The TALP&I2R SMT Systems for IWSLT 2008

Maxim Khalilov1, Marta R. Costa-jussà1, Carlos A. Henríquez1, José A.R. Fonollosa1, Adolfo Hernández1, José B. Mariño1, Rafael E. Banchs1, Chen Boxing2, Min Zhang2, Aiti Aw2 and Haizhou Li2

1TALP Research Center
Universitat Politècnica de Catalunya, Barcelona
2Department of Human Language Technology
Institute for Infocomm Research, Singapore

\texttt{\{khalilov|mruiz|carloshq|adrian|adolfohh|canton|rbanchs\}@talp.upc.edu \{bxchen|mzhang|aaiti|hli\}@i2r.a-star.edu.sg}

\textbf{ABSTRACT}

UPC TALP Research Center participated in the Arabic-English task and together with the I2R participated in Chinese-Spanish translation and pivot Chinese-(English)-Spanish translation. The novelties we have introduced are:

1. improved reordering method for an Ngram-based system,
2. linear combination of translation, reordering and target models for domain adaptation,
3. new technique dealing with punctuation marks insertion, and
4. concatenation strategy for PIVOT translation for a phrase-based SMT system.

\section{BASELINE SYSTEMS}

We used an out-of-domain corpus to increase the final translation and reordering tables. We performed a linear combination of the translation, reordering and target models.

\subsection{PUNCTUATION RESTORATION (PRIMARY)}

We embedded punctuation restoration in the main translation step.

\subsection{EXPERIMENTS}

We performed a 200-best of possible Spanish translations for each Chinese-Spanish phrase. The final phrase probabilities were calculated as follows:

\begin{align*}
\phi (f|e) &= \sum_w \phi(f|w) \phi(w|e)
\end{align*}

\section{EXPERIMENTS}

- Word segmentation for the Chinese part using ICTCLAS tools
- For the Chinese-English, the out-of-domain corpora was the HIT corpus (132K sentence pairs); Olympic corpus (54K bilingual sentences); PKU corpus (200K parallel phrases) and the English part of the Tanaka corpus.

\section{CHINESE-TO-SPANISH DIRECT TRANSLATION}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
Track & System & BLEU & METEOR \\
\hline
\hline
Primary & 0.3878 & 0.6368 & 0.7047 & 0.3048 & 0.2961 \\
Secondary & 0.3423 & 0.5736 & 0.6223 & 0.2711 & 0.2626 \\
\hline
\end{tabular}
\caption{Chinese-to-Spanish direct translation results.}
\end{table}

\section{CONCLUSIONS}

- Arabic-English: the domain adaptation using linear interpolation of translation, reordering and target models shows improvements in CRR and ASR.
- Chinese-(English)-Spanish: the system cascade architecture demonstrates better results than the alternative (phrase probabilities combination), however there is still room for improvement on phrase table pruning.
- Chinese-Spanish: Although the direct Chinese-Spanish phrase-based system performed better than the TALPuple system on the internal test, we submitted the last one as a primary system in order to contrast it the many other MOSES-based strategies presented in the evaluation.