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Kelvin cell foams are an idealization of replication foams and nowadays are also materialized for various industrial
purposes. There are several works dealing with thermo-hydraulic properties of foams in relation to their structure. The
thermo-hydraulic behavior of open-cell foams depends on their microscopic structure. Various ideal periodic isotropic
structures of tetrakaidecahedron shapes with constant cross section of the ligament having circular, square, diamond,
hexagon, and star strut shapes with various orientations are studied. Computer aided design (CAD) modeling has been
used to produce various shapes in the porosity range from 60 to 95%. A generalized analytical model has been pro-
posed in order to obtain geometrical parameters correctly as they have substantial influence on thermal and hydraulic
phenomena, where strut geometry is of primary importance. Various relationships between different geometrical param-
eters and porosities are presented. The analytical results are compared with experimental data from the literature. An
excellent agreement has been observed between the predicted correlations, data obtained from CAD measurements, and
experiments.
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1. INTRODUCTION

The properties of open-cell foams make them desirable
materials for use in many applications where mechani-
cal energy absorption and permeability characteristics are
valued. They can be used in numerous industrial appli-
cations like electromagnetic radiation shielding (Losito,
2008), crash energy absorption (Jung et al., 2011), rocket
jacket cooling (Avenall, 2004), heat exchangers (Kim et
al., 2000), efficiency enhancement in phase change mate-
rials (Lafdi et al., 2007), etc.

Gibson and Ashby (1997) reviewed different models
of cellular foam structure in which foams are considered
as regular packing of various polyhedra including triangu-
lar prisms, rectangular prisms, hexagonal prisms, rhombic
dodecahedra and tetrakaidecahedra. These authors pre-
ferred the tetrakaidecahedron model since it is a space
filling structure and gave the most consistent agreement
with observed morphological properties.

During previous decades, many researchers have as-
sumed an idealized shape, such as Calmidi (1998) pro-
posed the use of a cubic unit volume open-cell analyti-
cal model to approximate the metal foam structure and
proposed a relationship of pore diameter as a function
of porosity and “pore density” defined as pores per lin-
ear inch (PPI). Du Plessis et al. (1994) presented a model
for evaluating permeability and the inertia coefficient for
metal foams, which was derived by experimental results
of foam samples of small pore size (45–100 PPI) and
porosity (ε) of 0.973–0.978. Several researchers (Buci-
uman and Kraushaar-Czarnetzki, 2003; Garrido et al.,
2008; Giani et al., 2005a,b; Grosse et al., 2008; Lu et al.,
1998; Moreira and Coury, 2004; Stemmet et al., 2006)
reported theoretical geometrical models that describe the
relation between strut diameter, pore diameter, and poros-
ity. Their proposed models are different in the relation to
the porosity range studied. For the high-porosity range
(ε > 0.9), different models exhibit equivalent results, but
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NOMENCLATURE

ac specific surface area, m−1

asw opening area of square face of foam
structure, mm2

ahw opening area of hexagon face of foam
structure, mm2

A/Aside side length of the strut shape, mm
dcell cubic unit cell side length
ds strut diameter, mm
dp pore diameter, mm
D sphere diameter, mm
Dc length of cubic unit cell, mm
dcell cell diameter (cubic unit cell side length),

mm
k adjustable parameter
Ls strut length, mm
L node-to-node length, mm

Req equivalent circular strut radius, mm
Sligament lateral surface area of one ligament, mm2

Snode lateral surface area of one node, mm2

Vs total solid volume of the octahedron, mm3

Vligament volume of one ligament, mm3

Vnode volume of one node, mm3

VT volume of octahedron, mm3

Vc volume of cubic cell, mm3

Greek Symbols
ε porosity
χ constant parameter [Eq. (9)]
ψ constant parameter [Eq. (10)]
αeq ratio of strut diameter (or side length of

strut shape) to node to node length
β ratio of strut length to node to node length

for the low-porosity range, quite high deviations are ob-
served. The models tend to overestimate the experimental
values. In many cases, the model unit cells did not have
much similarity to the synthesized structures of the open-
cell foams. It is therefore evident that there are discrep-
ancies in the geometrical values for different correlations
reported in the literature. These discrepancies depend on
which input parameter such as pore diameterdp or strut
diameterds is used to calculate the geometrical proper-
ties.

Recently, Garrido et al. (2008) evaluated pressure drop
correlations from the literature by comparing the predic-
tions with their own experimental data. It was concluded
that the prediction of all of the correlations from the liter-
ature was not satisfactory. Edouard et al. (2008) reviewed
state-of-the-art correlations for pressure drop prediction
in foam structures. They reported that the standard devi-
ation between experimental and theoretical values of the
pressure drop can be as high as three orders of magnitude.
This discrepancy may result from the combination of in-
accuracy of measurements and oversimplification of the
strut geometry. Moreover, the use of the same kind of hy-
pothetical repeating unit cell as used for the description
of packed beds of irregular granules or fibers cannot be
applied directly to the open-cell foams as generally dis-
cussed in the literature.

A quantitative image analysis of strut shape and varia-
tion of cross sections of open-cell polyester urethane (PU)
and aluminium (Al) foams having different PPI ratios

were performed by Jang et al. (2008). Their analysis con-
firmed that the struts of both metal- and polymer-based
foams present a plateau border shape. The cross-sectional
area is nearly constant over the central half of the strut
length, but increases rapidly when approaching the strut
ends.

Depending on the manufacturing process and the type
of material, foam structures exhibit different strut mor-
phologies, namely, cylindrical, equilateral triangular, con-
vex, and concave triangular as visualized by Bhattacharya
et al. (2002) and Inayat et al. (2011). The strut cross sec-
tion changes with porosity. This fact leads various authors
to propose empirical correction factors to adjust the calcu-
lated values of morphological parameters. These factors,
however, are sensitive to both porosity range and foam
strut configuration.

Accurate evaluation of geometrical properties of foams
thus becomes critical for various uses as thermophysical
and flow properties depend strongly on local morphology
of both pore and solid matrix (De Jaeger et al., 2011;
Hugo and Topin, 2012; Kanaun and Tkachenko, 2008).
Local change in the structure could govern the proper-
ties (e.g., constriction, strut cross section, surface rough-
ness, etc). Yet, solid foam structure and properties are still
incompletely characterized [see Hugo and Topin (2012)]
and hence induce many discrepancies in thermophysical
properties.

There are several manufacturing routes to produce
open-cell foams such as electrochemical deposition,
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powder technology, casting techniques, bubbling agent
technology, 3D printing, etc. In the case of existing foams
(e.g., ERG, RECEMAT, ALANTUM, etc.), it has been
seen that the ligament exhibits a variable cross section
along its axis. In the literature, different strut shapes have
been discussed that have strong influence on geometri-
cal and thermophysical properties. On the other hand, the
ligament cross section along its axis needs to be taken in
account. Kanaun and Tkachenko (2008) have proposed an
analytical method to calculate the effective thermal con-
ductivity accounting the variations of convex triangular
strut diameters. De Jaeger et al. (2011) have manufactured
in-house open-cell aluminum foams to characterize the
geometrical parameters analytically, and observed convex
triangular strut shape whenε > 0.88. The strut diameters
variation is described by a fourth-order polynomial curve
along the ligament axis, where struts are thinner near the
center and more material is accumulated in the vicinity of
nodes.

Kelvin cellular metal foams are produced by Centre
Technique des Industries de la Fonderie (CTIF) [see Da-
iron and Gaillard (2009)] using gravity casting with spe-
cial low conductivity “sand” cores and a high metallo-
static head to facilitate the infiltration of the network
of struts. These authors have observed convex triangu-
lar strut shape of constant ligament cross section within
a porosity range, 80–95%. Using this technique, they
have reported neither circular nor concave triangular strut
shapes. Most recently, Smorygo et al. (2011) have pro-
posed an inverted spherical model based on hexagonal
close packing symmetry to determine geometrical prop-
erties for ceramic foams of circular struts in the range
of 0.75 < ε < 0.9 and open-cell foams of triangular
struts forε > 0.9 by providing a characteristic parameter,
k = D/Dc (the unit cell is created by subtracting sphere
of diameter,D from a cube of side,Dc). Their proposed
model is not valid whenε < 0.74.

The strut morphology greatly influences the specific
surface area and consequently the heat and mass trans-
fer as well as pressure drop properties of the foam struc-
tures. Therefore, the accurate knowledge of the specific
surface area of the foam structures is extremely important
for their application in various industries. The specific
surface area is an important property of foam structures,
which is relevant for momentum, heat and mass transfer
(e.g., Grosse et al., 2009) and hence is responsible for a
successful design of structured foam reactors for single
phase (e.g., Richardson et al., 2000) as well as for mul-
tiphase (e.g., Stemmet et al., 2007; Tschentscher et al.,
2010; Wenmakers et al., 2010) reaction systems.

A specific surface area can be measured by various
experimental techniques, namely, the Brunauer-Emmett-
Teller (BET) method or magnetic resonance imaging
(MRI) or image processing micro X-ray computed to-
mography (µCT) techniques. Depending on the pore size
and material nature, one or the other method is better
suited. These methods do not give the same results be-
cause they do not access the same resolution (e.g., rough-
ness, hollow strut, etc.). In the case of a hollow strut, BET
can measure surface area inside the strut. Using theµCT
technique, one can separate the surface inside and out-
side of the hollow strut, but usually resolution is not high
enough to develop the surface to account for roughness.

Apart from experiments, the models proposed by au-
thors (Buciuman and Kraushaar-Czarnetzki, 2003; Gar-
rido et al., 2008; Grosse et al., 2008; Moreira and Coury,
2004) to predict the specific surface area of foam struc-
tures using measured parameters such as pore or strut
diameter and porosity are valid only for high porosities
because of insufficient characterization of strut and node
shape at lower porosities. As foam characteristics and
pressure drop are greatly affected by the interface ge-
ometry, accurate estimation of specific surface areaac

is critically important. Edouard et al. (2008) have plot-
ted the calculated values of various authors as dimension-
less productacdp (product of specific surface area and
pore diameter) versus the foam porosity (ε). They have
shown that independent of the pore size, the evolution of
the specific surface area as a function of the foam porosity
follows two different behaviors. For a group of authors,
acdp increases linearly with porosity increase while for
a group of authors,acdp decreases by a factor ranging
between 2 and 4 according to the correlation used. The
reason for such discrepancies in the literature is proba-
bly due to consideration of oversimplified geometry of
the unit cell. Moreover, many authors (e.g., Buciuman and
Kraushaar-Czarnetzki, 2003; Garrido et al., 2008; Grosse
et al., 2008; Moreira and Coury, 2004) have measured
only one of the geometrical properties (either pore diam-
eter or porosity, or specific surface area or strut diameter)
and then calculated other parameters using their analytical
models. In order to avoid bias in measuring geometrical
properties on existing samples, Brun et al. (2009) have
measured simultaneously several geometrical properties
of different foams, namely, Recemat and ERG of differ-
ent porosities using iMorph [see Brun et al. (2008)] and
provided a database.

There is no way to know before the end that a par-
ticular correlation is applicable or not to determine geo-
metrical properties. All correlations work pretty well for
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a given set of foams, but they fail for other foams. The
reasons of failure of the correlations reported in the lit-
erature could be (i) the lack of adapted input parameters,
(ii) a presupposed relationship between parameters, and
(iii) the difficulty to obtain foam samples with individu-
ally varied morphological parameters. For example, the
porosity of commercially available foams (with the same
global structure) is nearly fixed (ε ∼ 90%± 3%).

Very few works in the literature deal with strut shape
influence on geometrical properties and thermophysical
ones, e.g., Kanaun and Tkachenko (2008) and De Jaeger
et al. (2011) have proposed a generic expression that ac-
commodates strut cross-sectional variation from convex
triangular to concave triangular and eventually to circular.

To our knowledge, no one studied different strut cross
sections like circular, square, diamond (double equilateral
triangle), hexagon, and star. Recently, it has become pos-
sible to produce foam structures with such cross sections
using 3D printing or rapid prototyping. The majority of
commercially existing foams are, in fact, composed of
slightly elongated Kelvin-like cells.

In this paper, we focus on the simplest case of isotropic
foam structure of Kelvin-like cell because it is the
simplest representative a periodic unit cell. Homothetic
transform of unit cell influence on morphological (and
thermos-hydraulic) parameters is known. We choose to
fix dcell and vary strut shapes, which consequently varies
the geometrical properties by changing porosityε. At
constantdcell, we can changeε by controllingds, which
allows us to study the individual influence on porosity.
Moreover, changing the strut cross section at constantdcell

allows us to study its influence on porosity and its impact
on various geometrical properties.

We have generated virtual Kelvin-like foams having
strut shapes from simple circular geometry to the complex
geometry of star (regular hexagram) for a constant liga-
ment cross section. Using computer aided design (CAD)
modeling, we are able to generate different strut shapes of
constant cross section for a wide range of porosity (0.60
< ε < 0.95). The objective is to study the effect of in-
dividual parameters such as strut shape, porosity, etc., on
foam geometry (and ultimately on thermophysical prop-
erties) to understand which parameters impact strongly on
foam geometry. This work aims to develop accurate cor-
relations (based on the tetrakaidecahedron geometry and
different strut morphologies of the foam structures) for
the theoretical estimation of all geometrical properties of
any kind of foams that are applicable to different foam
materials and porosities and can be valid for a wide range
of existing foams.

Moreover, these correlations can provide insight to tai-
lor one’s own foam accordingly to apply them in various
industrial applications. In this way, one can realize any
number of foams depending on the various engineering
applications. Three-dimensional image processing is used
to classify strut diameter, pore diameter, porosity, and spe-
cific surface area of different foams.

2. CHARACTERIZATION OF FOAMS

2.1 Geometrical Modeling

We have generated simple strut shapes like circular, dia-
mond (double equilateral triangle), square, hexagon, and
star (regular hexagram). Their cross sections are in line
with the ligament axis of the truncated octahedron edge.
Moreover, we have studied the rotation of square and
hexagon shapes at 45 and 90 deg, respectively, with re-
spect to the ligament axis where the node forms a quite
different shape from the original ones, which has a sub-
sequent effect on geometrical properties. Moreover, the
same shapes with and without rotation also greatly in-
fluence thermos-hydraulic properties. Note that we have
considered a constant cross section of the ligament.

In CAD modeling, we have first started with a tetrahe-
dral element composed of four identical half struts. This
choice of a structural element is consistent with the topo-
logical feature of foam. We then model 3D foam with this
smallest repetitive element, which defines a spatially peri-
odic structure. Microstructural features of open-cell foam
are represented by a tetrahedral unit cell with a skeleton
of four half struts of lengthL/2, where the dihedral an-
gle is approximately 109.471 deg at edges shared by two
hexagons or 125.263 deg at edges shared by a hexagon
and a square (see Fig. 4 in Section 3.1). Figure 1 shows
the construction of a Kelvin cell, which is based on a trun-
cated octahedron (left and right). The node-to-node length
(L = 2 mm) is kept fixed for entire calculations, which is
based on the fixed cell diameter (dcell).

For every strut shape, we have followed the same pro-
cedure of creating four half struts followed by replication
to create a unit cell. Figure 2 shows the different shapes
and their characteristics dimensions for a given porosity.

2.2 CAD Calculations

We have defined a construction method that allows us to
use strut shape and porosity as control parameters. Us-
ing our construction method, we can generate foams of
chosen porosity for any strut shape. Due to the chosen
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FIG. 1: Presentation of tetrakaidecahedon model of Kelvin cell (left). Strut lengthLs and node-to-node lengthL are
clearly shown. Constant cross section of ligament with different strut shapes, circular (on the top-right) and hexagon
(at the bottom-right), are presented with their characteristic dimension.

FIG. 2: Representation of different 3D strut and ligament shapes:(a) circular,(b) square,(c) diamond (double equi-
lateral triangle),(d) hexagon,(e) star,(f) rotated square,(g) rotated hexagon. The characteristic dimensions are also
presented that are used in Section 3.1 and Appendices A and B for analytical solutions.

construction method, some limitations rise, mainly for the
complex shapes (e.g., diamond, star). Our procedure cre-
ates only (in a periodic unit cell) 36 struts that are along
the edge of the truncated octahedron. For certain shapes
and values of porosity, mainly for low porosities, some
other strut part has to be added in the unit cell, which lim-
its our procedure.

We have measured all geometrical parameters of 45
virtual Kelvin-like foams using the classical approach
(see Table 1). We have generated porosities for circular,

square, hexagon, and rotated hexagon down to 60%, for
diamond and rotated square strut shapes down to 80% and
down to 75% for star strut shapes. We have also presented
square and hexagon face window area,asw andahw. The
equivalent window area of square and hexagon face based
on strut length are also presented (see Table 1) and de-
tailed in Section 3.1. Note thatαeq andβ in Table 1 are
described in Section 3.1.

Figure 3 represents Kelvin-like cell foams of differ-
ent strut shapes inside a cube where struts accumulate the
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TABLE 1: Values of various strut shapes, porosities, and their characteristic dimensions
CAD measurement Analytical

Shape
ε

(%)
ds or A
(mm)

asw

(mm2)
ahw

(mm2)
ac

(m−1)
αeq

= Req/L
β

= Ls/L

asw

(mm2)
ahw

(mm2)
ac

(m−1)

Circular

60 1.212 0.198 0.514 982 0.429 0.341 0.232 0.603 1037
65 1.110 0.277 0.720 979 0.392 0.393 0.309 0.803 1020
70 1.006 0.371 0.965 960 0.356 0.447 0.400 1.039 992
75 0.900 0.482 1.252 926 0.318 0.504 0.507 1.318 949
80 0.789 0.614 1.595 873 0.279 0.563 0.635 1.649 889
85 0.669 0.773 2.009 796 0.236 0.628 0.790 2.052 807
90 0.534 0.975 2.533 686 0.189 0.702 0.987 2.564 692
95 0.367 1.255 3.261 515 0.130 0.794 1.262 3.279 518

Square

60 1.075 0.197 0.511 1092 0.760 0.341 0.232 0.603 1122
65 0.984 0.277 0.720 1091 0.696 0.393 0.309 0.803 1111
70 0.891 0.372 0.965 1074 0.630 0.447 0.400 1.039 1085
75 0.797 0.483 1.255 1037 0.563 0.504 0.507 1.318 1043
80 0.698 0.615 1.598 979 0.493 0.563 0.635 1.649 982
85 0.591 0.775 2.014 895 0.418 0.628 0.790 2.052 895
90 0.472 0.977 2.538 772 0.334 0.702 0.987 2.564 771
95 0.325 1.257 3.266 580 0.229 0.794 1.262 3.279 579

Rotated
Square

80 0.694 0.632 1.649 996 0.491 0.563 0.635 1.649 1050
85 0.589 0.788 2.052 906 0.416 0.628 0.790 2.052 944
90 0.470 0.982 2.564 779 0.332 0.702 0.987 2.564 803
95 0.324 1.261 3.279 583 0.229 0.794 1.262 3.279 594

Diamond

80 0.752 0.623 1.619 1070 0.532 0.563 0.635 1.649 1043
85 0.637 0.779 2.024 974 0.450 0.628 0.790 2.052 953
90 0.508 0.977 2.538 838 0.359 0.702 0.987 2.564 823
95 0.349 1.254 3.259 627 0.247 0.794 1.262 3.279 620

Hexagon

60 0.665 0.199 0.517 1025 0.470 0.341 0.232 0.603 1070
65 0.609 0.279 0.725 1023 0.431 0.393 0.309 0.803 1056
70 0.552 0.373 0.970 1005 0.390 0.447 0.400 1.039 1028
75 0.494 0.484 1.258 970 0.349 0.504 0.507 1.318 986
80 0.432 0.616 1.602 915 0.306 0.563 0.635 1.649 925
85 0.367 0.776 2.016 835 0.259 0.628 0.790 2.052 841
90 0.292 0.977 2.539 720 0.207 0.702 0.987 2.564 723
95 0.201 1.257 3.267 540 0.142 0.794 1.262 3.279 542

Rotated
Hexagon

60 0.664 0.202 0.525 1033 0.469 0.341 0.232 0.603 1070
65 0.608 0.282 0.733 1029 0.430 0.393 0.309 0.803 1056
70 0.551 0.377 0.978 1009 0.390 0.447 0.400 1.039 1028
75 0.493 0.488 1.267 973 0.348 0.504 0.507 1.318 986
80 0.432 0.620 1.611 917 0.305 0.563 0.635 1.649 925
85 0.366 0.779 2.025 837 0.259 0.628 0.790 2.052 841
90 0.292 0.980 2.547 721 0.207 0.702 0.987 2.564 723
95 0.201 1.260 3.273 541 0.142 0.794 1.262 3.279 542

Star

75 0.347 0.489 1.270 1399 0.246 0.504 0.507 1.318 1306
80 0.305 0.620 1.611 1314 0.215 0.563 0.635 1.649 1240
85 0.258 0.779 2.023 1195 0.183 0.628 0.790 2.052 1140
90 0.206 0.979 2.545 1027 0.146 0.702 0.987 2.564 991
95 0.142 1.258 3.269 769 0.100 0.794 1.262 3.279 751
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FIG. 3: Presentation of 3D circular, hexagon, and star strut shape virtual Kelvin-like cell foams inside a periodic cubic
unit cell. The struts belonging to square faces and all nodes are shared by two unit cubic cells. The 12 other struts are
fully included in the cubic cell.

edges of the truncated octahedron and we keep only the
struts that are totally included in the truncated octahedron
and the cubic cell. The length of the cubic cell is2

√
2L.

3. ANALYTICAL APPROACH

Generally, many authors (e.g., Bhattacharya et al., 2002;
Calmidi, 1998; Du Plessis et al., 1994; Inayat et al., 2011)
have measured three morphological parameters, eitherds

or dp or ε, and used them to describe other foam prop-
erties based on their simple representative unit cell by
adjusting the shape parameters using a regular network
model. In order to accommodate different shapes pro-
posed by various authors (Bhattacharya et al., 2002; Bu-
ciuman and Kraushaar-Czarnetzki, 2003; De Jaeger et al.,
2011; Garrido et al., 2008; Grosse et al., 2009; Inayat et
al.; 2011; Moreira and Coury, 2004), we have introduced
other complex shapes to study their impact and character-
ize their geometrical parameters. The analytical approach
is carried out for an isotropic periodic Kelvin cell, as
shown in Fig. 1.

3.1 Geometrical Parameters

The Kelvin cell is associated with a minimization of sur-
face area for a given cell volume and the physics of
foam leads to the formation of a concave triangular shape,
which has been studied for a century. Due to Plateau’s
law, the natural strut shape is usually convex or concave
triangle. Classical replication techniques lead usually to a
triangular or circular strut cross section. Using a casting
technique or rapid prototyping or 3D printing gives access
to produce virtually any other strut shapes. Dairon and
Gaillard (2009) have manufactured constant strut shapes
(convex triangular) using a casting process for a porosity
range of 80–95% for constant ligament cross sections.

The node junction at different porosities and differ-
ent strut shapes possesses complex shape and is diffi-
cult to visualize. To make our analytical approach clear

and user-friendly, we have approximated the shapes at the
junctions because different strut shapes behave differently
at the junction. Moreover, it is very difficult to derive ex-
act calculations for each strut shape. As circular shape is
easy to visualize at the node and does not possess com-
plex geometry compared to other strut shapes, we have
defined an equivalent radius,Req, for different shapes that
are provided in Table 2.

For each porosity and different strut shape, we have
assumed an equivalent radius, which is the radius of the
circle of the same area as the strut cross section. Obvi-
ously, for a givenReq, the node volume is the same and
independent of the strut shape. It is the most important
hypothesis in our derivation.

In order to provide an approximate analytical solution,
we have definedLs as the strut length (without consider-
ing node points) andL as the distance between two nodes
(or length of solid truncated octahedron edge) as shown in
Fig. 1. For any strut shape, we have considered an equiv-
alent circular shape of radiusReq and then deduced its
characteristic dimensional dependence of different shapes
as provided in Table 2.

We chose to base our node volume calculation on that
given by Kanaun and Tkachenko (2008). The volume of
a node at the junction of four struts of equivalent circular
shape is given as (see Fig. 4)

Vnode= 4︸︷︷︸
Four pyramids

× 1
3
πR2

eq
︸ ︷︷ ︸

Base area of a pyramid

× Req︸︷︷︸
Height of the pyramid

=
4
3
πR3

eq (1)

Volume of the ligament of equivalent circular shape is
given as

Vligament = πR2
eqLs (2)
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TABLE 2: Representation of characteristic length, symbol, and equivalent radius of various strut shapes

Shapes Characteristic length Characteristic symbol Equivalent radius

Circular Radius Rc Req = Rc

Square Length of the side As Req = As/
√

π

Rotated Square (at 45◦) Length of the side Ars Req = Ars/
√

π

Diamond Length of the side Adet Req = Adet

√√
3/2π

Hexagon Length of the side Ah Req = Ah

√
3
√

3/2π

Rotated Hexagon (at 90◦) Length of the side Arh Req = Arh

√
3
√

3/2π

Star (regular Hexagram) Length of the side Ast Req = Ast

√
3
√

3/π

∗Equilateral Triangle Length of the side At Req = At

√√
3/4π

*Req for equilateral triangular strut presented here is used for validation in Section 4.

FIG. 4: A typical node of foam structure. We have shown
the four faces of a pyramid that is taken into considera-
tion in calculating the volume of the node. The face of
the nodes changes with the strut shape. We have shown
four struts of circular shape at the node, which is approx-
imated as triangular pyramid. (Zoom-node represents one
pyramid here, but for calculation, we accounted for four
pyramids to determine a node for four struts).

At the node junction, we can approximate the node by
using geometrical interpretation as (shown in Fig. 4)

1.6Req + Ls = L (3)

In dimensionless form, we can rewrite Eq. (3) as

1.6αeq + β = 1 (4)

whereαeq = Req/L andβ = Ls/L.
Total volume of a truncated octahedron is given as

VT = 8
√

2L3 (5)

In a truncated octahedron structure (see Fig. 1, left),
there are 36 ligaments and 24 nodes but only 1/3 of both,
volume of ligament and volume of node is included in the
unit periodic cell.

For a periodic Kelvin-like cell foam in a unit cell, solid
volumeVs is given as

Vs =
1
3

(36Vligament+ 24.Vnode) (6)

Porosity of a porous medium is given as

ε =
VT − Vs

VT
(7)

Equations (5)–(7) represent a general methodology to
evaluate the geometrical properties of the equivalent cir-
cular shape of metal foam. We have shown one of the
studied shapes and the correlation between geometrical
parameters, say, for circular strut shape,Req = Rc.

On substitution, we get

ε = 1−
1
3

(
36πR2

cLs + 24.
4
3
πR3

c

)

8
√

2L3

⇒ 12πα2
cβ +

32
3

πα3
c = 8

√
2 (1− ε) (8)
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whereαc = Rc/L andβ = Ls/L
Note thatαc is the ratio of strut radius to node length

where subscriptc represents circular shape. Moreover,β

is found to be independent of strut shape.
For all the other strut shapes, we have presented the

relation between porosity and geometrical parameters in
Appendix A. Equation (8) gives the generic relation of
porosity as a function of geometrical parameters.

We could combine Eqs. (4) and (8) to get approximate
values ofαeq andβ as a function ofε. This approach can
be used to determine all the geometrical properties if a
full set of geometrical parameters are not known. We have
plotted different values ofαeq andβ for different shapes,
which clearly follow a power law as shown in Figs. 5 and
6 and can be expressed as

αeq = χ (1− ε)ψ (9)

β = 1− 1.6 χ (1− ε)ψ (10)

whereχ andψ are the parameters that depend not only
on strut shape but also on rotation but with less impact
(as the node shape changes little with strut rotation, the
parametersχ andψ are influenced).

From Fig. 5, it is clearly seen that theαeq follows the
same trend of power law with respect to porosity where
the exponent of power law is always<1. There are nearly
three groups ofαeq that mainly depend on strut shape.
One group, which has higherαeq, is that of diamond,

square, and rotated square strut shapes. The second group
is that of hexagon, rotated hexagon, and circular strut
shapes. The third group is that of star shape, which has
the lowestαeq. In Fig. 6, we have obtained a unique curve
of β for all the strut shapes. It is mainly due to the hy-
pothesis that foam samples possess the same node volume
irrespective of the strut shape.

3.2 Specific Surface Area

As it is far more convenient to calculate the specific sur-
face area using a cubic unit cell, we consider the foam
shape in the cubic cell of volumeVc (see Fig. 3), and the
specific surface areaac can be written as

ac =
(36 Sligament+ 24Snode)

Vc
(11)

whereSligament andSnode are the surface area of one liga-
ment and node contained in the cubic cell of volumeVc

(the distance between two opposite points is2
√

2L and
thus,Vc = 2VT ).

In Fig. 3, we have presented Kelvin-like cell foams in
a cubic cell of different strut shapes. One can easily notice
that there are 12 full ligaments and 24 half ligaments in
a unit cell. Also, at the node junction, there are two half
nodes and one one-fourth node.

Specific surface area of a circular strut shape is given
as

FIG. 5: Plot of αeq versus1 − ε. αeq for different strut shapes is limited with respect to porosity as per construction
methodology.
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FIG. 6: Plot ofβ versus1−ε. A unique curve is obtained
for all the strut shapes due to the hypothesis made.

ac =

{
48πRcLs + 24.

3
4

(
5
4
πR2

c

)}

2
(
8
√

2L3
)

=
1√
2L

(
3παcβ +

45
32

πα2
c

)
(12)

For all the other strut shapes, we have presented the rela-
tion between specific area, node length, and geometrical
parameters in Appendix B.

For a given unit cell, the node length is fixed and one
can easily determine the specific surface area of different
strut shapes. We have presented a nondimensional curve
acL with respect to porosities in Fig. 7. From this curve,
one can identify eitherac or L for a known porosity.
While keeping the same porosity, one can increase the
specific surface area by utilizing different strut shapes.
The maximum increase in specific area is observed for
the star strut shape while the lowest is observed for the
circular strut shape. Moreover, a gradual increase of 25%
at low porosity (ε ≈ 60%) up to 60% at moderate poros-
ity (ε ≈ 75%) in specific surface area is noticed from the
circular to star strut shape.

We have also presented a nondimensional curve re-
lating αeqac with porosity in Fig. 8. Using this curve,
one can characterize all the geometrical parameters of
any strut shape. If any of the one or two quantities
are known, one can easily determine all the geometri-
cal parameters using the above established correlations
and curves. Moreover, these correlations can be used
to determine the shape of the strut for a givenαeqac,
which can give one insight to tailor their own foam ac-

FIG. 7: Plot of acL (dimensionless) versus1 − ε. A sharp increase inac is observed at lower porosity for complex
shapes.
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FIG. 8: Plot of αeq.ac (nondimensional) versus1 − ε. For a given application purpose ofε > 0.80 (mechanical
constraint) and hydraulic constraint (αeq.ac > 0.6), only square, rotated square, or diamond shape can be used.

cordingly. In this way, one can realize any number of
foams depending on the various engineering applications
needs.

We present an algorithm in Fig. 9 to determine re-
lations and values of all geometrical parameters of any
given shape if any of the two geometrical parameters,
namely,ds orAside, andL are known. It is not always nec-
essary to have prior information aboutds or Aside andL.
For instance, if any of the two foam geometrical proper-
ties are known, one can easily characterize other geomet-
rical properties using Figs. 5–8 and correlations. More-

FIG. 9: Algorithm to calculate porosity and specific sur-
face area.

over, these curves and correlations are useful depending
on the industrial applications. For a known output, one
can deduce all the input geometrical parameters for a
given application.

4. VALIDATION

In order to validate the proposed analytical model, data
obtained on virtual CAD samples and experimental data
are compared and found to be in excellent agreement. For
CAD samples, we have compared strut diameter and the
specific surface area of the different shapes for a given
node length for all porosities.

From Fig. 10, the bias in the strut diameters is observed
up to 3% because of geometrical approximations taken
on the struts node connection and the analyticalds is un-
derestimated. The comparison of specific surface area ob-
tained by classical method (see Table 1) and an analytical
approach is presented in Fig. 11. The errors are within
±3% for various shapes but in the case of star strut shape,
the specific surface area is underestimated by 6% only at
low porosities. One of the reasons is the complex nature
of the microstructural node for complex shapes (e.g., star)
at low porosities.

Very few works in the literature exist with complete
measurement of all geometrical properties. Moreover, the
literature on experimental determination of geometrical
properties may include bias linked to the “tools” used
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FIG. 10: Validation of strut diameter (or side length) of various shapes by classical measurement and analytical
approach.

FIG. 11: Validation of specific surface areas of various strut shapes by classical measurement and analytical approach.

to measure geometrical parameters. In order to main-
tain a consistency in measuring the parameters, Brun et
al. (2008) have developed an in-house code, iMorph, to
measure all geometrical parameters of their foams [see
Brun et al. (2009)]. Their definition to measure pore di-
ameter is based on equivalent included spherical diame-
ter in the foam structure. They have measured geometri-

cal properties on Recemat (nickel-chromium alloy), ERG
(Al foams), and Fibernide (Ni foams). De Jaeger et al.
(2011) and Perrot et al. (2007) have measured geometri-
cal parameters of their PU foams based on cell diameters
that are orthotropic in nature and possess convex triangu-
lar strut shape. This yields 17 (Al/NC/Ni/PU) open-cell
foam samples, presented in Table 3, allowing validation of
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TABLE 3: Comparison of specific surface area by measured data and data reported in the literature

Data from direct measurement Analytical approach

Authors Samples ε dp (µm) ac (m−1) αeq β L (µm) ac (m−1) Error (%)

Brun et al. (2009)

Recemat NC111689.6 2452 1300 0.4575 0.7283 913 1259 –3.15
Recemat NC172387.3 1840 1740 0.5037 0.7008 691 1786 2.64
Recemat NC273390.9 831 4288 0.429 0.7452 270 4061 –5.29
Recemat NC374387.3 569 5360 0.5037 0.7008 233 5299 –1.14

ERG Al 10 89.2 4497 558 0.4721 0.7196 1780 626 12.19
ERG Al 20 88.9 3969 549 0.4659 0.7233 1920 607 10.56
ERG Al 40 88.5 3442 743 0.4802 0.7148 1480 805 8.34

Fibernide Ni10 89.5 4429 718 0.4597 0.727 1650 699 –2.65

De Jaeger et al.
(2011)

PPI 10 93.2 2540 440 0.3726 0.7787 2203 446 1.36
PPI 10 95.1 2540 380 0.3177 0.8113 2270 381 0.26
PPI 20 91.3 1270 860 0.4198 0.7506 1336 807 –6.16
PPI 20 93.7 1270 720 0.3590 0.7867 1467 650 –9.72
PPI 20 96.7 1270 580 0.262 0.8444 1297 565 –2.59

Perrot et al.
(2007)

PPI 5 91.8 5080 431 0.408 0.7577 2312 456 5.80
PPI 10 91.8 2540 478 0.408 0.7577 2326 453 –5.23
PPI 20 91.7 2540 624 0.4104 0.7563 1641 646 3.53
PPI 40 92.3 2540 700 0.3957 0.7649 1393 736 5.14

Avg. Deviation 0.82
*Pore diameterdp of gray blocks (samples in PPI) are estimated asdp = 25.4/PPI.

our geometrical model. Note that we have not constructed
any triangular strut shape in our study because the litera-
ture includes a large number of models associated with
this shape. For validation, we have assumed the samples
of De Jaeger et al. (2011) and Perrot et al. (2007) as quasi
isotropic.

For all the 17 samples, their strut shapes are found to
be either convex triangular or equilateral triangle type. We
have approximated the strut shape as equilateral triangle,
and using the methodology of equivalent radiusReq pre-
sented in Section III.A (see Table 2), we have compared
the specific surface area of 17 samples, and the errors as-
sociated with them are enlisted in Table 3. We have used
ε to calculateαeq andβ followed by determining node
lengthL usingdp.

In Fig. 12, it is obvious that the proposed analyt-
ical model is in good agreement with the measured
and experimental specific surface areas within an error
range of±6%. The reason to compare different foams to
our proposed model is to increase the scope of model
validity over a wide range of different strut shapes
of different materials and different manufacturing tech-
niques.

5. CONCLUSION

Virtual foams of different strut shapes along with their ori-
entations using CAD modeling are tailored in the porosity
range 60–95%. The proposed correlations have been de-
rived for constant cross section of ligament for different
strut shapes. The final outcome from the proposed model
is very effective. A very good agreement between the pre-
dicted results and the available experimental data has also
been observed.

It should be noted that experimental or image process-
ing data of variable cross section of ligaments with dif-
ferent strut shapes for a wide range of porosity are still
unavailable to our knowledge. However, further experi-
mental data with different varied ligament cross section
of strut shapes would be welcome in order to give better
support to the proposed model, and this will be the subject
of a future article.
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APPENDIX A.

For a square strut shape,Req = As/
√

π.
On substitution, we get

ε = 1−
1
3

(
36A2

s + 24.
4
3
A3

s

/√
π

)

8
√

2L3

⇒ 12α2
sβ +

32
3
√

π
α3

s = 8
√

2 (1− ε) (A.1)

whereαs = As/L andβ = Ls/L.
For a rotated square strut shape,Req = Ars/

√
π.

On substitution, we get

ε = 1−
1
3

(
36A2

rsLs + 24.
4
3
A3

rs

/√
π

)

8
√

2L3

⇒ 12α2
rsβ +

32
3
√

π
α3

rs = 8
√

2 (1− ε) (A.2)

where,αrs = Ars/L andβ = Ls/L.

For a diamond strut shape,Req = Adet

√√
3/2π.

On substitution, we get

ε = 1−

1
3


36

√
3

2
A2

detLs + 24.
4
3
.

√
3

2
.

√√
3

2π
A3

det




8
√

2L3

⇒ 6
√

3α2
detβ +

16√
3
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3

2π
α3

det = 8
√

2 (1− ε) (A.3)
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whereαdet = Adet/L andβ = Ls/L.

For a hexagon strut shape,Req = Ah.
√

3
√

3/2π.
On substitution, we get

ε = 1−

1
3


36

3
√

3
2

A2
hLs + 24.

4
3
.
3
√

3
2

.

√
3
√

3
2π

A3
h




8
√

2L3

⇒18
√

3α2
hβ + 16

√
3

√
3
√

3
2π

α3
h = 8

√
2 (1− ε) (A.4)

whereαh = Ah/L andβ = Ls/L.
For a rotated hexagon strut shape,Req = Arh

.
√

3
√

3/2π.
On substitution, we get

ε = 1−

1
3


36

3
√

3
2

A2
rhLs + 24.

4
3
.
3
√

3
2
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√
3
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8
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3α2
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√
3

√
3
√

3
2π

α3
rh = 8

√
2 (1− ε) (A.5)

whereαh = Arh/L andβ = Ls/L.
For a star (regular hexagram) strut shape,Req = Ast.√
3
√

3/π.
On substitution, we get

ε = 1−

1
3


36

√
3A2

stLs + 24.
4
3
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3
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stβ + 32

√
3

√
3
√

3
π

α3
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√
2 (1− ε) (A.6)

whereαst = Ast/L andβ = Ls/L.

APPENDIX B. APPENDIX B

Specific surface area of a square strut shape is given as

ac =

{
96AsLs + 24.

3
4

(
5
4
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s

)}

2
(
8
√

2L3
)

=
1√
2L

(
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45
32

α2
s

)
(B.1)

Specific surface area of a rotated square strut shape is
given as

ac =

{
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Specific surface area of a diamond strut shape is given as

ac =
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Specific surface area of a hexagon strut shape is given as

ac =
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Specific surface area of a rotated hexagon strut shape is
given as

ac =
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Specific surface area of a star strut shape is given as

ac =

{
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(B.6)
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