Evolutionary computation based three-area automatic generation control

Ranjit Roy a,*, Praghnesh Bhatt a, S.P. Ghoshal b

Abstract

In this paper, various novel heuristic stochastic search techniques have been proposed for optimization of proportional–integral–derivative gains used in Sugeno fuzzy logic based automatic generation control of multi-area thermal generating plants. The techniques are genetic algorithm, various types of particle swarm optimization and bacteria foraging optimization. Numerical results show that all optimization techniques are more or less equally very effective in yielding optimal transient responses of area frequency and tie-line power flow deviations, but still MCASO and BFO yield much more global true optimal results. Particle swarm optimizations take the least time to achieve the same optimal gains. These gains are for nominal system parameters. For varying off-nominal on-line system parameters, fast acting Sugeno fuzzy logic manipulates the nominal gains adaptively to determine transient responses.

Keywords:
AGC; Evolutionary techniques; SFL

1. Introduction

Automatic generation control (AGC) is a very important issue in power system operation and control for supplying sufficient and reliable electric power with good quality.

The first attempt to control the frequency is via the flywheel governor of the synchronous machine. This governor’s action is insufficient and imposition of a supplementary control action, i.e. supplementing the governor by a signal proportional to the integral of the frequency deviation from its normal value, has been proved to be successful in achieving zero steady state frequency deviation. But it exhibits a poor dynamic performance as evidenced by large overshoot and transient frequency deviation (Concordia & Kirchmayer, 1954; Elgerd, 2001; Kirchmayer, 1958; Kothari & Dhillion, 2004; Wood & Woolenberg, 1984). Moreover, the settling time is relatively more. Several attempts have been made to enhance the performance of the integrator by supplementing its action or by reformulating the control problem according to a dynamic concept of automatic tie-line power and frequency control of two interconnected areas. Significant work in classical approach appeared in literature (Cohn, 1961; Cohn, 1971; Concordia, Kirchmayer, & Szymanski, 1957; Elgerd & Fosha, 1970; Moran & Williams, 1968; Williams, 1974) from 1961 to 1974. An area frequency response characteristic (AFRC) is used with integral form (GRC). They concluded that in presence of GRC optimum integral

© 2010 Elsevier Ltd. All rights reserved.
gain setting was much lower as compared to the unconstrained optimum integral gain setting.

Murthy and Ramana Rao (1977) discussed the effect of variation of power system parameters on the optimal control of LFC problem and established the need for system identification from time to time for any realistic on-line control of power system.

Tripathy et al. (1982) demonstrated that the governor deadband nonlinearity had a destabilizing effect on the load-frequency control of a power system. In recent years digital controllers are gaining popularity in automatic generation control. This is due to the fact that digital control is more accurate and reliable, compact in size, less sensitive to noise and drift. It can be implemented in a timeshared fashion by using the computer systems in load dispatch center. The area control error (ACE), which is used in the digital controller, is obtained using the computer systems in load dispatch center. The area control error (ACE), which is used in the digital controller, is obtained in discrete form by sampling operation between the system and the controller. The control vector in the discrete mode is constrained to remain constant between the sampling instants. The control problem is analyzed using discrete analysis techniques for optimization of the LFC strategy. The discrete time behavior of the continuous time system is modeled by the first order differential equations. The technique is well documented in the literature (Chan & Hsu, 1981; Geromel & Peres, 1985; Hiyama, 1982; Hiyama, 1982; Indulkar, 1992; Kumar & Malik, 1984; Kumar, Malik, & Hope, 1985; Kumar, Malik, & Hope, 1987; Kothari, Satsangi, & Nanda, 1981; Kothari, Nanda, Kothari, & Das, 1989; Kothari, Nanda, Kothari, & Das, 1992; Nanda, Kothari, & Satsangi, 1983).

Hiyama (1982), Hiyama (1982) proposed a method of designing discrete type load-frequency regulators of a two-area reheat type thermal system with generation-rate constraint. Nanda et al. (1983) developed a linear discrete-time state space model for a two-area hydrothermal system. The authors stated that the maximum frequency deviation in any area out of the two was more due to a step-load perturbation in the remote area than any similar perturbation in its own area. Also the optimum integral gain settings obtained in the continuous mode AGC were not acceptable in the discrete mode. Kumar and Malik (1984) proposed two models for discrete analysis of load-frequency control problem. In the first model the controller was in the discrete domain and power system was in continuous domain. In Chan and Hsu (1981), Kumar et al. (1985), Kumar et al. (1987), Geromel and Peres (1985), Kothari et al. (1981) discrete mode control was discussed.

Kothari et al. (1989), Kothari et al. (1992) proposed the concept of new area control error (ACE) for AGC of interconnected power system. AGC based on ACEN regulates conventional area control error (ACE), time error and inadvertent interchange accumulations to zero simultaneously. The problem was solved using discrete time analysis. The investigations reveal that the optimum value of inadvertent interchange bias setting is independent of GRC. With new area control error, presence of GRC deteriorated the dynamic performance.

Indulkar (1992) applied sampled data theory using z-transform to load-frequency control problem and has shown the frequency deviation and tie-line power deviation are quite different from those obtained when these error signals are assumed to be measured continuously.

Successful applications of self-tuning regulators to LFC problem were reported in literature (Ally, Abdel-Magid, & Wali, 1984; Kanniah, Tripathy, Malik, & Hope, 1984; Pan & Liaw, 1989; Sheirah & Abd, 1984; Swain & Mohanty, 1994; Yamshita & Miyagi, 1989).

Wang, Zhou, and Wen (1994) proposed a new robust adaptive load-frequency controller to improve power system performance. The standard robust control approach, Riccati equation approach and adaptive model reference control were combined to design a robust adaptive controller for a power system with parametric uncertainties. The authors demonstrated that the proposed load-frequency controller could achieve good performance even in the presence of the generation-rate constraint (GRC).

Rubai and Udo (1994) investigated a multilevel adaptive algorithm based on a relatively fast implicit STR for multi-area power systems. The application of the proposed algorithm was suggested as a suitable alternative to the integral control used normally for the LFC.

Urn, Wang, and Zhou (1996) proposed a robust decentralized load-frequency controller (RDLC) based on the Riccati equation approach for multi-area power system with parametric uncertainties.

The neural technology offers many more benefits in the area of nonlinear control problems, particularly when the system is operating over the nonlinear operating range. The applications of neural networks in power system control were witnessed in (Ahmed, Rao, & Sastry, 2002; Chaturvedi, Satsangi, & Kalra, 1999; Douglas, Green, & Kramer, 1994; Demioren, Sengor, & Zeynelgil, 2001; Demioren, Zeynelgil, & Sengor, 2001; Franoise, Magid, & Bernard, 1994; Indulkar & Raj, 1995; Sengor, Demioren, & Zeynelgil, 2002).

LFC system performance was evaluated with a nonlinear neural network controller using a generalized neural structure to yield better system dynamic performance than the individual neurons (Chaturvedi et al., 1999).

Demioren, Sengor et al. (2001) proposed an application of layered artificial neural network controller to study load-frequency control problem in power system. The authors concluded that the ANN configuration using back propagation through-time algorithm applied for load-frequency control at the power system
gives good dynamic response with respect to conventional controller.

The fuzzy logic control concept departs significantly from traditional control theory that is essentially based on mathematical models of the controlled process. Instead of deriving a controller via modeling the controlled process quantitatively and mathematically, the fuzzy control methodology tries to establish the controller directly from domain experts or operators who are controlling the process manually and successfully. Recently many studies exploiting the fuzzy logic concept in AGC regulator design dealing with various system aspects have appeared in the literature (Chown & Hartman, 1998; Ghoshal, 2003; Ghoshal, 2004; Gegov & Frank, 1995; Ghoshal & Goswami, 2003; Indulkar & Raj, 1995; Talaq & Al-basri, 1999).

Most recent contributions considering the problem of decomposition of multivariable systems for the purpose of distributed fuzzy control was reported by Gegov and Frank (1995). The proposed decomposition method has reduced the number of interactive fuzzy relations among subsystems. Talaq and Al-basri (1999) have proposed an adaptive fuzzy gain scheduling scheme for conventional PI and optimal load-frequency controllers. The proposed adaptive fuzzy controller offers better performance than fixed gain controllers at different operating conditions.

Ghoshal (2003, 2003, 2004) has presented a self-adjusting fast acting fuzzy gain scheduling scheme for conventional integral gain automatic generation controller for a radial and ring connected three equal power system areas. Ghoshal (2004) has proposed an application of a new BGA/BGA-SA based fuzzy automatic generation control of a multi-area thermal generating system. The scheme is capable of evaluating the fitness of BGA/hybrid BGA-SA optimization by selecting a function like “figure of demerit”, which directly depends on transient performance characteristics like settling times, undershoots overshoots, and time derivative of frequency. The hybrid BGA-SA technique yields more optimal gain values than the BGA technique.

Abdel-Magid and Dawound (1997) have investigated the optimum adjustment of the classical AGC parameters for two-area non-reheat thermal system using genetic techniques. A reinforced BGA has been proposed as an appropriate optimization method to tune the membership functions and rule sets for fuzzy gain scheduling of load-frequency controllers of multi-area power systems to improve the dynamic performance. The proposed control scheme incorporates dead-band and generation-rate constraints also.

AI-Hamouz and Al-Dowaish (2000) has proposed genetic techniques (BGA) for the selection of the variable structure controller (VSC) feedback gains. The application of the proposed method to the LFC problem reveals that not only the system performance is highly improved but also the control effort is dramatically reduced.

More recently, Ghoshal (2004) has proposed application of hybrid of BGA and particle swarm optimization for optimization of PID Gains in a multi-area thermal reheat generating system and shown optimal transient response characteristics much better than those obtained by BGA and BGA-SA.

From the literature survey, it may be concluded that there is still scope of work on the optimization of PID controller parameters to further improve the AGC performance. Much better global solutions may be searched for. For this, various novel evolutionary optimization techniques are proposed and tested for comparative optimization performance study. The succeeding sections of this chapter will be concentrated on the application of evolutionary

![Fig. 1. MATLAB-SIMULINK based closed loop PID controlled ring connected three equal rating reheat thermal area block diagram.](image-url)
optimization techniques for optimal AGC performance of an inter-connected three thermal reheat generating system.

Automatic generation control of multi-area interconnected thermal generating system means zeroing of the integral area control error of each area, so that system frequency and tie-line power flows are maintained at their scheduled values. Block diagrams of incremental tie-line power out of any area and closed loop controlled system model of reheat type three-area thermal generating systems are shown in Fig. 1.

\[\text{ACE}_i = \sum_j (\Delta P_{tie,i} + b_i \Delta f_i) \]

(1)

\(\text{ACE}_i \) is area control error of ith area, \(b_i \) is frequency bias coefficient of ith area, \(\Delta f_i \) is frequency error of ith area, \(\Delta P_{tie,i} \). \(i, j \) is tie-line power flow error between ith area and jth area. The PID control of \(\text{ACE}_i \) over a given time interval \(\tau \) in Laplace domain is defined by: \(G_i(s) = K_n + (K_i/s) + K_d s \) and \(K_n, K_i \) and \(K_d \) are proportional, integral and derivative gains, respectively. The varying system input parameters are area time constant \((t_p) \), tie-line synchronizing coefficient \((t_{12}) \) and frequency bias coefficient \((b) \).

2. Description of the system model

Fig. 1. show the closed loop PID controlled ring connected three equal rating reheat thermal area block diagram. The gains in the system model may be optimal nominal gains determined off-line by various optimization techniques individually or off-nominal, on-line ones determined by fast acting Sugeno Fuzzy Logic (SFL) with off-nominal input parameters using optimal nominal gains.

True optimal nominal performance for nominal input parameters \((t_p, t_{12} \& b)\) means minimum undershoot (USH), minimum overshoot (OSH) and minimum settling time \((t_s)\) of \(\Delta f_1, \Delta f_2 \) and \(\Delta f_3 \) of area1, area2 and area3, respectively. This is achieved through optimization of PID Gains of the PID controllers by any of the optimization techniques. This optimization really corresponds to minimization of an objective function which in this work, is defined as the figure of demerit as follows:

Figure of demerit = \((\text{overshoot} \times \sigma)^2 + (\text{undershoot} \times \rho)^2 + (\text{settling time})^2\)

(2)

These values are computed by first sampling the transient response curve of \(\Delta f_i (t) \). Number of samples chosen as 400 has become sufficient for good accuracy because maximum settling time as seen from the curve rarely exceeds 100 s. After sampling, the magnitudes of the samples are checked to be more than or equal to 0.0001 pu, reckoning from the last sample where the magnitude is very much less than 0.0001 pu. The instant of time when the above condition is satisfied is in our case called to be the settling time. Undershoot and overshoot are nothing but the minimum or the maximum values of the samples, respectively. Because overshoot and undershoot values are very small compared with settling time, large multipliers \(\sigma \) and \(\rho \) weight these so that these low values may compete with reduction of settling time during any optimization process. In this work, the best selected values of \(\sigma \) and \(\rho \) are 1000 and 100, respectively. Impact of minimization is more on overshoot than on initial undershoot. It is found that the latter does not reduce much even with higher weighting factor. The total system is a non minimum phase system.

By any of the optimization techniques nominal optimal PID gains are determined for various nominal parameter sets. These optimal PID gains will result in true optimal nominal transient performance of the system for nominal parameters. For off-nominal input parameters off-nominal PID gains are obtained by applying Sugeno Fuzzy Logic as subsequently explained. These off-nominal optimal PID gains will result in off-nominal optimal transient performance of the system for off-nominal parameters.

3. Evolutionary techniques employed

The present work incorporates various kinds of evolutionary computation techniques for optimization. The following optimization techniques are used in the present work. The details of all techniques are explained in Roy (2008). Still MCASO and BFO require special details because these two techniques finally prove to be the best and near best, respectively, for the present work.

1. Binary coded genetic technique (BGA)
2. Real coded genetic algorithm (RGA)
3. Genetic algorithm combined with simulated annealing (BGA-SA)
4. Evolutionary programming (EP)
5. Hybrid evolutionary programming (HEP)
6. Particle swarm optimization (PSO)
 (a) Classical particle swarm optimization (CPSO)
 (b) Hybrid particle swarm optimization with inertia weight approach (HPSO-IWA)
 (c) Hybrid particle swarm optimization with constriction factor approach (HPSOCFA)
 (d) Evolutionary particle swarm optimization (EPSO)
 (e) New particle swarm optimization (NPSO)
 (f) Velocity update relaxation momentum factor induced particle swarm optimization (VURMFPSO)
 (g) Craziness based particle swarm optimization (CRPSO)
 (h) Particle swarm optimization with constriction factor approach with Taguchi selection (HPSOCFA-Taguchi)
 (i) Modified chaotic ant swarm optimization (MCASO)

Chaotic ant swarm optimization (CASO) (Cai et al., 2007) combines the chaotic and self organization behavior of ants in the foraging process. It includes both effects of chaotic dynamics and swarm-based search. The algorithm has been employed to tune the PID controller parameters of the three-area power system. CASO is based on the chaotic behavior of individual ant and intelligent organization actions of ant colony. Here, the search behavior of the single ant is “chaotic” at first, and the organization variable \(r \) is introduced to achieve self organization process of the ant colony. Initially, the influence of the organization variable on the behavior of individual ant is sufficiently small. With the continual change of organization variable evolving in time and space, the chaotic behavior of the individual decreases gradually via the influence of the organization variable and the communication of previously best positions with neighbors, the individual ant alters his position and moves to the best one it can find in the search space. According to the distance between ant and their neighbors, a definition of neighbor (dBest) is introduced, in order to simulate the behaviors of ants in nature.

The searching area of ants corresponds to the problem search space. In the search space \(R \), this is the \(l \)-dimensional continuous space of real numbers, the algorithm searches for optima. A population of \(K \) ants is considered. These ants are located in a search space \(S \) and they try to minimize a function \(f: S \rightarrow R \). Each point \(s \) in \(S \) is a valid solution to the considered problem. The position of an ant \(i \) is assigned the algebraic variable symbol \(S_i = (x_1, \ldots, x_l) \), where \(i = 1, 2, \ldots, K \). Naturally each variable can be of any finite dimension. During its motion, the organization processes of the swarm influence each individual ant. In mathematical terms, the strategy of movement of a single ant is assumed to be a function of the current position; the best position found by itself and any member of its neighbors and the organization variable is given by (4).
where $y_i(n) = y_i(n-1)^{1+\varepsilon}$

$$z_{id}(n) = \left(z_{id}(n-1) + \frac{c}{\psi_d} V_i \right) \exp(1 - \exp(-a y_i(n))) \left[3 - \psi_d \left(z_{id}(n-1) + \frac{c}{\psi_d} V_i \right) \right] - \frac{c}{\psi_d} V_i \exp(-2ay_i(n) + b(p_d(n-1) - z_{id}(n-1)))$$

The initial value of $z_{id}(0)$ is chosen within the limits of the variables, where

- n is the current iteration cycle,
- $n-1$ is the previous iteration cycle,
- $y_i(n)$ is the current state of the organization variable ($y_i(0) = 0.999$),
- a, b, c are positive constants, $a = 200, 0 \leq b \leq \frac{c}{2}$, $c = 7.5$,
- $r_1 \in [0, 0.1]$ is a positive constant, and is termed as the organization factor of ant i,
- $z_{id}(n)$ is the current state of the dth dimension of the individual ant i, $d = 1, 2, \ldots, l$,
- ψ_d determines the selection of the search range of the dth dimension of variable in the search space, $\psi_d > 0$.
- V_i, Ψ_i, $d_{id} = 1$ are the search region of dth ant and offers the advantage that ants can search diverse regions of the problem space ($V_i = \text{rand}(1)$).

CASO is modified as MCASO with the introduction of craziness to the movement of the ants. Introduction of craziness enhances MCASO’s ability of searching and convergence to a global optimal solution. Variables’ upper and lower bound restrictions are always present. Ultimately, after maximum iteration cycles the optimal solution of z_{id} corresponds to global optimal value of fitness function under consideration.

The neighbor selection can be defined in the following two ways.

The first one is the nearest fixed number of neighbors. The nearest m ants are defined as the neighbors of single ith ant. The second way of the number of neighbor selection is to consider the situation in which the number of neighbors increases with iteration cycles. This is due to the influence of self-organization behavior of ants. The impact of organization will become stronger than before and the neighbors of the ant will increase. That is to say, the number of nearest neighbors is dynamically changed as iteration progresses.

The general CASO is a self-organizing system (Cai et al., 2007). When every individual trajectory is adjusted toward the successes of neighbors, the swarm converges or clusters in optimal regions of the search space. The search of some ants will fail if the individual cannot obtain information about the best food source from their neighbors.

While dealing with PID tuning, the algorithm’s parameters r, Ψ_i, V_i, a, b, c are different from those of Cai et al. (2007). These are respectively, $r = r_1$, replaced by $(1.02 + 0.04 \times \text{rand}(1))$, $\Psi_i = 1.75$, $V_i = \text{rand}(1)$, $a = 1$, $b = 0.1$, $c = 3$. These values are preset before a lot of experimentation to get the best convergence to optimal solution. In this work, as similar to CRPSO, craziness in velocity is also introduced as given below.

$$z_{id}(n) = z_{id}(n) + \text{sign}(r4) \times t_\text{craziness}$$

The value of $\text{sign}(r4)$ will be determined by (5).

3.1. Bacterial foraging optimization (BFO)

Natural selection favors propagation of genes of those animals that have efficient foraging strategies (method of finding, handling, and taking in food) and eliminate those animals that have weak foraging strategies. As the efficient foraging strategy allows the animals to ingest better and quality food, only animals having better food searching strategy are allowed to enjoy reproductive cycle in turn producing better species. Poor foraging strategies are either shaped into good ones or eliminated after many generations. With their own physiological (e.g. cognitive and sensing capabilities) and environmental (e.g physical characteristics of the search space, density of prey, risk and hazards from predators) constraints, animals try to maximize the consumption of energy per unit time interval. Such evolutionary idea has bred the concept of BFO (Passino, 2002) as an optimization technique. The interested research groups are gradually utilizing it as an optimization technique to solve a range of nonlinear optimization problems.

Four processes can explain the foraging strategy of Escherichia bacteria present in human intestine. These are chemotaxis, swarming, reproduction, and elimination-dispersal.

A set of relatively rigid flagella helps the bacteria in locomotion. Its characteristics of movement for searching of food can be in two different ways, i.e. swimming and tumbling together known as chemotaxis. Its movement in a predefined direction is termed as swimming (running), whereas as tumbling is the movement in altogether different direction. During its entire lifetime, it alternates between these two modes of operation. Clockwise rotation of its flagella results in tumble, where as, anticlockwise rotation yields swim.

Likelihood of increased search for nutrient concentration, enhanced capability to gang up on a large prey to kill and digest it, group protection of the individual from predators are the highlighting objectives and motivations of social and intelligent foraging strategy. Successful foraging for food of each and individual of the group results from grouping, communication mechanism and collective intelligence is utilized. To attract the other bacteria towards the optimal convergence direction, it is necessary to pass on the information about the nutrient concentration (optimal point) to other bacteria. This is called swarming. To achieve this, a penalty function based upon the relative distances of each bacterium from the fittest bacterium till that search duration, is added to the original optimization function. This penalty function becomes zero when all the bacteria have merged into the desired solution point.

After getting evolved through several chemotactic stages, the original set of bacteria is allowed for reproduction. Biological aspect of their conjugation process is splitting of one into two identical bacteria. It is mimicked in the optimization process by replacing the poorer half (having higher objective (figure of merit) function value for minimization problem and vice versa) with weaker foraging strategy by the healthier half, which is eliminated owing to their poorer foraging strategy, maintaining the total number of population of bacteria constant in the process of evolution.

Elimination and/or dispersal of a set of bacteria to a new position result in drastic alteration of smooth biological process of evolution. The underlying concept behind this step is to place a newer set of bacteria nearer to the food location to avoid stagnation (to avoid premature trapping into local optima).

The process of BFO based optimization as adopted in the present work is detailed below.

Step 1: Initialization

- (a) Maximum reproduction cycle, $\max_{\text{reprod}} = 10$
- (b) Maximum chemotactic cycle, $\max_{\text{chemo}} = 20$
- (c) Maximum dispersal cycle, $\max_{\text{dispersal}} = 2$
- (d) Total number of bacteria, $\text{numBact} = 500$
- (e) Maximum number of iteration cycle (k), $\max_{\text{cycle}} = 800$
- (f) Some positive constants $d_{\text{attract}} = 2.0; w_{\text{attract}} = 0.2; d_{\text{repel}} = 2.0; w_{\text{repel}} = 0.1$; selection ratio, $S_r = 0.5$; probability of elimination, $P_e = 0.3; c_{\text{max}} = 0.1; c_{\text{min}} = 0.0001; d_1 = 0.00001; d_2 = 0.00001$.
- (g) Maximum swim length (integer value) $\max_{\text{swim}} = 4$
- (h) Number of problem variables, var
(i) Variables' upper and lower limits var_{max} and var_{min}, respectively, as given for individual test objective function.

Step 2: Compute fitness functions of the bacteria, f_j

Step 3: Find pseudo global optimum fitness

Step 4: Find global optimum bacteria and its variables

Step 5: Swarming:

$$J_{\text{bact}}^{(k)} = J_{\text{bact}}^{(k)} - \sum_{\text{numbact}} d_{\text{disperse}} \times \left(e^{-\text{swimlength}} \cdot \sigma_{\text{bact}}^{(k)} \right)$$

$$+ \sum_{\text{numbact}} h_{\text{reprod}} \times \left(e^{-\text{swimlength}} \cdot \sigma_{\text{bact}}^{(k)} \right)$$

where,

$$\sigma_{\text{bact}}^{(k)} = \sigma_{\text{bact}}^{(k)} + \sum_{\text{numbact}} \left(\text{var}_{\text{glob}}^{(k)} - \text{var}_{\text{bact}}^{(k)} \right)^2$$

Step 6: Tumbling:

(a) $\Delta \text{var} = (2 \times \text{rand} \times \text{rand})$

$$\Delta \text{var} = \sqrt{\Delta \text{var} \times \Delta \text{var}}$$

(b) Compute: $\text{var}_{\text{var}}^{(k+1)} = \text{var}_{\text{var}}^{(k)} + (\text{var}_{\text{max}} - d_2) \times \frac{\Delta \text{var}}{\Delta \text{var}}$

Step 7: Impose limits of variables

Step 8: To start with BFO the following pseudo codes are to be followed for dispersed: $\text{max}_{\text{reprod}}$ do for reprod := 1 to $\text{max}_{\text{reprod}}$ do for chemo := 1 to max_{bact} do

$$c^{(\text{var})} = c^{(\text{var})} - \left(c^{(\text{var})} - c^{(\text{var})} \right) \times \frac{\text{cycle}}{\text{max cycles}}$$

Step 9: Compute fitness functions of the bacteria, f_j

Step 10: Find pseudo global optimum fitness J_{global}

Step 11: Swarming: As shown in Step 5

Step 12: Swarming of each bacterium

(a) for bact := 1 to numBact do

$$m_{\text{swim}} = 0$$

(b) while $m_{\text{swim}} < \text{swimlength}$

$$m_{\text{swim}} = m_{\text{swim}} + 1$$

(c) if $J_{\text{bact}}^{(k)} < J_{\text{bact}}^{(k-1)}$

xx = 'swim'

Compute Δvar, Δvar using (8) and (9)

Step 13: Swarming: As shown in Step 5

Impose variable(s) value(s)' restrictions

End of chemo loop

Step 14: Selection and copying of elite bacteria

Select elite bacteria by s_r ratio and copy the elite set of bacteria over the non-elite bacteria

Impose variable(s) value(s)' restrictions

End of reprod loop

End of disperse loop

Step 15: Compute global optimum fitness value among all previous pseudo global optimum fitness values and plot.

Determine corresponding optimum problem variables.

4. Brief overview of Sugeno Fuzzy Logic as applied to PID gain scheduling

The whole process (Ghoshal, 2003; Ghoshal, 2004; Ghoshal, 2004; Ghoshal & Goswami, 2003) involves three steps as:

(a) Fuzzification of input parameters t_p, t_i and b in terms of fuzzy subsets like “Small (S),” “Medium (M),” and “Large (L)” associated with overlapping (between “S” & “M” or “M” & “L”) triangular membership functions. The respective nominal central values of the subsets of t_p are 10, 0.145, and 0.125, those of t_i are 20, 0.345, and 0.275 and those of b are 30, 0.545, and 0.425, respectively, at which membership values is unity. These are nominal system parameters also. Sugeno fuzzy rule base table consists of 3 spherical input sets, each composed of three nominal parameters. Each input set corresponds to nominal optimal PID gains as output.

(b) Sugeno Fuzzy Inference: For on-line imprecise values of input parameters, firstly their subsets in which the values lie are determined with the help of “IF,” “THEN” logic and corresponding membership values are determined from the membership functions of the subsets. From Sugeno Fuzzy Rule Base Table, corresponding input sets and nominal PID gains are determined. Now, for each input set being satisfied, three membership values like μ_{t_p}, μ_{t_i} and μ_{b} and their minimum μ_{min} are computed. For the input logical sets, that are not satisfied because parameters do not lie in the corresponding fuzzy subsets, μ_{min} will be zero. As an example, for off-nominal input parameter set $(24.0, 0.162, 0.310)$, input logical sets being satisfied are: MSM, MMM, MSL, MML, LSM, LMM, LSL and LML. So, corresponding μ_{min} values of the subsets of t_p, t_i, and b are non zero values. No other non-zero μ_{min} will occur. For the non-zero μ_{min} values only, nominal P, I, D gain outputs (K_p, K_i, and K_d, respectively) corresponding to above fuzzy sets being satisfied are taken from the Sugeno Fuzzy Rule Base Table (Table 1).

(c) Sugeno defuzzification yields the defuzzified, crisp output for each gain as follows: Final crisp gain output, $K_{\text{crisp}} = \sum_{i=1}^{n} \mu_{\text{min}}K_i$, where i corresponds to input logical sets being satisfied (at most 8) among 27 input logical sets, K_i is nominal K_p, K_i, or K_d. K_{crisp} is either K_{max}, K_{min}, or K_{crisp}. K_{crisp} is the minimum membership value corresponding to ith input logical set being satisfied.

5. Input data and parameters

(a) The constant input data (Ghoshal, 2004; Ghoshal & Goswami, 2003) of the three equal thermal generating areas are the following: governor regulation, $R = 2.4$ Hz/pu, governor time constant, $T_g = 0.8$ s, non-reheat time constant, $T_n = 0.3$ s, Reheat time constant, $T_r = 4.2$ s, Reheat parameter, $c = 0.35$, power system gain constant, $K_p = 120$ Hz/pu,
incremental load change in area 1, ΔP₀ = 0.01 pu. For equal areas, t₀₁ = t₀₂ = t₁₂ = t₃₁. For BGA, number of bits in a chromosome = (number of parameters) × 8; mutation probability = 0.004, crossover rate = 80%, selection ratio, sᵢ = 0.3.

For SA, Best initial temperature, C₀ is selected as 75 °C and best β is selected as 0.995 after performing a lot of computer based computations.

For EP and HEP technique, strategy parameters α and β are randomly varied between 0.1 to 0.7 for each loop by binary encoding (IWA), CF = 0.60 (CFA).

For EPSO technique, sign = 1.0, w₁ = w₂ = w₃ = 0.1, toul = 0.1 * Rnd₁, toul = 0.1 * Rnd₂, Rnd₁ is uniformly distributed random number in [0,1].

For EPSO technique, sign = 1.0, w₁ = w₂ = w₃ = 0.1, toul = 0.1 * Rnd₁, toul = 0.1 * Rnd₂, Rnd₁ is uniformly distributed random number in [0,1].

For NPSO, parameters are the same as for CPSO.

For CRPSO, C₁ = C₂ = 2.05, initial gains = 0.25 * rand(1), initial velocities = 0.6. The value of υᵣₘᵢₙₑᵢₜ may be determined by employing υᵣₘᵢₙₑᵢₜ = 0.1 and υᵣₘᵢₙₑᵢₜ = 0.4.

6. Computational results

Table 1 shows two computational sample sets of results out of 27 sets (3²) like optimal PID gains, optimal undershoots, optimal overshoots, optimal settling times, minimum values of figure of demerit corresponding to two input parameter sets for each technique, obtained by MATLAB 6.5 software run on Pentium IV of 2.4 GHz. The Table 1 is called as part of Sugeno Fuzzy Rule Base Table, which is later on used for on-line determination of off-nominal PID gains for any off-nominal input parameter set.

Figs. 2–7 show the transient response curves of Deltaf(t), DeltaP(t) for one set of off-nominal parameters out of 27 sets for four techniques MCASO and BFO, respectively. Figs. 8–10 show MATLAB-SIMULINK based plots of optimal PID gains for any off-nominal input parameter set.

7. Discussions

(i) Various aspects of optimized nominal transient response characteristics: The objective function “Figure of demerit” chosen in this work directly involves the transient response characteristics, hence it correctly determines optimum values of

Table 1

Two sample results for two nominal input parameter sets with optimal PID gains and transient response parameters for all optimization techniques.

<table>
<thead>
<tr>
<th>Input set no.</th>
<th>Area nominal input parameter Tp, t₁, t₂, b</th>
<th>Technique</th>
<th>Optimal crisp PID gains</th>
<th>US × 10⁴ (-ve) (pu)</th>
<th>OS × 10⁴ (-ve) (pu)</th>
<th>Setting time, tₛ (s)</th>
<th>Minimum figure of demerit</th>
<th>Optimizing time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10, 0.145, 0.125</td>
<td>BGA</td>
<td>Kᵥ (-ve)</td>
<td>Kᵢ (-ve)</td>
<td>Kᵣ (-ve)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGA-SA</td>
<td>1.6602 1.9382 1.1071</td>
<td>25.9 3.80</td>
<td>7.14 72.1277</td>
<td>216.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RGA</td>
<td>1.9950 1.4134 0.8363</td>
<td>29.4 3.53</td>
<td>7.06 70.9481</td>
<td>353.2810</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP</td>
<td>2.0000 1.4408 0.9200</td>
<td>15.9 0.08</td>
<td>7.30 55.8245</td>
<td>145.2660</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HEP</td>
<td>2.0000 1.8928 1.8213</td>
<td>23.6 1.91</td>
<td>7.83 70.5207</td>
<td>492.0310</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPSO</td>
<td>1.9950 1.4033 0.9184</td>
<td>25.7 3.53</td>
<td>6.92 66.9522</td>
<td>87.9140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPSOIWA</td>
<td>1.2000 1.2000 1.2000</td>
<td>20.2 1.54</td>
<td>8.04 74.9656</td>
<td>186.1720</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPSoCFA</td>
<td>2.0000 1.2844 0.9940</td>
<td>15.0 0.07</td>
<td>7.25 54.8174</td>
<td>186.0630</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPSOCAF-Taguchi</td>
<td>2.0000 1.3514 0.9535</td>
<td>20.3 2.13</td>
<td>6.98 61.8422</td>
<td>530.1870</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPSO</td>
<td>1.9814 1.9950 1.9684</td>
<td>20.9 2.10</td>
<td>7.00 57.7781</td>
<td>236.2300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NPSO</td>
<td>2.0000 1.3686 0.9341</td>
<td>28.9 2.01</td>
<td>6.45 53.9947</td>
<td>195.0930</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRPSO</td>
<td>2.0000 1.2863 0.7997</td>
<td>15.5 0.08</td>
<td>7.15 53.3314</td>
<td>156.0940</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCASO</td>
<td>2.0000 1.3213 0.9341</td>
<td>15.5 0.08</td>
<td>7.15 53.3314</td>
<td>156.0940</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BFO</td>
<td>1.5007 1.9270 1.1850</td>
<td>14.0 1.85</td>
<td>7.00 54.825</td>
<td>697.0630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>10, 0.145, 0.275</td>
<td>BGA</td>
<td>2.0000 1.5773 1.4626</td>
<td>12.9 0.00</td>
<td>7.69 60.8002</td>
<td>218.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGA-SA</td>
<td>1.9702 0.6108 0.6577</td>
<td>17.4 0.00</td>
<td>7.52 59.5780</td>
<td>352.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RGA</td>
<td>2.0000 0.5913 0.7400</td>
<td>16.8 0.00</td>
<td>7.14 53.8020</td>
<td>146.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP</td>
<td>0.9450 0.4434 0.2000</td>
<td>23.5 7.90</td>
<td>17.35 175.5334</td>
<td>490.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HEP</td>
<td>2.0000 0.7563 0.2000</td>
<td>11.1 0.24</td>
<td>11.5 133.5397</td>
<td>511.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPSO</td>
<td>1.9550 0.6161 0.5688</td>
<td>18.2 1.51</td>
<td>8.63 80.0694</td>
<td>90.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPSoIWA</td>
<td>1.2000 1.2000 1.2000</td>
<td>14.3 1.55</td>
<td>8.88 83.3018</td>
<td>186.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPSoCFA</td>
<td>1.2000 1.2000 1.2000</td>
<td>14.3 1.55</td>
<td>8.88 83.3018</td>
<td>186.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPSOCFA-Taguchi</td>
<td>1.9359 1.9675 1.9754</td>
<td>11.2 1.33</td>
<td>8.75 79.5858</td>
<td>533.1870</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPSO</td>
<td>2.0000 1.9846 0.8895</td>
<td>15.8 1.60</td>
<td>7.54 61.9804</td>
<td>230.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NPSO</td>
<td>2.0000 0.5792 0.8848</td>
<td>15.6 0.00</td>
<td>7.76 62.6512</td>
<td>214.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CRPSO</td>
<td>1.9313 0.6025 0.5749</td>
<td>18.2 0.00</td>
<td>6.57 46.4773</td>
<td>192.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCASO</td>
<td>1.7191 0.5369 0.5527</td>
<td>18.5 0.08</td>
<td>6.33 43.4978</td>
<td>152.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BFO</td>
<td>1.8946 0.5891 0.9098</td>
<td>15.2 0.00</td>
<td>7.13 53.1473</td>
<td>695.47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2. Plot of Δf_1 versus time for MCASO; nominal input parameters = (20.0, 0.545, and 0.275).

Fig. 3. Plot of Δptie_{12} versus time for MCASO; nominal input parameters = (20.0, 0.545, and 0.275).

Fig. 4. Plot of Δp_{g1} versus time for MCASO; nominal input parameters = (20.0, 0.545, and 0.275).

Fig. 5. Plot of Δf_1 versus time for BFO; nominal input parameters = (20.0, 0.545, and 0.275).

Fig. 6. Plot of Δptie_{12} versus time for BFO; nominal input parameters = (20.0, 0.545, and 0.275).

Fig. 7. Plot of Δp_{g1} versus time for BFO; nominal input parameters = (20.0, 0.545, and 0.275).
PID gains with optimal transient response. It has also been investigated that if the weighting factor for overshoot is reduced, overshoot increases in the transient response, also resulting in other values of optimal gains. Optimal gains and transient responses are, therefore, dependent on the choice of weighting factors. Settling time because of its higher value than weighted overshoot is always imparted larger effect in reaching its minimum values. Undershoots are less affected by variations in weighting factor.

A close look into the results obtained by MCASO, BFO, CRPSO and other techniques for the input sets (20,0.145,0.125), (20,0.345,0.125), (20,0.545,0.125), values of minimum figure of demerit are high, and for (30,0.145,0.125), (30,0.345,0.125), (30,0.545,0.125), values are still higher. It means that for lower frequency bias coefficient, frequency oscillations, overshoot, settling time are more, yielding higher minimum figure of demerit. This behavior becomes more and more prominent as power system time constant increases i.e. area frequency response characteristic or damping coefficient (AFRC = ΔPb/Δf) decreases. That is, as the effect of the change in frequency on change in load decreases, the frequency oscillations are poorly damped.
Table 2
SFL based on-line computation of off-nominal optimal PID gains and other transient performance characteristics for different optimization techniques.

<table>
<thead>
<tr>
<th>Input set no.</th>
<th>Area nominal input parameter T_p, f_1, b</th>
<th>Technique</th>
<th>Optimal crisp PID gains K_p (-ve)</th>
<th>K_i (-ve)</th>
<th>K_d (-ve)</th>
<th>US $\times 10^3$ (pu)</th>
<th>OS $\times 10^3$ (pu)</th>
<th>Settling time, t_s (s)</th>
<th>Minimum figure of demerit</th>
<th>Optimizing time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 24, 0.28, 0.32 (MSM, MSL, MMM, MML, LSM, LMM, LSL, LML)</td>
<td>GA-SA</td>
<td>1.9923</td>
<td>0.5600</td>
<td>1.9923</td>
<td>0.00</td>
<td>75.4</td>
<td>58.1060</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BGA</td>
<td>1.9812</td>
<td>0.5493</td>
<td>1.7842</td>
<td>11.7</td>
<td>0.00</td>
<td>7.82</td>
<td>62.5213</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RGA</td>
<td>1.9751</td>
<td>0.5907</td>
<td>1.3639</td>
<td>13.2</td>
<td>0.00</td>
<td>7.17</td>
<td>53.1513</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP</td>
<td>2.0000</td>
<td>0.5661</td>
<td>2.0000</td>
<td>11.1</td>
<td>0.00</td>
<td>8.00</td>
<td>65.2321</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEP</td>
<td>1.4728</td>
<td>1.7932</td>
<td>0.9096</td>
<td>15.9</td>
<td>1.9</td>
<td>7.00</td>
<td>55.1381</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPSO</td>
<td>1.4926</td>
<td>0.4605</td>
<td>1.4580</td>
<td>13.1</td>
<td>0.00</td>
<td>8.23</td>
<td>69.4490</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HPSOIWA</td>
<td>1.2000</td>
<td>1.2100</td>
<td>1.2300</td>
<td>14.0</td>
<td>1.0</td>
<td>9.00</td>
<td>85.5200</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HPSOCFA</td>
<td>1.9950</td>
<td>0.6013</td>
<td>0.8466</td>
<td>16.0</td>
<td>0.00</td>
<td>7.12</td>
<td>53.2544</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HPSOCFA-Taguchi</td>
<td>1.2678</td>
<td>0.8964</td>
<td>1.3864</td>
<td>13.3</td>
<td>1.7</td>
<td>9.71</td>
<td>99.1859</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPSO</td>
<td>1.9546</td>
<td>1.7421</td>
<td>0.8766</td>
<td>15.8</td>
<td>0.00</td>
<td>6.24</td>
<td>41.4340</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPSO</td>
<td>2.0000</td>
<td>0.5643</td>
<td>2.0000</td>
<td>10.9</td>
<td>0.00</td>
<td>8.11</td>
<td>66.9602</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CRPSO</td>
<td>2.0000</td>
<td>0.5850</td>
<td>1.9852</td>
<td>11.1</td>
<td>0.00</td>
<td>7.00</td>
<td>50.2321</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MCASO</td>
<td>1.9999</td>
<td>0.6077</td>
<td>0.8766</td>
<td>15.8</td>
<td>0.00</td>
<td>6.24</td>
<td>41.4340</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BFO</td>
<td>1.9999</td>
<td>0.5800</td>
<td>2.0000</td>
<td>11.1</td>
<td>0.00</td>
<td>7.15</td>
<td>52.3546</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 3
Summarized results of merit order (minimum figure of demerit values) rank-wise frequencies of occurrence of the compared optimization techniques with total 200 runs for each technique (multiple runs for each input parameter set).

<table>
<thead>
<tr>
<th>Technique</th>
<th>Frequency of occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
</tr>
<tr>
<td>BGA</td>
<td>0</td>
</tr>
<tr>
<td>BGA-SA</td>
<td>0</td>
</tr>
<tr>
<td>RGA</td>
<td>0</td>
</tr>
<tr>
<td>EP</td>
<td>0</td>
</tr>
<tr>
<td>HEP</td>
<td>0</td>
</tr>
<tr>
<td>CPSO</td>
<td>0</td>
</tr>
<tr>
<td>HPSOIWA</td>
<td>0</td>
</tr>
<tr>
<td>HPSOCFA</td>
<td>0</td>
</tr>
<tr>
<td>HPSOCFA-Taguchi</td>
<td>0</td>
</tr>
<tr>
<td>EPSO</td>
<td>0</td>
</tr>
<tr>
<td>NPSO</td>
<td>0</td>
</tr>
<tr>
<td>CRPSO</td>
<td>37</td>
</tr>
<tr>
<td>MCASO</td>
<td>141</td>
</tr>
<tr>
<td>BFO</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 4
Summarized overall merit order ranking of the compared optimization techniques, derived from Table 3.

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Dominant overall rank(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCASO</td>
<td>1st or 3rd</td>
</tr>
<tr>
<td>BFO</td>
<td>2nd or 3rd</td>
</tr>
<tr>
<td>CRPSO</td>
<td>3rd or 2nd</td>
</tr>
<tr>
<td>RGA</td>
<td>4th or 5th</td>
</tr>
<tr>
<td>HPSOCFA</td>
<td>4th or 5th</td>
</tr>
<tr>
<td>CPSO</td>
<td>6th, 7th to 12th</td>
</tr>
<tr>
<td>BGA-SA</td>
<td>6th to 14th</td>
</tr>
<tr>
<td>HEP</td>
<td>6th or 7th, 8th to 13th</td>
</tr>
<tr>
<td>BGA</td>
<td>6th to 14th</td>
</tr>
<tr>
<td>NPSO</td>
<td>9th or 11th, 7th to 11th</td>
</tr>
<tr>
<td>EPSO</td>
<td>8th to 12th</td>
</tr>
<tr>
<td>EP</td>
<td>11th to 13th, 6th to 8th</td>
</tr>
<tr>
<td>HPSOCFA-Taguchi</td>
<td>13th, 9th to 14th</td>
</tr>
<tr>
<td>PSOIWA</td>
<td>14th, 9th to 14th</td>
</tr>
</tbody>
</table>

(ii) Sugeno Fuzzy Logic Based Response: For on-line, off-nominal input sets of parameters, SFL is successfully applied to get on-line, optimal PID gains. SFL intelligent MCASO-PID controller performs better than any SFL intelligent PID controller based on other optimization techniques. Figs. 2–7 show the SFL based plot of Deltaf_1, Deltap_1, Deltag_1 versus time for MCASO and BFO techniques. Table 2 shows the SFL based on-line computation of off-nominal optimal PID gains and other transient performance characteristics for different optimization techniques.

(iii) Convergence profiles: The minimum figures of demerit values recorded are plotted against number of iteration cycles to get the convergence profile of any technique. Figs. 11 and 12 show the convergence profiles of minimum figure of demerit of different optimization techniques. From these figures, it is clear that all optimization techniques except BGA and EPSO converge well to the final sub-optimal or near optimal or true optimal values of minimum figure of demerit. But, MCASO, BFO, CRPSO and RGA converge to the optimal minimum values whereas the rest others converge to the higher sub-optimal minimums by repeatedly revisiting the same solutions. HPSOCFA and EPSO show a few initial oscillations. BFO shows large oscillations till iteration cycles reach 100 and then reaches true minimum figure of demerit before the end of 200 iteration cycles.

(iv) Robustness: Inclusion of random numbers in heuristic techniques dictates to accept the performance results of these techniques upon testing the techniques for repetitive trial runs. A meaningful and acceptable conclusion may only be drawn about the optimizing techniques from the frequency of occurrence of convergence towards a predefined specific value. Two hundred independent trial runs for all the optimization techniques are individually carried out to accept the performance results of these techniques. From these figures, it is clear that all optimization techniques except BGA and EPSO converge well to the final sub-optimal or near optimal or true optimal values of minimum figure of demerit. But, MCASO, BFO, CRPSO and RGA converge to the optimal minimum values whereas the rest others converge to the higher sub-optimal minimums by repeatedly revisiting the same solutions. HPSOCFA and EPSO show a few initial oscillations. BFO shows large oscillations till iteration cycles reach 100 and then reaches true minimum figure of demerit before the end of 200 iteration cycles.
consistent and high, 141 and 111 each out of 200 runs, respectively. CRPSO, RGA and HPSOCSFA hold ranks from 2nd to 5th, respectively, but not so consistently. So, they are moderately good and robust. Excepting these five techniques, the rest nine techniques do not perform consistently even for sub-optimal solutions and are not robust for this specific study.

(v) Time of Optimization: For the same number of iteration cycles (200), the optimization times are arranged in ascending order as follow: $T_{\text{CRPSO}} < T_{\text{RGA}} < T_{\text{MCASO}} < T_{\text{HPSOCSFA}} = T_{\text{HPSOCSFA-Tagsuchi}} < T_{\text{HPSOCSFA-Tagsuchi}} < T_{\text{RPSO}} < T_{\text{RPSO}} < T_{\text{RPSO-SA}} < T_{\text{RPSO}} < T_{\text{HPSOCSFA-Tagsuchi}} < T_{\text{BFO}}$. So, inclusion of many random numbers and predefined probability of craziness is the cause of CRPSO’s more execution time. Execution times of RGA and MCASO rank second and third, respectively. EP and HEP take more times of execution because of frequent population doubling and mutual competition for survival. BGA-SA takes more time due to hybridization. HPSOCSFA-Taguchi takes very large time due to very rigorous Taguchi selection. The execution time of BFO is the highest because of time consuming nested loops of iteration cycles for various characteristic processes like dispersion cycle, chemicotic cycle, reproduction cycle etc.

(vi) Validation of the results obtained: The PID gains obtained analytically for the best algorithms MCASO and BFO are substituted in SIMULINK diagram. Analytical transient responses obtained are validated by SIMULINK based responses (Figs. 8–10) for the same input system parameter set.

8. Conclusion

In this work, fourteen heuristic evolutionary search techniques have been adopted for independent determination of off-line nominal optimal PID Gains suitable for optimal transient responses in automatic generation control. BGA yields sub-optimal results. Sugeno fuzzy logic (SFL) very fast manipulates the off-line nominal optimal gains obtained from the optimizers to obtain on-line off-nominal optimal gains for any on-line varying system operating condition. MCASO based optimization yield true optimal transient response among the other optimization techniques. Hence, MCASO based optimization result yield the best transient performance characteristics.

Appendix A

The transfer functions of different block used in the Fig. 1 are presented:

<table>
<thead>
<tr>
<th>Sr. no.</th>
<th>Elements</th>
<th>Short form</th>
<th>Transfer function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Governor</td>
<td>$1/T_{K_g}$</td>
<td>K_g</td>
</tr>
<tr>
<td>2</td>
<td>Turbine</td>
<td>$1/T_{T_g}$</td>
<td>K_T</td>
</tr>
<tr>
<td>3</td>
<td>Reheater</td>
<td>$1/T_{R_g}$</td>
<td>K_R</td>
</tr>
<tr>
<td>4</td>
<td>Power system block</td>
<td>K_p</td>
<td>$K_p + K_i/s + sK_d$</td>
</tr>
<tr>
<td>5</td>
<td>PID controller</td>
<td>PID</td>
<td></td>
</tr>
</tbody>
</table>

References

