NONBOUNDING n-C.E. Q-DEGREES

ROLAND OMANADZE

Abstract

We prove that for any noncomputable c.e. set A there is a noncomputable c.e. set $B \subseteq A$ such that for every noncomputable c.e. set W we have $W \not \leq{ }_{Q} A-B<{ }_{Q} A$. We show that if c.e. Q-degrees a and \mathbf{b} form a minimal pair in the c.e. Q-degrees, then \mathbf{a} and \mathbf{b} form a minimal pair in the $\Sigma_{2}^{0} Q$-degrees.

2000 Mathematics Subject Classification: 03D25, 03D30.
Key words and phrases: Q-degree, n-c.e. sets, minimal pair.

In this paper we study the Q-degrees of n-computable enumerable (n-c.e.) sets. Tennenbaum (as quoted by Rogers [8, p. 159]) defined the notion of Q reducibility on sets of natural numbers as follows: a set A is Q-reducible to a set B (written as $A \leq{ }_{Q} B$) if there is a computable function f such that for every $x \in \omega$ (where ω denotes the set of natural numbers),

$$
x \in A \Longleftrightarrow W_{f(x)} \subseteq B
$$

In this case we say that $A \leq{ }_{Q} B$ via f. The relation of Q-reducibility is reflexive and transitive, so that it generates a degree structure on the subsets of ω. It is not difficult to show that in general Q-reducibility is incomparable with Turing reducibility $\leq{ }_{T}$. On c.e. sets we have that if $A \leq{ }_{Q} B$, then $A \leq{ }_{T} B$; the converse implication does not always hold: this easily follows from the observation that if $A \leq{ }_{Q} B$, then \bar{A} is c.e. in B, where \bar{A} denotes the complement of A.

Our notation and terminology are standard, and can be found e.g. in [8] or [10].

A set A is n-c.e. if there is a computable function $f(s, x)$ such that for every x :

$$
\begin{gathered}
f(0, x)=0 \\
A(x)=\lim _{s} f(s, x) \\
|\{s: f(s, x) \neq f(s+1, x)\}| \leq n
\end{gathered}
$$

Here the symbol $|X|$ denotes the cardinality of a given set X. The 2-c.e. sets are also known as d-c.e. sets as they are differences of c.e. sets.

A degree a is called an n-c.e. degree for $n \geq 1$ if it contains an n-c.e. set, and it is called a properly n-c.e. degree if it contains an n-c.e. set but no m-c.e. set for any $m<n$.

It is known [1] that in n-c.e. sets (even for the case $n=2$) T-reducibility is incomparable with Q-reducibility. Therefore, the development of the structural
theory of Q-degrees of n-c.e. sets compared to their T-degrees becomes one of the interesting directions in the study of Q-degrees of n-c.e. sets.

It is well-known that for any n-c.e. set $(n>1) A$ of properly n-c.e. T-degree there exists an $(n-1)$-c.e. set B such that $B<{ }_{T} A$ (this is called Lachlan's proposition). Below in Theorem 1 we show that for any noncomputable c.e. set A there is a noncomputable c.e. set $B \subseteq A$ such that the Q-degree of $A-B$ bounds no noncomputable c.e. Q-degrees.

Theorem 1. For any noncomputable c.e. set A there is a noncomputable c.e. set $B \subseteq A$ such that for every noncomputable c.e. set W we have

$$
W \not \leq{ }_{Q} A-B<{ }_{Q} A .
$$

The proof of this theorem is based on the following
Lemma 1. Let A be a noncomputable c.e. set, B be an immune set, then $A \not \leq{ }_{Q} B$.

Proof. Let A, B be as in the statement of the lemma, and let f be a computable function such that for any x

$$
x \in A \Longleftrightarrow W_{f(x)} \subseteq B
$$

Then the c.e. set $\bigcup_{x \in A} W_{f(x)}$ is a subset of B. By the immunity of the set B we have

$$
\left|\bigcup_{x \in A} W_{f(x)}\right|<\infty
$$

Then the set

$$
R=\overline{\bigcup_{x \in A} W_{f(x)}},
$$

is computable and

$$
\bar{A}=\left\{x: W_{f(x)} \cap R \neq \varnothing\right\} .
$$

Therefore \bar{A} is a c.e. set, a contradiction.
Definition ([5]). Given c.e. sets $B \subseteq A, B$ is a major subset of A (written $B \subset{ }_{m} A$) if $A-B$ is infinite and for every c.e. set W,

$$
\bar{A} \subseteq{ }^{*} W \Longrightarrow \bar{B} \subseteq{ }^{*} W
$$

Lachlan [5] proved that for every noncomputable c.e. set A there exists a c.e. set B such that $B \subset{ }_{m} A$.

If $B \subset{ }_{m} A$, then $A-B$ is an immune set. Indeed, assume that $B \subset{ }_{m} A$ and $A-B$ is not immune. Let W be an infinite c.e. set such that $W \subseteq A-B$. Choose any infinite computable set $R \subseteq W$. Then $\bar{A} \subset{ }^{*} \bar{R}$ and $\bar{B} \not \subset{ }^{*} \bar{R}$, a contradiction.

We are now ready to finish the proof of Theorem 1.
Proof of Theorem 1. Let A be any noncomputable c.e. set and, by the above remark, let $B \subseteq A$ be a c.e. set such that $A-B$ is immune, then by Lemma 1,
for any noncomputable c.e. set W we have $W \not \leq{ }_{Q} A-B$. By [1, Theorem 1] $A-B<{ }_{Q} A$.

It follows from Theorem 1 that the partial orderings of T - and Q-degrees of d-c.e. sets are different since by Lachlan's proposition each noncomputable d-c.e. set in T-degrees bounds some noncomputable c.e. sets.

Corollary 1. For any noncomputable c.e. Q-degree a there is a properly d-c.e. Q-degree $\mathbf{b}<\mathbf{a}$ which bounds in Q-degrees no noncomputable c.e. Q degrees.

Proof. Immediate.
Let $A-B$ be a d-c.e. set with c.e. sets $B \subseteq A$. Then any splitting of A into two disjoint c.e. sets A_{0} and A_{1} splits $A-B$ into two d-c.e. $A_{0}-B$ and $A_{1}-B$. In [2, Proposition 2] it is proved that both of these d-c.e. sets are Q-reducible to $A-B$, and in [2, Theorem 3] it is shown that we can choose A_{0} and A_{1} so that $A_{0}-B$ is Q-incomparable with $A_{1}-B$. It follows from this that any nonzero d-c.e. Q-degree bounds a spittable d-c.e. degree [2, Corollary 5].

It is proved in [1] that for any $n \geq 2$ there is a ($2 n$)-c.e. set M of properly $(2 n)$-c.e. Q-degree such that for any c.e. set W, if $W \leq{ }_{Q} M$, then W is computable.

Corollary 2. For any $n \geq 1$ and noncomputable c.e. set A there are noncomputable c.e. sets $A=A_{1} \supseteq \cdots \supseteq A_{2 n} \supseteq A_{2 n+1}$ such that if

$$
M=\left(A_{1}-A_{2}\right) \cup \cdots \cup\left(A_{2 n-1}-A_{2 n}\right)
$$

and

$$
N=\left(A_{1}-A_{2}\right) \cup \cdots \cup\left(A_{2 n-1}-A_{2 n}\right) \cup A_{2 n+1},
$$

then
(a) for any c.e. set W it follows from $W \leq{ }_{Q} M$ that W is computable;
(b) there is a noncomputable c.e. set W such that $W \leq{ }_{Q} N$;
(c) $M \leq{ }_{Q} N$ and $N \not \leq{ }_{Q} M$.

Proof. Let A be a noncomputable c.e. set, $n \geq 1$, and let $A=A_{1} \supseteq \cdots \supseteq$ $A_{2 n} \supseteq A_{2 n+1}$, where each A_{i} is c.e. and each $A_{2 i-1}-A_{2 i}$, is immune, and take

$$
M=\left(A_{1}-A_{2}\right) \cup \cdots \cup\left(A_{2 n-1}-A_{2 n}\right)
$$

and

$$
N=\left(A_{1}-A_{2}\right) \cup \cdots \cup\left(A_{2 n-1}-A_{2 n}\right) \cup A_{2 n+1} .
$$

(a) By Lemma 1, for the proof it is enough to show that M is immune. Suppose that there is an infinite c.e. set E such that $E \subseteq M$. Then there is a greatest $i, 1 \leq i \leq n$, such that $E \cap\left(A_{2 i-1}-A_{2 i}\right)$ is infinite and

$$
F=E \cap\left[\left(A_{2 i+1}-A_{2 i+2}\right) \cup \cdots \cup\left(A_{2 n-1}-A_{2 n}\right)\right]
$$

is finite. Then

$$
E \cap\left(A_{2 i-1}-A_{2 i}\right)=\left(E \cap A_{2 i-1}\right)-F,
$$

i.e. $E \cap\left(A_{2 i-1}-A_{2 i}\right)$ is an infinite c.e. subset of the immune set $A_{2 i-1}-A_{2 i}$, a contradiction.
(b) Let $A_{2 n}=\{f(x): x \in \omega\}$ for some computable function f, and let h be a computable function such that for any $x W_{h(x)}=\{f(x)\}$. Define $W=$ $f^{-1}\left(A_{2 n+1}\right)$. Then we have

$$
\begin{aligned}
& x \in W \Longrightarrow f(x) \in A_{2 n+1} \Longrightarrow W_{h(x)} \subseteq N \\
& x \notin W \Longrightarrow f(x) \notin A_{2 n+1} \& f(x) \in A_{2 n} \Longrightarrow W_{h(x)} \nsubseteq N
\end{aligned}
$$

Therefore $W \leq_{Q} N$.
If the set W is computable, then $A_{2 n}-A_{2 n+1}$ is c.e., since

$$
A_{2 n}-A_{2 n+1}=\{x:(\exists y)(x=f(y) \& y \notin W)\}
$$

But $A_{2 n}-A_{2 n+1}$ is an immune set, a contradiction.
(c) $M \leq{ }_{Q} N$ by [1, Theorem 1] and $N \not \leq{ }_{Q} M$ by (a) and (b).

Definition ([4]). A set $A \subseteq \omega$ is semirecursive if there is a computable function f of two variables such that

1. $f(x, y)=x$ or $f(x, y)=y$;
2. $x \in A \vee y \in A \Longrightarrow f(x, y) \in A$.

Theorem 2. Let A be a noncomputable c.e. semirecursive set. Then for any $B, \varnothing<{ }_{T} B \leq{ }_{T} A$, there is a set C with $C \equiv{ }_{T} B$ such that $0<{ }_{Q} C \leq{ }_{Q} A$.
Proof. Let A, B be as in the statement of the theorem, and let Γ_{B} be the graph of the characteristic function of B. Since $B \leq{ }_{T} A$, there is a c.e. regular set $W_{\rho(z)}$ (see, Rogers [8, Theorem IX.2]) such that for all x, y

$$
\begin{equation*}
\langle x, y\rangle \in \Gamma_{B} \Longleftrightarrow(\exists u)(\exists v)\left[\langle x, y, u, v\rangle \in W_{\rho(z)} \& D_{u} \subseteq A \& D_{v} \subseteq \bar{A}\right] \tag{*}
\end{equation*}
$$

Since A is semirecursive, there are computable functions f and g such that (see Degtev [3])

$$
\begin{aligned}
& (\forall u)\left[D_{u} \subseteq A \Longleftrightarrow f(u) \in A\right] \\
& (\forall v)\left[D_{v} \subseteq \bar{A} \Longleftrightarrow g(v) \in \bar{A}\right] .
\end{aligned}
$$

For convenience, we first rewrite the property ($*$) as follows:

$$
\begin{aligned}
& x \in B \Longleftrightarrow(\exists u)(\exists v)\left[\langle x, 1, u, v\rangle \in W_{\rho(z)} \& f(u) \in A \& g(v) \in \bar{A}\right] \\
& x \in \bar{B} \Longleftrightarrow(\exists u)(\exists v)\left[\langle x, 0, u, v\rangle \in W_{\rho(z)} \& f(u) \in A \& g(v) \in \bar{A}\right] .
\end{aligned}
$$

Now we define two c.e. sets P_{0} and P_{1} as follows:

$$
\begin{aligned}
P_{0} & =\left\{x:(\exists u)(\exists v)\left[\langle x, 0, u, v\rangle \in W_{\rho(z)} \& f(u) \in A\right]\right\} \\
P_{1} & =\left\{x:(\exists u)(\exists v)\left[\langle x, 1, u, v\rangle \in W_{\rho(z)} \& f(u) \in A\right]\right\} .
\end{aligned}
$$

Obviously,

$$
B \subseteq P_{1}, \bar{B} \subseteq P_{0} \& P_{0} \cup P_{1}=\omega
$$

Let C_{0} and C_{1} be computable sets such that

$$
C_{0} \subseteq P_{0} \& C_{1} \subseteq P_{1} \quad \& C_{0} \cap C_{1}=\varnothing \& C_{0} \cup C_{1}=\omega,
$$

and let

$$
C=\left(B \cap C_{0}\right) \cup\left(\bar{B} \cup C_{1}\right) .
$$

Let h_{0} and h_{1} be computable functions such that

$$
\begin{aligned}
W_{h_{0}(x)} & =\left\{y:(\exists u)(\exists v)\left[\langle x, 0, u, v\rangle \in W_{\rho(z)} \& y=g(v)\right]\right\}, \\
W_{h_{1}(x)} & =\left\{y:(\exists u)(\exists v)\left[\langle x, 1, u, v\rangle \in W_{\rho(z)} \& y=g(v)\right]\right\},
\end{aligned}
$$

and let h be a computable function such that

$$
W_{h(x)}= \begin{cases}W_{h_{0}}(x), & \text { if } x \in C_{0} \\ W_{h_{1}}(x), & \text { if } x \in C_{1}\end{cases}
$$

Then if $x \in C$ we have

$$
\begin{aligned}
& x \in B \cap C_{0} \Longrightarrow W_{h(x)}=W_{h_{0}(x)} \subseteq A . \\
& x \in \bar{B} \cap C_{1} \Longrightarrow W_{h(x)}=W_{h_{1}(x)} \subseteq A .
\end{aligned}
$$

If $x \notin C$, then $x \in \bar{C}=\left(B \cap C_{1}\right) \cup\left(\bar{B} \cap C_{0}\right)$ and we have

$$
\begin{aligned}
& x \in B \cap C_{1} \Longrightarrow W_{h(x)}=W_{h_{1}(x)} \nsubseteq A . \\
& x \in \bar{B} \cap C_{0} \Longrightarrow W_{h(x)}=W_{h_{0}(x)} \nsubseteq A .
\end{aligned}
$$

Therefore

$$
(\forall x)\left[x \in C \Longleftrightarrow W_{h(x)} \subseteq A\right]
$$

i.e. $C \leq{ }_{Q} A$.

It remains to show that $B \equiv{ }_{T} C$. For any x we have: If $x \in C_{0}$, then $x \in B \Longleftrightarrow x \in C$. If $c \in C_{1}$, then $x \in B \Longleftrightarrow x \in \bar{C}$. Therefore $B \equiv{ }_{T} C$.

Corollary 3. Let A be a noncomputable c.e. semirecursive set. Then there is a Δ_{2}° set C with $\varnothing<{ }_{Q} C<{ }_{Q} A$ such that for any noncomputable c.e. set W we have $W \not \leq{ }_{Q} C$.

Proof. Let A be a noncomputable c.e. semirecursive set and $\mathbf{a}=\operatorname{deg}_{T}(A)$. Then there is a minimal T-degree $\mathbf{b}, \mathbf{b}<\mathbf{a}$ (Yates [11]). Let $B \in \mathbf{b}$, then $B<{ }_{T} A$. By Theorem 2 there is a Δ_{2}° set C such that

$$
C \equiv{ }_{T} B \& C \leq{ }_{Q} A
$$

If there is a noncomputable c.e. set W such that $W \leq{ }_{Q} C$, then $W \leq{ }_{T} C \leq{ }_{T} B$. Since \mathbf{b} is a minimal T-degree, we have $W \equiv{ }_{T} C$, a contradiction.

We recall that in a poset (P, \leq) with least element 0 , a minimal pair is a pair of elements a, b in P such that

$$
\mathbf{a}, \mathbf{b} \neq 0 \&(\forall \mathbf{c} \in P)[\mathbf{c} \leq \mathbf{a} \& \mathbf{c} \leq \mathbf{b} \Longrightarrow \mathbf{c}=0] .
$$

Definition ([9]). Given a set A, define the weak jump of A to be the set

$$
H_{A}=\left\{e: W_{e} \cap A \neq \varnothing\right\}
$$

and say that a set A is semilow if $H_{A} \leq{ }_{T} \varnothing^{\prime}$.
In [7] it is proved that if A and B are c.e. sets such that $\mathbf{a}=\operatorname{deg}_{Q}(A)$ and $\mathbf{b}=\operatorname{deg}_{Q}(B)$ form a minimal pair in the c.e. Q-degree and \bar{A} and \bar{B} are semilow, then \mathbf{a} and \mathbf{b} form a minimal pair in the Q-degrees. The following theorem shows that the semilowness of \bar{A} and \bar{B} is unnecessary for Σ_{2}^{0} sets.

Theorem 3. If c.e. Q-degrees \mathbf{a} and \mathbf{b} form a minimal pair in the c.e. Q-degrees, then \mathbf{a} and \mathbf{b} form a minimal pair in the $\Sigma_{2}^{0} Q$-degrees.

This immediately follows from
Theorem 4. If \mathbf{a} and \mathbf{b} are c.e. Q-degrees, then for every nonzero $\Sigma_{2}^{0} Q$ degree \mathbf{c} such that $\mathbf{c} \leq{ }_{Q} \mathbf{a}, \mathbf{b}$, there exists a c.e. Q-degree \mathbf{d} such that

$$
\mathbf{c} \leq_{Q} \mathbf{d} \leq{ }_{Q} \mathbf{a}, \mathbf{b} .
$$

Proof. Suppose that A and B are c.e. sets such that $\mathbf{a}=\operatorname{deg}_{Q}(A)$ and $\mathbf{b}=$ $\operatorname{deg}_{Q}(B)$. Assume that \mathbf{c} is a nonzero $\Sigma_{2}^{0} Q$-degree such that $\mathbf{c} \leq_{Q} \mathbf{a}, \mathbf{b}$. Let $C \in \mathbf{c}$ be a Σ_{2}^{0} set. It follows from $C \leq{ }_{Q} A$ that $C \in \Pi_{2}^{0}$ (see [6, p. 282]). Then $C \in \Delta_{2}^{0}$ and by [7, Corollary 5] there exist computable functions f, g such that

$$
\begin{aligned}
& (\forall x)\left[\left[x \in C \Longleftrightarrow W_{f(x)} \subseteq A\right] \&\left[W_{f(x)} \text { is finite }\right]\right] \\
& (\forall x)\left[\left[x \in C \Longleftrightarrow W_{g(x)} \subseteq B\right] \&\left[W_{g(x)} \text { is finite }\right]\right]
\end{aligned}
$$

Fix computable approximations $\left\{A_{s}\right\}_{s \in \omega}$ and $\left\{B_{s}\right\}_{s \in \omega}$ of A and B, respectively. Define a c.e. set D as follows:

$$
D=\left\{\langle x, t\rangle:(\exists s \geq t)\left[W_{f(x), s} \subseteq A_{s} \& W_{g(x), s} \subseteq B_{s}\right]\right\}
$$

Then

$$
x \in C \Longleftrightarrow(\forall t)[\langle x, t\rangle \in D]
$$

Let

$$
W_{\tilde{f}(x)}=\{\langle x, t\rangle: t \in \omega\} .
$$

Then

$$
(\forall x)\left[x \in C \Longleftrightarrow W_{\tilde{f}(x)} \subseteq D\right]
$$

which gives $C \leq{ }_{Q} D$.
Let f_{1} be a computable function such that
$W_{f_{1}(\langle x, t\rangle)}= \begin{cases}W_{f(x), n}, & \text { where } n=\min \left\{s: s \geq t \& W_{f(x), s} \subseteq A_{s} \&\langle x, t\rangle \in D_{s}\right\} \\ & \text { if }\langle x, t\rangle \in D, \\ W_{f(x)} & \text { otherwise. }\end{cases}$
Then

$$
\langle x, t\rangle \in D \Longrightarrow(\exists s \geq t)\left[W_{f(x), s} \subseteq A_{s}\right] \Longrightarrow W_{f_{1}(\langle x, t\rangle)} \subseteq A
$$

and

$$
\langle x, t\rangle \notin D \Longrightarrow x \notin C \Longrightarrow W_{f(x)} \nsubseteq A \Longrightarrow W_{f_{1}(\langle x, t\rangle)} \nsubseteq A .
$$

Thus $D \leq{ }_{Q} A$. In the same way we can prove that $D \leq{ }_{Q} B$.
Corollary 4. Let a, b be c.e. Q-degrees that form a minimal pair in the c.e. Q-degrees, and let A, B, C and D be c.e. sets such that $A \in \mathbf{a}, B \in \mathbf{b}, C \subseteq A$ and $D \subseteq B$. Then $\operatorname{deg}_{Q}(A-C)$ and $\operatorname{deg}_{Q}(B-D)$ form a minimal pair in the $\Sigma_{2}^{0} Q$-degrees.
Proof. By [1, Theorem 1] $A-C \leq{ }_{Q} A$ and $B-D \leq{ }_{Q} B$ and, by Theorem 3, a and \mathbf{b} form a minimal pair in the $\Sigma_{2}^{0} Q$-degrees. If E is a noncomputable Σ_{2}^{0} set and $E \leq{ }_{Q} A-C, E \leq{ }_{Q} B-D$, then $E \leq{ }_{Q} A$ and $E \leq{ }_{Q} B$, a contradiction.

In [2, Theorem 6] it is proved that for any c.e. noncomputable set A there exist noncomputable c.e. sets A_{0} and A_{1} such that $\left.A \oplus A_{0}\right|_{Q} A \oplus A_{1}$ and A_{0} and A_{1} form a minimal pair in the c.e. Q-degrees.

From Theorem 4 and [2, Theorem 6] follows immediately the following
Corollary 5. For any c.e. noncomputable set A there exist noncomputable c.e. sets A_{0} and A_{1} such that $\left.A \oplus A_{0}\right|_{Q} A \oplus A_{1}$ and A_{0} and A_{1} form a minimal pair in the $\Sigma_{2}^{0} Q$-degrees.

Acknowledgements

This research was supported by the Georgian National Science Foundation (Grants \# GNSF/ST07/3-178 and \# GNSF/ST08/3-391).

The author would like to thank the anonymous referee for many suggestions and improvements throughout the paper.

References

1. M. M. Arslanov and R. Sh. Omanadze, Q-degrees of n-c.e. sets. Illinois J. Math. 51(2007), No. 4, 1189-1206.
2. M. M. Arslanov, I. I. Batyrshin, and R. Sh. Omanadze, Structural properties of Q-degrees of n-c.e. sets. Ann. Pure Appl. Logic 156(2008), No. 1, 13-20.
3. A. N. Degtev, Recursively enumerable sets and reducibility of truth-table type. (Russian) Nauka. Fizmatlit., Moscow, 1998.
4. C. G., Jockusch, Jr. Semirecursive sets and positive reducibility. Trans. Amer. Math. Soc. 131(1968), 420-436.
5. A. H. Lachlan, On the lattice of recursively enumerable sets. Trans. Amer. Math. Soc. 130(1968), 1-37.
6. P. Odifreddi, Classical recursion theory. North-Holland Publishing Co., Amsterdam, 1989.
7. R. Sh. Omanadze and A. Sorbi, Strong enumeration reducibilities. Arch. Math. Logic 45(2006), No. 7, 869-912.
8. H. Rogers, Jr., Theory of recursive functions and effective computability. McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967.
9. R. I. Soare, Computational complexity, speedable and levelable sets. J. Symbolic Logic 42 (1977), No. 4, 545-563.
10. R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets. Springer-Verlag, Berlin, 1987.
11. C. E. M. Yates, Initial segments of the degrees of unsolvability. II. Minimal degrees. J. Symbolic Logic 35(1970), 243-266.
(Received 24.11.2008; revised 12.08.2009)
Author's address:
Faculty of Exact and Natural Sciences
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia
E-mail: roland.omanadze@tsu.ge

