A reflective proof system for reasoning in contexts

Pierre E. Bonzon

University of Lausanne
1015 Lausanne, Switzerland
pbonzon@hec.unil.ch

Abstract

We consider the problem of building an automated proof system for reasoning in contexts. Towards that goal, we first define a language of contextual implications, and give its operational semantics under the form of a natural deduction system using explicit context assertions. We show that this proof system has an equivalent straightforward logic program, which in turn can be reified, i.e. defined as an outer meta-level context, and thus applied to itself. More powerful reasoning models (e.g. those involving theory lifting) can be then implemented by applying the same logic program on extended meta-level contexts containing specialized axioms.

As a theoretical application, we consider the task of concept learning. In order to achieve generality (i.e. abstracting solution classes from problem instances), we argue that concept learning goals should aim at the discovery of meta-level operators representing the sequence of inference steps leading to object-level moves or actions. We illustrate this idea with the definition of a learning model based on partial deduction with respect to theory lifting.

Introduction

As argued by John McCarthy, the new logic agenda is to formalize contexts, make context a parameter, build context hierarchies, and then use non-monotonic reasoning for upward inheritance. Following recent work (Buvac, Buvac, and Mason 1995; Buvac 1996), formal axiomatized theories for both a propositional logic and a quantificational logic of contexts have been proposed. The second of these two proposals is of particular interest for AI applications, since, as opportunely reminded (Buvac 1996), “these applications require the expressive power of first order logics”. But without an effective automated proof system, axiomatized theories are barely of any use when it comes to implement applications. Things start to look better however when both the non-logical axioms of a theory and its corresponding proof system (the later encompassing its logical axioms and inference rules) can be represented as a logic program, as one can take advantage of the powerful machinery which is available today to interpret and/or compile Prolog programs.

The first goal of the work reported here was therefore to identify the subset of the sound and complete 2-sorted predicate calculus with equality defined by Buvac that could be used for that purpose. Towards that goal, we first define a language of contextual implications and give its operational semantics under the form of a natural deduction system using explicit context assertions. We refrain from any attempt to define a model semantics, and do not hypothesize any

1Proceedings 14th National Conference on Artificial Intelligence, Providence, Rhode Island, July 27-31, 1997. Copyright © AAAI. All rights reserved.
soundness and/or completeness properties. In contrast to previous proposals, the corresponding assumption free proof system is neither flat nor general, i.e. enforces only the backward direction of the usual flatness axiom schema. This derived proof system has an equivalent straightforward logic program, which in turn can be reified, i.e. defined as an outer meta-level context, and then applied to itself. More powerful reasoning models (e.g. those involving theory lifting) can be thus implemented by applying the same logic program on extended meta-level contexts containing specialized axioms. Other, more specific models (e.g. those involving private beliefs) will require both extended meta-level contexts and a modified logic program relaxing further what was left from the flatness axiom schema.

A second goal was to explore theoretical applications. It is an easy matter, in any rule system, to keep track of successive rule applications into so-called deduction traces. Usually, these deduction traces represent sequences of object-level rule applications. But here, in addition, the reflective properties just mentioned mean that generalized deduction traces can also represent inference steps (i.e. meta-level rule applications). Taken in conjunction with the general theory lifting mechanism (McCarthy 1993) that can itself be reified and included into a meta-level context, these capabilities open the door to a new kind of learning models. Instead of looking for the definition of object-level operators or concepts (thus facing the difficult problem of abstracting solutions classes from problem instances), learning goals can aim at the discovery of meta-level operators representing the sequence of inference steps leading to object-level moves or actions. These meta-level operators can be easily obtainable from generalized deduction traces. As a preliminary report on this ongoing work, we illustrate this idea with the definition of a learning model based on partial deduction with respect to theory lifting. This particular system can be used to both produce and later reuse partially instantiated deduction traces corresponding to generic meta-level operators applicable in various contexts.

A Restricted Logic

We shall rely on a few basic definitions, including those for terms and atomic formulas of first order logic. We will also assume the usual definitions of a substitution \(\theta \), of an instance \(e \theta \) or \(E \theta \) (of a single expression \(e \) or of a set of expressions \(E \)) and of a most general unifier \((mgu) \) of a set of expressions.

Syntax

Let us first define a language \(L \) of contextual implications. Following (Buvac 1996), we consider a two-sorted predicate calculus (without identity), and denote by \(C \) the set of terms of the context sort, and by \(A \) the set of atomic formulas of the discourse sort. Our language \(L \) is then defined as the least set satisfying the equation

\[
L = A \cup \left(L \rightarrow L \cup \text{ist}(C, L) \right)
\]

whose formulas do not contain implications defines the language of contextual facts.

Definition (context assertion): A context assertion is a formula \(\alpha : \Phi \) where \(\alpha \) is a term denoting a context and \(\Phi \) is a a set of contextual implications, i.e. \(\Phi \subset L \), with all variables appearing in either \(\alpha \) or \(\Phi \) universally quantified.

E.g. \(\text{block}(s0):[on(a,b), on(b,c)] \).
\(\text{block}(S):[on(X,Y) \rightarrow \text{above}(X,Y)] \).
\(c0:[\text{ist}(C,P \rightarrow Q) \rightarrow \text{ist}(C,P) \rightarrow \text{ist}(C,Q)] \).
N.B We adopt the PROLOG convention of using capital letters to represent variables and following the results of ambivalent logic (Kalsbeek and Jiang 1995) we do not distinguish between ordinary (e.g. x, y, c) and meta variables (e.g. p, q) representing arbitrary formulas.

Given a context assertion $\alpha: \Phi$ and a context C, we will say that assertion $\alpha: \Phi$ relates to (or partially defines) context C if C can be unified with α.

Definition (axiom instance): If C is a context and $\alpha: \Phi$ is a context assertion related to C, with $C0=\alpha\theta$ (i.e. θ is a mgu of C and α), then any formula P which can be unified with a formula $\phi\theta \in \Phi\theta$ is called an axiom instance for context C.

Proof Systems

We shall assume a basic understanding of the management of assumptions in natural deduction, see for instance (Lalement 1993).

Notation

instance(C, P) \iff P is an axiom instance for C, i.e in Prolog, instance(C, P):- $C: L, member(P, L)$.

$C:: \iff$ context C is assumed, i.e. C is an active assumption

$[C::] \iff$ if \exists at most one active assumption, namely $C::$, then it can be discharged; else if there is no active assumption, then $C::$ can be assumed and simultaneously discharged (i.e. there is no actual discharge)

1. **Natural deduction of contextual facts**

Applicable inference rules are defined as follows:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>axiom</td>
<td>instance(C, P)</td>
</tr>
<tr>
<td></td>
<td>$\underline{\text{ist}(C, P)}$</td>
</tr>
<tr>
<td>entering context</td>
<td>$C::, \text{ist}(C, P)$</td>
</tr>
<tr>
<td></td>
<td>\underline{P}</td>
</tr>
<tr>
<td>implication elimination</td>
<td>$P \rightarrow Q, P$</td>
</tr>
<tr>
<td>(modus ponens)</td>
<td>\underline{Q}</td>
</tr>
<tr>
<td>leaving context</td>
<td>$[C::]$</td>
</tr>
<tr>
<td></td>
<td>\underline{P}</td>
</tr>
<tr>
<td></td>
<td>$\underline{\text{ist}(C, P)}$</td>
</tr>
</tbody>
</table>
Conspicuously absent from this set of inference rules is the converse of modus ponens, i.e. the rule

\[
\frac{[P]}{\quad Q} \quad \text{implication introduction} \quad \frac{\neg P}{P \rightarrow Q}
\]

In full generality, this rule is required to ensure the completeness of the system. However, since we will restrict ourselves to the derivation of contextual facts, this rule can be dispensed with altogether (by *reductio ad absurdum*: such a rule is required by *modus ponens* only; furthermore, as implications associate to the right, it is required to establish its first premiss \(P \rightarrow Q\) in order to derive \(Q\) which otherwise cannot be derived (1); as its premiss must hold, \(Q\) must hold when \(P\) is assumed; \(Q\) must hold either by *axiom*, which contradicts (1), or by *modus ponens*, which in turn leads into an infinite regress).

Definition (deduction relation \(\vdash\)): A fact \(P\) is said to be derivable in the (*inner*) context \(C\), noted \(C \vdash P\), iff \(\exists\) a derivation (in the usual sense) of \(\text{ist}(C,P)\) with no active assumptions. Since we restrict ourselves to the derivation of contextual facts, our deduction relation \(\vdash\) is defined over \(C \times F\).

N.B. Extended derivation of formulas with arbitrary nesting depth will require the introduction of *outer* contexts reifying \(\vdash\) (see below).

Let us now consider the following assumption free proof system and logic program:

2. Assumption free proof system

\[
\begin{align*}
\text{axiom} & & \text{instance}(C,P) \\
& & \text{ist}(C,P) \\
\text{modus ponens} & & \text{ist}(C, P \rightarrow Q) , \text{ist}(C, P) \\
& & \text{ist}(C,Q) \\
\text{semi-flatness} & & \text{ist}(C1,P1) \\
& & \text{ist}(C, \text{ist}(C1,P1))
\end{align*}
\]

3. Logic program

\[
\begin{align*}
(3.1) & \quad \text{ist} (C,P) :- \text{instance}(C,P) . \\
(3.2) & \quad \text{ist} (C,Q) :- \text{ist} (C,P \rightarrow Q), \text{ist} (C,P) . \\
(3.3) & \quad \text{ist} (C, \text{ist}(C1,P1)) :- \text{ist} (C1,P1).
\end{align*}
\]

Proposition (equivalence): Proof systems 1., 2. and 3. are equivalent, i.e. if a formula is derivable in one system, then it is also derivable in the other two systems.
Proof (by rule application cases).

a) 1. ⇒ 2.
 - **axiom** in both systems are literally equivalent
 - **modus ponens** in 1. either directly or indirectly requires **entering context** (otherwise its first premise \(P \rightarrow Q \) leads to an infinite regress); consider these two steps together with the subsequent step of **leaving context**; these combined steps necessarily rely on a context assumption, say \(C \), with \(\text{ist}(C,P \rightarrow Q) \) previously established; provided that there can be at most one active context assumption when leaving, the second premise \(P \) either relies on the same assumption, with \(\text{ist}(C,P) \) previously established, or does not depend on any assumption; in this last case, \(P \) must be previously established and \(P = \text{ist}(C1,P1) \); in any case, discharging \(C \) will establish \(\text{ist}(C,Q) \) from \(\text{ist}(C,P \rightarrow Q) \) previously established and either \(\text{ist}(C,P) \) or \(P \) previously established; as \(\text{ist}(C, P) \) follows by **semi-flatness** from \(P \) whenever \(P = \text{ist}(C1,P1) \), these combined steps reduce to **modus ponens** in 2.
 - **entering context** is required by **modus ponens** only, and this case is covered above
 - if \(P = \text{ist}(C1,P1) \) then **leaving context** reduces to **semi-flatness**; otherwise **leaving context** can only require **modus ponens**, and this case is covered above

b) 2. ⇒ 1.
 - **axiom** in both systems are literally equivalent
 - **modus ponens** in 2. expands in 1. into a sequence of **entering context**, **modus ponens** and **leaving context**
 - **semi-flatness** reduces to **leaving context** (without actual discharge).

c) 2. ⇔ 3.
 - system 2. and logic program 3. are literally equivalent (i.e. syntactic variant).

Relating 2. to the complete system of (Buvac 1996), by discarding non-applicable axioms and inference rules and taking into account explicit context assertions, shows that in contrast to this system ours is neither flat nor general. **Semi-flatness** as defined in system 2. retains only the backward direction of the flatness axiom schema. If, as suggested in (McCarthy 1993), we regard \(\text{ist}(C,P) \) as analogous to \(C \rightarrow P \), then semi-flatness is mirrored by the valid formula \((C1 \rightarrow P1) \rightarrow (C \rightarrow C1 \rightarrow P1) \), whereas the converse formula is not valid.

N.B. Rejecting half of flatness protects logic program 3. from harmful indirect left recursion. Yet, systems such as Prolog which rely on a uniform depth first search strategy will still get into infinite recursion. As a way out, one may implement an iterative deepening search as follows:

```prolog
search(\text{ist}(C,Q) \setminus N) :- \text{ist}(C,Q) \setminus N;
    N1 is N + 1,
    search(\text{ist}(C,Q) \setminus N1).
```

with

```prolog
\text{ist}(C,Q) \setminus N :- \text{instance}(C,Q);
N > 0, N1 is N - 1,
\text{ist}(C,P \rightarrow Q) \setminus N2,
\text{ist}(C,P) \setminus N1.
\text{ist}(C0, \text{ist}(C,P)) \setminus N :- \text{ist}(C,P) \setminus N.
```

and the new top level call

```
\text{ist}(C,Q) :- search(\text{ist}(C,Q) \setminus 1).
```

As postulated in (McCarthy 1993), our language \(L \) allows for relations among contexts to be expressed as sentences in the language. In particular, \(\text{ist}(C,P) \) formulas could "always be
considered as themselves asserted within a context", leading thus to introduce \(outer \) contexts. In contrast to previous similar definitions (e.g. Weyhrauch 1980; Bowen and Kowalski 1982; Giunchiglia, Serafini and Simpson 1992; Attardi and Simi 1995) that are stated as inference rules allowing for the deduction of higher-order (or meta-level) formulas, the following definitions characterize a given outer context \(c_0 \) with respect to the deduction relation.

Let \(c_0 \) be a non empty context (i.e. such that there exists at least one assertion related to \(c_0 \)).

Definitions

- (reflecting up): if \(\forall C,P \ (C \vdash P \Rightarrow c_0 \vdash \text{ist}(C,P)) \) then \(c_0 \) reflects up relation \(\vdash \)
- (reflecting down): if \(\forall C,P \ (c_0 \vdash \text{ist}(C,P) \Rightarrow C \vdash P) \) then \(c_0 \) reflects down relation \(\vdash \)
- (reifying): if \(c_0 \) reflects relation \(\vdash \) both up and down, then \(c_0 \) is a reification of relation \(\vdash \)

Proposition (reification): If \(c_0\):[\(\text{ist}(C, P \rightarrow Q) \rightarrow \text{ist}(C,P) \rightarrow \text{ist}(C,Q) \)] is the only context assertion related to \(c_0 \), then \(c_0 \) is a reification of \(\vdash \).

Proof

a) reflecting up follows by semi-flatness in 2.
b) reflecting down follows by rule application cases in 2.: \(\text{ist}(c_0, \text{ist}(C,Q)) \) derives from semi-flatness or modus ponens; thus either \(\text{ist}(C,Q) \), or we have

\[
\text{ist}(c_0, P' \rightarrow \text{ist}(C,Q)) , \ \text{ist}(c_0, P')
\]

and in turn, \(\text{ist}(c_0, P' \rightarrow \text{ist}(C,Q)) \) in (1) necessarily derives from modus ponens, i.e. we have

\[
\text{ist}(c_0, P'' \rightarrow P' \rightarrow \text{ist}(C,Q)) , \ \text{ist}(c_0, P'')
\]

The first premiss in (2), i.e. \(\text{ist}(c_0, P'' \rightarrow P' \rightarrow \text{ist}(C,Q)) \), derives from axiom (if it were to derive from another modus modens, this would lead to an infinite regress), i.e. we have \(\text{ist}(c_0, \text{ist}(C, P \rightarrow Q) \rightarrow \text{ist}(C,P) \rightarrow \text{ist}(C,Q)) \) which leads to \(P'' = \text{ist}(C,P) \) and \(P' = \text{ist}(C, P \rightarrow Q) \); finally, the second premiss in (1) and (2), i.e. \(\text{ist}(c_0, P') \) and \(\text{ist}(c_0, P'') \), both derive from semi-flatness (it they were to derive from modus ponens, this would lead to an infinite regress); both \(P' \) and \(P'' \) must thus be derivable, and \(\text{ist}(C,Q) \) follows by modus ponens on \(P' \) and \(P'' \).

Theoretical Relevance and/or Applications

By definition, if \(c_0 \) is a reification of \(\vdash \) then it has the same deductive power (modulo a modality), i.e. the derivation of any \(P \) in any inner context \(C \) can be replaced by the derivation of \(\text{ist}(C,P) \) in the outer context \(c_0 \). The following is an example using previously given context assertions and system 2.
1 \text{ist}(c0, \text{ist}(C, P \rightarrow Q) \rightarrow \text{ist}(C, P) \rightarrow \text{ist}(C, Q)) \\
(by \text{ axiom})
2 \text{ist}(\text{block}(s0), \text{on}(X, Y) \rightarrow \text{above}(X, Y)) \\
(by \text{ axiom})
3 \text{ist}(c0, \text{ist}(\text{block}(s0), \text{on}(X, Y) \rightarrow \text{above}(X, Y))) \\
(by \text{ semi-flatness on 2})
4 \text{ist}(c0, \text{ist}(\text{block}(s0), \text{on}(X, Y)) \rightarrow \text{ist}(\text{block}(s0), \text{above}(X, Y))) \\
(by \text{ modus ponens on 1 and 3})
5 \text{ist}(\text{block}(s0), \text{on}(a, b)) \\
(by \text{ axiom})
6 \text{ist}(c0, \text{ist}(\text{block}(s0), \text{on}(a, b))) \\
(by \text{ semi-flatness on 5})
7 \text{ist}(c0, \text{ist}(\text{block}(s0), \text{above}(a, b))) \\
(by \text{ modus ponens on 4 and 6})

More interesting cases arise when c0 corresponds to non conservative extensions of \vdash, i.e.
embodies stronger principles (Giunchiglia and Serafini 1994), thus allowing for the derivation
(modulo a modality) of formulas that would otherwise not be derivable.

Theory lifting

As an example of a derivation that requires an extended outer context $c0$, let us consider the
following assertions implementing theory lifting (McCarthy 1993):

above_theory: [\text{on}(X, Y) \rightarrow \text{above}(X, Y)].
block(s0): [\text{on}(a, b)].
block(S): [\text{ist}(\text{above}_\text{theory}, P) \\
\rightarrow \text{ist}(\text{block}(S), P)].
c0: [\text{ist}(C, P \rightarrow Q) \rightarrow \text{ist}(C, P) \rightarrow \text{ist}(C, Q), \\
\text{ist}(C, \text{ist}(A, P) \rightarrow \text{ist}(C, P)) \\
\rightarrow \text{ist}(A, P) \\
\rightarrow \text{ist}(C, P)].

According to the specific lifting axiom now asserted within \text{block}(S), any rule P stated
within above_theory holds within \text{block}(S). To actually enforce this (or any other)
specific axiom, a new lifting inference rule is asserted within outer context $c0$. It must be noted
that in contrast to (McCarthy 1993) and as postulated in (Attardi and Simi 1994), our
implementation of theory lifting relies on an explicit outer context. However, in contrast to
Attardi and Simi (whose lifting axiom asserted within $c0$ is bound to the above_theory
context), our lifting inference rule is truly general.

Private beliefs

Semi-flat contexts cannot be models for private beliefs: if a modality $\text{bel}(X, P)$ is introduced
to mean that agent X believes P to be true, then $\text{bel}(Y, \text{bel}(X, P))$: $\text{bel}(X, P)$
is a counterintuitive inference rule. Let us consider instead the restricted rule

ist(b0, \text{bel}(X, P))$: $\text{instance}(X, P) \quad (1)$

Together with the extended outer context assertion
\[b_0: \{\text{bel}(X, P \rightarrow Q) \rightarrow \text{bel}(X, P) \rightarrow \text{bel}(X, Q),\]
\[\{\text{bel}(X, A) \rightarrow \text{bel}(X, B) \rightarrow \text{bel}(X, C)\}\]
\[\rightarrow \text{bel}(Y, \text{bel}(X, A))\]
\[\rightarrow \text{bel}(Y, \text{bel}(X, B))\]
\[\rightarrow \text{bel}(Y, \text{bel}(X, C))\}.\]

in which the second inference rule enables the nested application (at any depth) of the first or any other similar rule. Substituting (1) for the semi-flatness rule in logic program 3. will result in a new proof system allowing for the derivation, within outer context \(b_0\), of \text{bel} modalities (modulo outer \text{ist} modalities), i.e. of nested formulas of the form \(\text{ist}(b_0, \text{bel}(X, P))\), \(\text{ist}(b_0, \text{bel}(Y, \text{bel}(X, P)))\), and so on.

Reflective contexts

Reflective contexts, which keep track of derivations, involve a new modality \(\text{reflect}(V, W)\) meaning that \(W\) holds because of the sequence of inference steps \(V\). A simple reflective context can be defined as

\[r_0: \{\text{instance}(C, P) \rightarrow \text{reflect}(\text{axiom}(C), \text{ist}(C, P)),\]
\[\text{reflect}(X, \text{ist}(C, P \rightarrow Q))\]
\[\rightarrow \text{reflect}(Y, \text{ist}(C, P))\]
\[\rightarrow \text{reflect}(\text{mp}(X, Y), \text{ist}(C, Q))\}.\]

Its first rule simply reflects an axiom instantiation. The second one reflects an application of modus ponens reified into the term \(\text{mp}(X, Y)\), where \(X\) and \(Y\) are the reified inference steps needed to derive the antecedents \(P \rightarrow Q\) and \(P\), respectively. As an example, the call

\[\text{ist}(r_0, \text{reflect}(D, \text{ist}(C, \text{above}(X, Y))))\]

will result in the following instantiation for \(D\)

\[D = \text{mp}(\text{axiom}(\text{block}(s0)), \text{axiom}(\text{block}(s0)))\]

N.B. As \(\text{instance}(C, P)\) is actually a Prolog procedure (defined earlier), in order for such a call to appear in a context assertion, semi-flatness in logic program 3. must be extended with

\[(3.4) \text{ist}(C, \text{instance}(C_1, P_1)) :- \text{instance}(C_1, P_1).\]

The inference steps taken during the above derivation have been turned into a fully instantiated trace \(D\). Conversely \(D\) can be forced back into \(r_0\), driving the derivation into the same inference steps. Constraining a derivation with a fully instantiated trace leads to a reduced search space and thus makes \(D\) equivalent to a specific meta-level operator for deriving \(\text{above}(X, Y)\) in context \(\text{block}(s0)\). Similarly, partially instantiated traces would lead to generic operators applicable in various contexts, e.g. in any context \(\text{block}(S)\).

Deriving traces, e.g. by hopping up first to another meta-level context, accounts for the learning of an operator. Hopping down again to force these traces is equivalent to applying an operator. To illustrate these ideas, we shall consider a particular learning model based on theory lifting. Partially instantiated traces will be constituted of embedded sequences of modus ponens applications whose first antecedent only will be specified. Furthermore, this first antecedent will follow from the lifting inference rule introduced earlier (i.e. a process equivalent to partial deduction with respect to theory lifting). Our learning model can thus be defined in terms of the following inputs:
- a collection of domain theories, e.g. block(S)
- a collection of liftable theories together with specific lifting axioms (e.g. as in above_theory)
- a reflective context allowing to carry out partial deductions with respect to theory lifting.

Such a reflective context r1 associates a reflective form of the lifting inference rule with a shortened form of modus ponens, i.e.

\[r1: \text{instance}(C, \text{ist}(A, P) \rightarrow \text{ist}(C, P)) \]
\[\rightarrow \text{instance}(A, P) \]
\[\rightarrow \text{reflect}(\text{lift}(\text{axiom}(C), \text{axiom}(A)), \text{ist}(C, P)) \]
\[\text{reflect}(X, \text{ist}(C, P \rightarrow Q)) \]
\[\rightarrow \text{reflect}(\text{mp}(X, _), \text{ist}(C, Q)) \].

The goal of the system is then to discover control rules given under the form of partially instantiated traces of applicable inference steps leading to specific facts which follow from the lifting of theories into selected domains. While it is notoriously difficult to abstract solution classes or concepts from specific facts, applicable inference steps are not bound to specific data instances and thus directly achieve generality.

As an example, the call

\[\text{ist}(r1, \text{reflect}(D, \text{ist}(C, \text{above}(X, Y)))) \]

will lead to the following partial instantiation for D

\[D = \text{mp}(\text{lift}(\text{axiom}(\text{block}(_)), \text{axiom}(\text{above}_\text{theory})), _) \]

thus defining a generic meta-level operator, which could be seen as an application of the following control rule:

in order to get specific facts, first select a specific lifting axiom, then instantiate the corresponding liftable theory, and finally conclude by applying some rule from the lifted theory.

While this control rule itself was not explicitly given, an appropriate instantiation was learned under the form of a partially instantiated trace D.

Related work

(McCarthy, J. 1993) and (Buvac, S. 1996) have been the primary source of inspiration for this research. Our work is also very much related to (Attardi and Simi 1994), who first formally linked reasoning in context with natural deduction. Yet the system they end up with is not an automated one. The theoretical results reported in (Massacci 1996) rely on a definition of a tableaux calculus which "satisfies the strong confluence property and therefore can be adapted to many search heuristics". This system, however, is restricted to the propositional case.
Conclusions and future work

Through possible extensions of outer contexts mirroring its Prolog proof procedure, our reflective proof system can be tailored to the needs of various inner contexts. As an example, common beliefs can be seen as a case of theory lifting into private beliefs. On the other hand, the uniform depth first search strategy of Prolog results in its relative inefficiency. This could be alleviated by a direct implementation of a deepening search of logic program 3.

A semantic account of the language is needed in order to get an understanding of the semi-flatness hypothesis. By formalizing the analogy $\text{ist}(C,P) \cong C \rightarrow P$ to include $\text{ist}(C,\text{ist}(C1,P1)) \cong C \rightarrow C1 \rightarrow P1$, it could offer $C \rightarrow C1$ as a model for "C subsumes C1", $(C \rightarrow C1) \land (C1 \rightarrow C)$ for "C is equivalent to C1", and $(C \rightarrow C1) \lor (C1 \rightarrow C)$ for "C is compatible with C1". Any pair of compatible contexts would then satisfy the formula mirroring semi-flatness.

Acknowledgments

Thanks to the referees for their valuable comments. This work has been supported by the Swiss National Research Council under contract n° 2100-045664.95/1.
References

