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NONBOUNDING n-C.E. Q-DEGREES
ROLAND OMANADZE

Abstract. We prove that for any noncomputable c.e. set A there is a non-
computable c.e. set B C A such that for every noncomputable c.e. set W
we have W £ gA — B < gA. We show that if c.e. ()-degrees a and b form
a minimal pair in the c.e. )-degrees, then a and b form a minimal pair in
the X9 Q-degrees.
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In this paper we study the @-degrees of n-computable enumerable (n-c.e.)
sets. Tennenbaum (as quoted by Rogers [8, p. 159]) defined the notion of Q-
reducibility on sets of natural numbers as follows: a set A is @)-reducible to a
set B (written as A < B) if there is a computable function f such that for
every o € w (where w denotes the set of natural numbers),

r e A= Wy, CB.

In this case we say that A < B via f. The relation of Q)-reducibility is
reflexive and transitive, so that it generates a degree structure on the subsets
of w. It is not difficult to show that in general Q)-reducibility is incomparable
with Turing reducibility < 7. On c.e. sets we have that if A < B, then
A < 7 B; the converse implication does not always hold: this easily follows from
the observation that if A < gB, then A is c.e. in B, where A denotes the
complement of A.

Our notation and terminology are standard, and can be found e.g. in [§]
or [10].

A set Aisn-c.e. if there is a computable function f(s,x) such that for every x:

f(Oa .73) =0,
Ax) = lign f(s,x),
)

{s: f(s,2) # f(s+1Lz)}| <n

Here the symbol | X| denotes the cardinality of a given set X. The 2-c.e. sets
are also known as d-c.e. sets as they are differences of c.e. sets.

A degree a is called an n-c.e. degree for n > 1 if it contains an n-c.e. set, and
it is called a properly n-c.e. degree if it contains an n-c.e. set but no m-c.e. set
for any m < n.

It is known [1] that in n-c.e. sets (even for the case n = 2) T-reducibility is
incomparable with @)-reducibility. Therefore, the development of the structural
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theory of Q)-degrees of n-c.e. sets compared to their T-degrees becomes one of
the interesting directions in the study of ()-degrees of n-c.e. sets.

It is well-known that for any n-c.e. set (n > 1) A of properly n-c.e. T-degree
there exists an (n — 1)-c.e. set B such that B < rA (this is called Lachlan’s
proposition). Below in Theorem 1 we show that for any noncomputable c.e.
set A there is a noncomputable c.e. set B C A such that the ()-degree of A — B
bounds no noncomputable c.e. ()-degrees.

Theorem 1. For any noncomputable c.e. set A there is a moncomputable
c.e. set B C A such that for every noncomputable c.e. set W we have

W £ oA — B < gA.
The proof of this theorem is based on the following

Lemma 1. Let A be a noncomputable c.e. set, B be an immune set, then

A% oB.

Proof. Let A, B be as in the statement of the lemma, and let f be a computable
function such that for any x

re€ A= Wi, CB.
Then the c.e. set |J Wy is a subset of B. By the immunity of the set B we

TEA
have
’ U Wf(x) < 00.
TEA
Then the set
R=]J W),

€A
is computable and
A= {:L": Wf(x)ﬂR%Q}.

Therefore A is a c.e. set, a contradiction. O

Definition ([5]). Given c.e. sets B C A, B is a major subset of A (written
B C ,,A) if A— B is infinite and for every c.e. set W,

AC*W = B C*W.

Lachlan [5] proved that for every noncomputable c.e. set A there exists a c.e.
set B such that B C ,,A.

It BC A, then A — B is an immune set. Indeed, assume that B C ,,A and
A — B is not immune. Let W be an infinite c.e. set such that W C A — B.
Choose any infinite computable set R C W. Then A C *R and B ¢ *R, a
contradiction.

We are now ready to finish the proof of Theorem 1.

Proof of Theorem 1. Let A be any noncomputable c.e. set and, by the above
remark, let B C A be a c.e. set such that A — B is immune, then by Lemma 1,
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for any noncomputable c.e. set W we have W £ oA — B. By [1, Theorem 1]
A—B< QA. ]

It follows from Theorem 1 that the partial orderings of T- and ()-degrees
of d-c.e. sets are different since by Lachlan’s proposition each noncomputable
d-c.e. set in T-degrees bounds some noncomputable c.e. sets.

Corollary 1. For any noncomputable c.e. (Q-degree a there is a properly
d-c.e. ()-degree b < a which bounds in ()-degrees no noncomputable c.e. Q-
degrees.

Proof. Immediate. ([l

Let A — B be a d-c.e. set with c.e. sets B C A. Then any splitting of A into
two disjoint c.e. sets Ag and A; splits A— B into two d-c.e. Ag— B and A; — B.
In [2, Proposition 2] it is proved that both of these d-c.e. sets are Q-reducible
to A — B, and in [2, Theorem 3] it is shown that we can choose Ay and A,
so that Ay — B is Q-incomparable with A; — B. It follows from this that any
nonzero d-c.e.Q)-degree bounds a spittable d-c.e. degree [2, Corollary 5].

It is proved in [1] that for any n > 2 there is a (2n)-c.e. set M of properly
(2n)-c.e. Q-degree such that for any c.e. set W, if W < oM, then W is
computable.

Corollary 2. For any n > 1 and noncomputable c.e. set A there are non-
computable c.e. sets A= A1 D -+ D Ag, D Agyy1 such that if

M= (A —A)U---U(Agp1 — Agp)
and
N=(A —A)U---U(Agp_1— Ao) U A1,
then
(a) for any c.e. set W it follows from W < oM that W is computable;
(b) there is a noncomputable c.e. set W such that W < oN;
(c) M <N and N £ oM.

Proof. Let A be a noncomputable c.e. set, n > 1, and let A = A; O --- D
Agn D Agpni1, where each A; is c.e. and each As; 1 — Ag;, is immune, and take

M = (Al — AQ) U---u (A2n—1 - A2n)
and
N=(A —A)U---U(A2p_1 — Azn) UAgpi1.

(a) By Lemma 1, for the proof it is enough to show that M is immune.
Suppose that there is an infinite c.e. set F such that £ C M. Then there is a
greatest i, 1 <i <mn, such that £ N (Ay;_1 — Ag;) is infinite and

F=EnN [(A2i+l — Agipa) U U (A — A2n)}

is finite. Then
EN(Ayiy —Agy) = (ENAgiq)— F,
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ie. EN(Ay;_1 — Ay) is an infinite c.e. subset of the immune set Ay; 1 — Ay,
a contradiction.

(b) Let Ay, = {f(z) : 2z € w} for some computable function f, and let h
be a computable function such that for any x Wy = {f(x)}. Define W =
f 1 (Az,41). Then we have

reW = f(z) € Aypi1 = Wi C N,
x ¢ W= f(ZL') ¢ A2n+1 & f(.T) €A, = Wh(z) Z N.
Therefore W <o N.
If the set W is computable, then Ay, — As,, 11 is c.e., since

Ay = Appia = {2+ @y)(a=f) Ly g W)},

But As, — Ay, 11 is an immune set, a contradiction.
(¢) M <N by [1, Theorem 1] and N £ oM by (a) and (b). O

Definition ([4]). A set A C w is semirecursive if there is a computable
function f of two variables such that
L f(z,y) =z or fz,y) = y;
2.r€ AV ye A= f(z,y) € A

Theorem 2. Let A be a noncomputable c.e. semirecursive set. Then for any
B, @ < 1B <A, there is a set C' with C = rB such that 0 < oC < gA.

Proof. Let A, B be as in the statement of the theorem, and let I'g be the graph
of the characteristic function of B. Since B < 7 A, there is a c.e. regular set
W) (see, Rogers [8, Theorem IX.2]) such that for all z, y

(x,y) € I'p <= (Ju)(3v) [(m,y,u,v) EWyy& D, CA&D, CA|. (¥

Since A is semirecursive, there are computable functions f and g such that (see
Degtev [3])

(Vu)[Dy C A<= f(u) € A,
(Vo)[D, C A<= g(v) € A].
For convenience, we first rewrite the property () as follows:

xéB@:G@Gmk@meEM@@&ﬂweA&mweZ}

r € B<+= (3u)(3v) [(m,O,u,v} €Wy & flu) € A& g(v) € Z].
Now we define two c.e. sets Py and P; as follows:

Py = {x : (Fw)(3) [(z,0,u,v) € W) & f(u) € A]

)

)
P={a: Bu)E0)[(e1,0,0) € Wy & f(u) € A]}.

Obviously, B
ngl, BQPO & P()UPl:u).
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Let Cy and C be computable sets such that
Cogpo & C’lgPl & C’oﬂC’1:® & C()UClzw,

and let
C=(BNnCy)U(BUC).

Let hg and hy; be computable functions such that
Whotz) = {y : (Fu)(3 v)[(x,(),u, v) €Wy &y = g(v)} },
Wine = {y: Gu)E0)[(2,1,u,0) € Wy &y = g(v)] }
and let A be a computable function such that

Who(l’), if x e Cy,
Whl(ﬂf), if xe€ Cl.

9

Wh) =

Then if x € C' we have
r € BNCy = Wiy(z) = Wiy C A.
x € BNCy = Wi = Wiy C A
If ¢ C,then x € C = (BNCy)U(BNCy) and we have
r€ BNC, = Wiyp) = Wi ) € A.
€ BNCo = Wi = Wipw) € A
Therefore
(Va)[z € C <= Wy C A],

ie. C S QA.
It remains to show that B = rC. For any x we have: If x € Cjp, then
r€B<«=zxe(C. IfceCy,thenx € B<= x € (C. Therefore B=C. O

Corollary 3. Let A be a noncomputable c.e. semirecursive set. Then there
is a Aj set C' with @ < qC < gA such that for any noncomputable c.e. set W
we have W £ oC.

Proof. Let A be a noncomputable c.e. semirecursive set and a = deg(A). Then
there is a minimal 7T-degree b, b < a (Yates [11]). Let B € b, then B < rA.
By Theorem 2 there is a A§ set C' such that

C=7B&C <A

If there is a noncomputable c.e. set W such that W < oC, then W < C' < pB.
Since b is a minimal T-degree, we have W = (', a contradiction. O

We recall that in a poset (P, <) with least element 0, a minimal pair is a pair
of elements a, b in P such that

ab#0 & (VceP)lc<a&c<b= c=0].
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Definition ([9]). Given a set A, define the weak jump of A to be the set
HA:{e: WeﬂA#Q}
and say that a set A is semilow if Hy < 7@/

In [7] it is proved that if A and B are c.e. sets such that a = degg(A)

and b = degy(B) form a minimal pair in the c.e. Q-degree and A and B are
semilow, then a and b form a minimal pair in the Q-degrees. The following
theorem shows that the semilowness of A and B is unnecessary for 39 sets.

Theorem 3. If c.e. @-degrees a and b form a minimal pair in the c.e.
Q-degrees, then a and b form a minimal pair in the X9 Q-degrees.

This immediately follows from

Theorem 4. If a and b are c.e. Q-degrees, then for every nonzero ¥9 Q-
degree ¢ such that ¢ < ga, b, there exists a c.e. (Q-degree d such that

chdea,b.

Proof. Suppose that A and B are c.e. sets such that a = degy(A) and b =
deg,(B). Assume that c is a nonzero ¥ Q-degree such that ¢ < ga,b. Let
C € ¢ be a 3 set. It follows from C < gA that C' € II3 (see [6, p. 282]). Then
C € AY and by [7, Corollary 5] there exist computable functions f, g such that

(VZL’) “x €l «— Wf(:c) Q A] & [Wf(x) is ﬁnite”,
(V$) “x €l < Wg(x) - B] & [Wg(z) is ﬁnite]].

Fix computable approximations { A, }sc, and {Bs}se,, of A and B, respectively.
Define a c.e. set D as follows:

D={(@.t): 352 0)[Wyas C A & Wys € B }.

Then
z € C <<= (Vt)[(z,t) € D].
Let
Wf(m) = {(a:,t) ct € w}.
Then

(Va)[z € C = Wi € D],
which gives C' < gD.
Let fi be a computable function such that
Wi@)n, where n=min {s D52t & Wye)s € As & (a0,t) € DS}
W@t = if (z,t) € D,
W@ otherwise.

Then
<x, t> cD— (E| s> t) [I/Vf(”S - AS] — Wﬁ((x,t)) CA
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and
<$,t> ¢D—=2¢(C = Wf(x) A= Wﬁ((z,t)) Z A.
Thus D < gA. In the same way we can prove that D < oB. 0

Corollary 4. Let a, b be c.e. QQ-degrees that form a minimal pair in the c.e.
Q-degrees, and let A, B, C and D be c.e. sets such that A€ a, Beb, CCA
and D C B. Then degg(A — C) and degy(B — D) form a minimal pair in the
Y9 Q-degrees.

Proof. By [1, Theorem 1] A—C < gA and B — D < B and, by Theorem 3, a
and b form a minimal pair in the £ Q-degrees. If E is a noncomputable X9 set
and £ < gA—-C,E < oB—D, then E <A and E < B, a contradiction. [

In [2, Theorem 6] it is proved that for any c.e. noncomputable set A there
exist noncomputable c.e. sets Ay and A; such that A@AO‘QA@Al and Ay and
A; form a minimal pair in the c.e. ()-degrees.

From Theorem 4 and [2, Theorem 6] follows immediately the following

Corollary 5. For any c.e. noncomputable set A there exist noncomputable
c.e. sets Ag and A, such that A® AO‘QA @ Ay and Ay and Ay form a minimal
pair in the 39 Q-degrees.
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