number of individuals generated by the BPSO-FD approach.
The higher degree of uncertainty among the population
members in the AIS algorithm is evidenced by its fairly wide
standard deviation. We witness the same behavior in terms
of computational time for both approaches.

Again, the PSO-based meta-heuristic shows an irregular
tendency in the worst case identification of the true fault set
for the large system. However, observe that despite the non-
negligible number of faults to be spotted, the performance in
the average case strictly follows the quasi-constant pattern
disclosed in the PMC model as well, which confirms our
claim that BPSO-FD is a resilient fault diagnosis protocol
for multiple test models.

VII. CONCLUSIONS AND FUTURE WORK

This research study is concerned with the application of
BPSO-FD, a bio-inspired combinatorial optimization algo-

rithm, to the problem of system-level fault diagnosis under
multiple test models. The convergence rate in the average
case of BPSO-FD, both regarding execution time and number
of solutions generated seems not to be altered regardless
of the number of faults present in the system. This speaks
highly of the scalability properties of our algorithm. BPSO-
FD outperformed an existing artificial-immune-system-based
approach in both metrics and reports a steady performance
for large systems.

As future work we plan to incorporate other fault diagnosis
models into the experimental setting and improve the worst-
case behavior of the binary PSO-based scheme, possibly
either through a hybridization with other population-based
meta-heuristics or via the application of local search mecha-
nisms that intensify the exploitation of the swarm-generated
prospective fault sets.
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