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NONBOUNDING n-C.E. Q-DEGREES

ROLAND OMANADZE

Abstract. We prove that for any noncomputable c.e. set A there is a non-
computable c.e. set B ⊆ A such that for every noncomputable c.e. set W
we have W 6≤ QA− B < QA. We show that if c.e. Q-degrees a and b form
a minimal pair in the c.e. Q-degrees, then a and b form a minimal pair in
the Σ0

2 Q-degrees.
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In this paper we study the Q-degrees of n-computable enumerable (n-c.e.)
sets. Tennenbaum (as quoted by Rogers [8, p. 159]) defined the notion of Q-
reducibility on sets of natural numbers as follows: a set A is Q-reducible to a
set B (written as A ≤ QB) if there is a computable function f such that for
every x ∈ ω (where ω denotes the set of natural numbers),

x ∈ A ⇐⇒ Wf(x) ⊆ B.

In this case we say that A ≤ QB via f . The relation of Q-reducibility is
reflexive and transitive, so that it generates a degree structure on the subsets
of ω. It is not difficult to show that in general Q-reducibility is incomparable
with Turing reducibility ≤ T . On c.e. sets we have that if A ≤ QB, then
A ≤ T B; the converse implication does not always hold: this easily follows from
the observation that if A ≤ QB, then A is c.e. in B, where A denotes the
complement of A.

Our notation and terminology are standard, and can be found e.g. in [8]
or [10].

A set A is n-c.e. if there is a computable function f(s, x) such that for every x:

f(0, x) = 0,

A(x) = lim
s

f(s, x),
∣∣{s : f(s, x) 6= f(s + 1, x)

}∣∣ ≤ n.

Here the symbol |X| denotes the cardinality of a given set X. The 2-c.e. sets
are also known as d-c.e. sets as they are differences of c.e. sets.

A degree a is called an n-c.e. degree for n ≥ 1 if it contains an n-c.e. set, and
it is called a properly n-c.e. degree if it contains an n-c.e. set but no m-c.e. set
for any m < n.

It is known [1] that in n-c.e. sets (even for the case n = 2) T -reducibility is
incomparable with Q-reducibility. Therefore, the development of the structural
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theory of Q-degrees of n-c.e. sets compared to their T -degrees becomes one of
the interesting directions in the study of Q-degrees of n-c.e. sets.

It is well-known that for any n-c.e. set (n > 1) A of properly n-c.e. T -degree
there exists an (n − 1)-c.e. set B such that B < T A (this is called Lachlan’s
proposition). Below in Theorem 1 we show that for any noncomputable c.e.
set A there is a noncomputable c.e. set B ⊆ A such that the Q-degree of A−B
bounds no noncomputable c.e. Q-degrees.

Theorem 1. For any noncomputable c.e. set A there is a noncomputable
c.e. set B ⊆ A such that for every noncomputable c.e. set W we have

W 6≤ QA−B < QA.

The proof of this theorem is based on the following

Lemma 1. Let A be a noncomputable c.e. set, B be an immune set, then
A 6≤ QB.

Proof. Let A, B be as in the statement of the lemma, and let f be a computable
function such that for any x

x ∈ A ⇐⇒ Wf(x) ⊆ B.

Then the c.e. set
⋃

x∈A

Wf(x) is a subset of B. By the immunity of the set B we

have ∣∣∣
⋃
x∈A

Wf(x)

∣∣∣ < ∞.

Then the set

R =
⋃
x∈A

Wf(x),

is computable and

A =
{
x : Wf(x) ∩R 6= ∅}

.

Therefore A is a c.e. set, a contradiction. ¤
Definition ([5]). Given c.e. sets B ⊆ A, B is a major subset of A (written

B ⊂ mA) if A−B is infinite and for every c.e. set W ,

A ⊆ ∗W =⇒ B ⊆ ∗W.

Lachlan [5] proved that for every noncomputable c.e. set A there exists a c.e.
set B such that B ⊂ mA.

If B ⊂ mA, then A−B is an immune set. Indeed, assume that B ⊂ mA and
A − B is not immune. Let W be an infinite c.e. set such that W ⊆ A − B.
Choose any infinite computable set R ⊆ W . Then A ⊂ ∗R and B 6⊂ ∗R, a
contradiction.

We are now ready to finish the proof of Theorem 1.

Proof of Theorem 1. Let A be any noncomputable c.e. set and, by the above
remark, let B ⊆ A be a c.e. set such that A−B is immune, then by Lemma 1,
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for any noncomputable c.e. set W we have W 6≤ QA − B. By [1, Theorem 1]
A−B < QA. ¤

It follows from Theorem 1 that the partial orderings of T - and Q-degrees
of d-c.e. sets are different since by Lachlan’s proposition each noncomputable
d-c.e. set in T -degrees bounds some noncomputable c.e. sets.

Corollary 1. For any noncomputable c.e. Q-degree a there is a properly
d-c.e. Q-degree b < a which bounds in Q-degrees no noncomputable c.e. Q-
degrees.

Proof. Immediate. ¤
Let A−B be a d-c.e. set with c.e. sets B ⊆ A. Then any splitting of A into

two disjoint c.e. sets A0 and A1 splits A−B into two d-c.e. A0−B and A1−B.
In [2, Proposition 2] it is proved that both of these d-c.e. sets are Q-reducible
to A − B, and in [2, Theorem 3] it is shown that we can choose A0 and A1

so that A0 − B is Q-incomparable with A1 − B. It follows from this that any
nonzero d-c.e.Q-degree bounds a spittable d-c.e. degree [2, Corollary 5].

It is proved in [1] that for any n ≥ 2 there is a (2n)-c.e. set M of properly
(2n)-c.e. Q-degree such that for any c.e. set W , if W ≤ QM , then W is
computable.

Corollary 2. For any n ≥ 1 and noncomputable c.e. set A there are non-
computable c.e. sets A = A1 ⊇ · · · ⊇ A2n ⊇ A2 n+1 such that if

M = (A1 − A2) ∪ · · · ∪ (A2 n−1 − A2n)

and

N = (A1 − A2) ∪ · · · ∪ (A2 n−1 − A2n) ∪ A2 n+1,

then

(a) for any c.e. set W it follows from W ≤ QM that W is computable;

(b) there is a noncomputable c.e. set W such that W ≤ QN ;

(c) M ≤ QN and N 6≤ QM .

Proof. Let A be a noncomputable c.e. set, n ≥ 1, and let A = A1 ⊇ · · · ⊇
A2n ⊇ A2 n+1, where each Ai is c.e. and each A2 i−1 − A2i, is immune, and take

M = (A1 − A2) ∪ · · · ∪ (A2 n−1 − A2n)

and

N = (A1 − A2) ∪ · · · ∪ (A2 n−1 − A2n) ∪ A2 n+1.

(a) By Lemma 1, for the proof it is enough to show that M is immune.
Suppose that there is an infinite c.e. set E such that E ⊆ M . Then there is a
greatest i, 1 ≤ i ≤ n, such that E ∩ (A2 i−1 − A2i) is infinite and

F = E ∩ [
(A2 i+1 − A2 i+2) ∪ · · · ∪ (A2 n−1 − A2n)

]

is finite. Then

E ∩ (A2 i−1 − A2i) = (E ∩ A2 i−1)− F,
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i.e. E ∩ (A2 i−1 − A2i) is an infinite c.e. subset of the immune set A2 i−1 − A2i,
a contradiction.

(b) Let A2n = {f(x) : x ∈ ω} for some computable function f , and let h
be a computable function such that for any x Wh(x) = {f(x)}. Define W =
f−1(A2 n+1). Then we have

x ∈ W =⇒ f(x) ∈ A2 n+1 =⇒ Wh(x) ⊆ N,

x 6∈ W =⇒ f(x) 6∈ A2 n+1 & f(x) ∈ A2n =⇒ Wh(x) 6⊆ N.

Therefore W ≤Q N .
If the set W is computable, then A2n − A2 n+1 is c.e., since

A2n − A2 n+1 =
{

x : (∃ y)
(
x = f(y) & y 6∈ W

)}
.

But A2n − A2 n+1 is an immune set, a contradiction.
(c) M ≤ QN by [1, Theorem 1] and N 6≤ QM by (a) and (b). ¤
Definition ([4]). A set A ⊆ ω is semirecursive if there is a computable

function f of two variables such that

1. f(x, y) = x or f(x, y) = y;

2. x ∈ A ∨ y ∈ A =⇒ f(x, y) ∈ A.

Theorem 2. Let A be a noncomputable c.e. semirecursive set. Then for any
B, ∅ < T B ≤ T A, there is a set C with C ≡ T B such that 0 < QC ≤ QA.

Proof. Let A, B be as in the statement of the theorem, and let ΓB be the graph
of the characteristic function of B. Since B ≤ T A, there is a c.e. regular set
Wρ(z) (see, Rogers [8, Theorem IX.2]) such that for all x, y

〈x, y〉 ∈ ΓB ⇐⇒ (∃ u)(∃ v)
[
〈x, y, u, v〉 ∈ Wρ(z) & Du ⊆ A & Dv ⊆ A

]
. (∗)

Since A is semirecursive, there are computable functions f and g such that (see
Degtev [3])

(∀u)
[
Du ⊆ A ⇐⇒ f(u) ∈ A

]
,

(∀ v)
[
Dv ⊆ A ⇐⇒ g(v) ∈ A

]
.

For convenience, we first rewrite the property (∗) as follows:

x ∈ B ⇐⇒ (∃ u)(∃ v)
[
〈x, 1, u, v〉 ∈ Wρ(z) & f(u) ∈ A & g(v) ∈ A

]
,

x ∈ B ⇐⇒ (∃ u)(∃ v)
[
〈x, 0, u, v〉 ∈ Wρ(z) & f(u) ∈ A & g(v) ∈ A

]
.

Now we define two c.e. sets P0 and P1 as follows:

P0 =
{

x : (∃u)(∃ v)
[〈x, 0, u, v〉 ∈ Wρ(z) & f(u) ∈ A

]}
,

P1 =
{

x : (∃u)(∃ v)
[〈x, 1, u, v〉 ∈ Wρ(z) & f(u) ∈ A

]}
.

Obviously,
B ⊆ P1, B ⊆ P0 & P0 ∪ P1 = ω.
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Let C0 and C1 be computable sets such that

C0 ⊆ P0 & C1 ⊆ P1 & C0 ∩ C1 = ∅ & C0 ∪ C1 = ω,

and let

C = (B ∩ C0) ∪ (B ∪ C1).

Let h0 and h1 be computable functions such that

Wh0(x) =
{

y : (∃u)(∃ v)
[〈x, 0, u, v〉 ∈ Wρ(z) & y = g(v)

]}
,

Wh1(x) =
{

y : (∃u)(∃ v)
[〈x, 1, u, v〉 ∈ Wρ(z) & y = g(v)

]}
,

and let h be a computable function such that

Wh(x) =

{
Wh0(x), if x ∈ C0,

Wh1(x), if x ∈ C1.

Then if x ∈ C we have

x ∈ B ∩ C0 =⇒ Wh(x) = Wh0(x) ⊆ A.

x ∈ B ∩ C1 =⇒ Wh(x) = Wh1(x) ⊆ A.

If x 6∈ C, then x ∈ C = (B ∩ C1) ∪ (B ∩ C0) and we have

x ∈ B ∩ C1 =⇒ Wh(x) = Wh1(x) 6⊆ A.

x ∈ B ∩ C0 =⇒ Wh(x) = Wh0(x) 6⊆ A.

Therefore

(∀x)
[
x ∈ C ⇐⇒ Wh(x) ⊆ A

]
,

i.e. C ≤ QA.
It remains to show that B ≡ T C. For any x we have: If x ∈ C0, then

x ∈ B ⇐⇒ x ∈ C. If c ∈ C1, then x ∈ B ⇐⇒ x ∈ C. Therefore B ≡ T C. ¤

Corollary 3. Let A be a noncomputable c.e. semirecursive set. Then there
is a ∆◦

2 set C with ∅ < QC < QA such that for any noncomputable c.e. set W
we have W 6≤ QC.

Proof. Let A be a noncomputable c.e. semirecursive set and a = degT (A). Then
there is a minimal T -degree b, b < a (Yates [11]). Let B ∈ b, then B < T A.
By Theorem 2 there is a ∆◦

2 set C such that

C ≡ T B & C ≤ QA.

If there is a noncomputable c.e. set W such that W ≤ QC, then W ≤ T C ≤ T B.
Since b is a minimal T -degree, we have W ≡ T C, a contradiction. ¤

We recall that in a poset (P,≤) with least element 0, a minimal pair is a pair
of elements a, b in P such that

a,b 6= 0 & (∀ c ∈ P )
[
c ≤ a & c ≤ b =⇒ c = 0

]
.
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Definition ([9]). Given a set A, define the weak jump of A to be the set

HA =
{
e : We ∩ A 6= ∅}

and say that a set A is semilow if HA ≤ T∅′.

In [7] it is proved that if A and B are c.e. sets such that a = degQ(A)

and b = degQ(B) form a minimal pair in the c.e. Q-degree and A and B are
semilow, then a and b form a minimal pair in the Q-degrees. The following
theorem shows that the semilowness of A and B is unnecessary for Σ0

2 sets.

Theorem 3. If c.e. Q-degrees a and b form a minimal pair in the c.e.
Q-degrees, then a and b form a minimal pair in the Σ0

2 Q-degrees.

This immediately follows from

Theorem 4. If a and b are c.e. Q-degrees, then for every nonzero Σ0
2 Q-

degree c such that c ≤ Qa,b, there exists a c.e. Q-degree d such that

c ≤ Qd ≤ Qa,b.

Proof. Suppose that A and B are c.e. sets such that a = degQ(A) and b =
degQ(B). Assume that c is a nonzero Σ0

2 Q-degree such that c ≤ Qa,b. Let
C ∈ c be a Σ0

2 set. It follows from C ≤ QA that C ∈ Π0
2 (see [6, p. 282]). Then

C ∈ ∆0
2 and by [7, Corollary 5] there exist computable functions f , g such that

(∀x)
[[

x ∈ C ⇐⇒ Wf(x) ⊆ A
]

&
[
Wf(x) is finite

]]
,

(∀x)
[[

x ∈ C ⇐⇒ Wg(x) ⊆ B
]

&
[
Wg(x) is finite

]]
.

Fix computable approximations {As}s∈ω and {Bs}s∈ω of A and B, respectively.
Define a c.e. set D as follows:

D =
{
〈x, t〉 : (∃ s ≥ t)

[
Wf(x),s ⊆ As & Wg(x),s ⊆ Bs

]}
.

Then

x ∈ C ⇐⇒ (∀ t)
[〈x, t〉 ∈ D

]
.

Let

Wf̃(x) =
{〈x, t〉 : t ∈ ω

}
.

Then

(∀ x)
[
x ∈ C ⇐⇒ Wf̃(x) ⊆ D

]
,

which gives C ≤ QD.
Let f1 be a computable function such that

Wf1(〈x,t〉) =





Wf(x),n, where n=min
{
s : s≥ t & Wf(x),s ⊆ As & 〈x, t〉 ∈ Ds

}

if 〈x, t〉 ∈ D,

Wf(x) otherwise.

Then

〈x, t〉 ∈ D =⇒ (∃ s ≥ t)
[
Wf(x),s ⊆ As

]
=⇒ Wf1(〈x,t〉) ⊆ A



NONBOUNDING n-C.E. Q-DEGREES 785

and
〈x, t〉 6∈ D =⇒ x 6∈ C =⇒ Wf(x) 6⊆ A =⇒ Wf1(〈x,t〉) 6⊆ A.

Thus D ≤ QA. In the same way we can prove that D ≤ QB. ¤
Corollary 4. Let a, b be c.e. Q-degrees that form a minimal pair in the c.e.

Q-degrees, and let A, B, C and D be c.e. sets such that A ∈ a, B ∈ b, C ⊆ A
and D ⊆ B. Then degQ(A− C) and degQ(B −D) form a minimal pair in the
Σ0

2 Q-degrees.

Proof. By [1, Theorem 1] A−C ≤ QA and B −D ≤ QB and, by Theorem 3, a
and b form a minimal pair in the Σ0

2 Q-degrees. If E is a noncomputable Σ0
2 set

and E ≤ QA−C, E ≤ QB−D, then E ≤ QA and E ≤ QB, a contradiction. ¤
In [2, Theorem 6] it is proved that for any c.e. noncomputable set A there

exist noncomputable c.e. sets A0 and A1 such that A⊕A0

∣∣
QA⊕A1 and A0 and

A1 form a minimal pair in the c.e. Q-degrees.
From Theorem 4 and [2, Theorem 6] follows immediately the following

Corollary 5. For any c.e. noncomputable set A there exist noncomputable
c.e. sets A0 and A1 such that A⊕A0

∣∣
QA⊕A1 and A0 and A1 form a minimal

pair in the Σ0
2 Q-degrees.
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