Small proper double blocking sets in Galois planes of prime order

Petr Lisoněk*, Joanna Wallis

Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

Received 20 October 2006; received in revised form 26 July 2007; accepted 26 July 2007

Available online 6 September 2007

Abstract

A proper double blocking set in PG(2, p) is a set B of points such that 2 ≤ |B ∩ l| ≤ (p + 1) − 2 for each line l. The smallest known example of a proper double blocking set in PG(2, p) for large primes p is the disjoint union of two projective triangles of side (p + 3)/2; the size of this set is 3p + 3. For each prime p ≡ 3 (mod 4) we construct a proper double blocking set with 3p + 1 points, and for each prime p ≥ 7 we construct a proper double blocking set with 3p + 2 points.

Keywords: Blocking set; Double blocking set; Galois plane

1. Introduction

Let PG(2, q) denote the projective plane over Fq, the finite field of order q. A set of points B ⊆ PG(2, q) is called a t-fold blocking set if t ≤ |B ∩ l| for each line l of PG(2, q).

Some applications of blocking sets require that the complement of the blocking set have the same blocking property; see for example [1, Section 8.6] where the application to committee scheduling is mentioned. We say that B ⊆ PG(2, q) is a proper t-fold blocking set if t ≤ |B ∩ l| ≤ (q + 1) − t for each line l of PG(2, q). A (proper) twofold blocking set will be called a (proper) double blocking set.

Blokhuis [2] proved that if p is a prime, then each proper onefold blocking set in PG(2, p) has at least 3(p + 1)/2 points; for odd p this bound is achieved by the projective triangle of side (p + 3)/2. By taking the union of two disjoint such triangles we obtain a proper double blocking set of size 3p + 3 for p > 3. While sporadic examples of proper double blocking sets of size less than 3p + 3 are known for small primes p, it appears that no infinite families of such examples are known presently. The objective of this paper is to provide a construction of proper double blocking sets of size 3p + 1 for all primes p ≡ 3 (mod 4), p ≥ 11, and of size 3p + 2 for all primes p ≥ 7.

No example (sporadic or not) of a twofold blocking set (proper or not) in PG(2, p), p prime, with size less than 3p is known presently, with the exception of a 38-point set in PG(2, 13) discovered recently [3].

At some level our first construction (Theorem 2.2) can be viewed as a certain generalization of the classical construction of the projective triangle of side (p + 3)/2, see for example [4, Lemma 13.6], to the case where the set is created on four lines.

* Corresponding author.

E-mail addresses: plisonek@math.sfu.ca (P. Lisoněk), jwallis@math.sfu.ca (J. Wallis).

1 Research partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).
2. The constructions

Throughout this section, let \(p \) be an odd prime.

For \(x \in \mathbb{F}_p \), we say that \(x \) is a square if \(x = s^2 \) for some \(s \in \mathbb{F}_p \). Otherwise, \(x \) is a non-square. By \(\square_p \), we denote the set of all non-zero squares of \(\mathbb{F}_p \) and by \(\bigcirc \) we denote the set of all non-squares of \(\mathbb{F}_p \). Note that 0 does not appear in either set. Recall that for \(x \in \mathbb{F}_p \) the Legendre symbol \((x/p)\) is defined by \((0/p) = 0\), \((x/p) = 1\) if \(x \in \square_p \) and \((x/p) = -1\) if \(x \in \bigcirc \). For \(p \equiv 3 \pmod{4} \) we have \((-x/p) = -(x/p)\). Other properties of the Legendre symbol which we will use later are \(\sum_{x \in \mathbb{F}_p} (x/p) = 0 \) and \((ab/p) = (a/p)(b/p)\) for all \(a, b \in \mathbb{F}_p \).

Proposition 2.1. If \(p \) is a prime such that \(p \equiv 3 \pmod{4} \), then the set

\[
S_p := \{ x \in \mathbb{F}_p \mid x \in \square_p \text{ or } x + 1 \in \bigcirc \}
\]

has cardinality \(\frac{1}{4}(3p - 5) \).

Proof. Consider the set

\[
S'_p := \left\{ x \in \mathbb{F}_p \left\| \frac{x}{p} = -1 \text{ and } \frac{x + 1}{p} = 1 \right\} \right.
\]

and note that \(\mathbb{F}_p = S_p \cup S'_p \cup \{0, -1\} \), where \(\cup \) denotes disjoint union.

For \(x \in \mathbb{F}_p \), consider the function

\[
\kappa(x) := \frac{1}{4} \left(1 - \left(\frac{x}{p} \right) \right) \left(1 + \left(\frac{x + 1}{p} \right) \right).
\]

For each \(x \in \mathbb{F}_p \setminus \{0, -1\} \) we have \(\kappa(x) = 1 \) if \(x \in S'_p \) and \(\kappa(x) = 0 \) if \(x \notin S'_p \). Since \(S'_p \subset \mathbb{F}_p \setminus \{0, -1\} \), we simply have

\[
|S'_p| = \sum_{x \in \mathbb{F}_p \setminus \{0, -1\}} \kappa(x).
\]

We can evaluate this sum as

\[
\sum_{x \in \mathbb{F}_p \setminus \{0, -1\}} \kappa(x) = \sum_{x \in \mathbb{F}_p \setminus \{0, -1\}} \frac{1}{4} \left(1 - \left(\frac{x}{p} \right) \right) \left(1 + \left(\frac{x + 1}{p} \right) \right)
\]

\[
= \frac{1}{4} \left((p - 2) + (-1) - 1 - \sum_{x \in \mathbb{F}_p \setminus \{0, -1\}} \left(\frac{x}{p} \right) \left(\frac{x - (x + 1)}{p} \right) \right)
\]

\[
= \frac{1}{4} \left((p - 4) - \sum_{x \in \mathbb{F}_p \setminus \{0, -1\}} \left(\frac{1 + x - 1}{p} \right) \right) = \frac{1}{4}(p - 3).
\]

Thus

\[
|S_p| = |\mathbb{F}_p| - |S'_p| - |\{0, -1\}| = p - \frac{1}{4}(p - 3) - 2 = \frac{1}{4}(3p - 5) \quad \square
\]

Our construction of the proper double blocking set presented in the proof of Theorem 2.2 exhibits parallels to one classical example of a onefold blocking set, namely the projective triangle of side \((p + 3)/2\) (see e.g. [4, Lemma 13.6]). In our case, each point of the set lies on one of 4 lines in a general position. A second similarity consists of exploiting the properties of squares and non-squares in \(\mathbb{F}_p \) in order to achieve the desired blocking property of the set.

By \([a : b : c]\) we will denote the line consisting of the points \((x : y : z)\) such that \(ax + by + cz = 0\).

Theorem 2.2. Let \(p \geq 11 \) be a prime such that \(p \equiv 3 \pmod{4} \). There is a proper double blocking set \(B \) in \(\text{PG}(2, p) \) such that \(|B| = 3p + 1\) and each line of \(\text{PG}(2, p) \) intersects \(B \) in at most \(\frac{1}{4}(3p + 7) \) points.
Proof. Let \(I_0 = [1 : 0 : 0], I_1 = [0 : 1 : 0], I_2 = [0 : 0 : 1] \) and \(I_3 = [1 : 1 : 1] \), with indices viewed as elements of \(\mathbb{Z}_4 \).

We will construct \(B \) as a subset of \(I_0 \cup I_1 \cup I_2 \cup I_3 \). Let \(M \) be the projectivity of \(\text{PG}(2, p) \) that maps \(I_i \to I_{i+1} \), \(i \in \mathbb{Z}_4 \).

We have

\[
M = \begin{pmatrix}
1 & 1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{pmatrix}.
\]

The subgroup \(G := \langle M \rangle \) of \(\text{PGL}(3, p) \) is isomorphic to \(Z_4 \). For any point \(u \in \text{PG}(2, p) \) let \(G(u) \) denote the \(G \)-orbit of \(u \). For a point \((0 : 1 : a) \in I_0 \) we have

\[
G(0 : 1 : a) = \{(0 : 1 : a), (a + 1 : 0 : -1), (a : -(a + 1) : 0), (-1 : -a : a + 1)\}.
\]

Let

\[
B_V := \{I_i \cap I_j \mid 0 \leq i < j \leq 3\}
\]

and notice that

\[
B_V = G(0 : 1 : 0) \cup G(0 : 1 : -1).
\]

For \(a \neq 0 \) we have \(|G(0 : 1 : a)| = 4 \).

Let

\[
B_I := \bigcup_{a \in S_p} G(0 : 1 : a),
\]

where \(S_p \) was defined in (1). Note that \(B_I \cap B_V = \emptyset \). The set \(B \) is now defined as

\[
B := B_I \cup B_V.
\]

Points in \(B_V \) will be called the vertices of \(B \). Throughout this proof it will be useful to write each point of \(B_I \) in the form implied by (2) in order to explicitly determine the \(G \)-orbit to which the point belongs. By Proposition 2.1,

\[
|B| = |B_I| + |B_V| = 4 \cdot \frac{1}{4}(3p - 5) + 6 = 3p + 1.
\]

Next we prove that \(B \) is a proper double blocking set, that is,

\[
2 \leq |l \cap B| \leq (p + 1) - 2
\]

for each line \(l \). We will split this proof into cases according to \(|l \cap B| \).

Note that if \(l \) is not one of the lines \(I_i \) (\(i \in \mathbb{Z}_4 \)) defined above, then from \(B \subset (I_0 \cup I_1 \cup I_2 \cup I_3) \) it follows that \(|l \cap B| \leq 4 < (p + 1) - 2 \). Hence, in each subcase for which \(l \notin \{I_0, I_1, I_2, I_3\} \) it only remains to prove \(|l \cap B| \geq 2 \).

Case (i): \(|l \cap B_V| \geq 2 \). We have \(|l \cap B| \geq 2 \) since \(B_V \subset B \). If \(l \) is one of \(I_i \), then \(|l \cap B| = \frac{1}{4}(3p - 5) + 3 = \frac{1}{4}(3p + 7) \leq (p + 1) - 2 \) since \(p \geq 11 \) by assumption.

In the remaining cases we have \(|l \cap B_V| < 2 \). Since \(|l \cap B_V| = 3 \) for each \(i \in \mathbb{Z}_4 \), for each remaining case we have \(l \notin \{I_0, I_1, I_2, I_3\} \).

Case (ii): \(|l \cap B_V| = 1 \).

Due to (3) and the \(G \)-symmetry of the set \(B \) it is enough to consider the two cases \(l \cap B_V = (0 : 1 : 0) \) and \(l \cap B_V = (0 : 1 : -1) \).

If \(P_{02} := l \cap B_V = (0 : 1 : 0) = I_0 \cap l_2 \), then denote \(P_1 := I_1 \cap l_1 = (b + 1 : 0 : -1) \) and \(P_3 := I_3 \cap l_3 = (-1 : -d : d + 1) \).

If \(P_1 \in B \) then we are done. Otherwise, it must be that \(b \notin S_p \), so \(b \notin \overline{p} \) and \(b + 1 \notin \overline{p} \), since \(b \notin \{-1, 0\} \). From \(\{P_{02}, P_1, P_3\} \subset I \) we get \(d = -b/(b + 1) \) so that \(d \notin \overline{p} \). Thus \(P_3 \in B \).

Similarly if \(l \cap B_V = (0 : 1 : -1) = I_0 \cap l_3 \), then denote \(P_1 := (b + 1 : 0 : -1) = I_1 \cap l_1 \) and \(P_2 := (c : -(c + 1) : 0) = I_2 \cap l_2 \).

If \(P_1 \in B \) then we are done. Otherwise, \(c = -(b + 1)/b \notin \overline{p} \). Thus \(P_2 \in B \).

Case (iii): \(|l \cap B_V| = 0 \).

Let \(P = \{P_0, P_1, P_2, P_3\} \) where \(P_i := I_i \cap l_i \) (\(i \in \mathbb{Z}_4 \)). Due to the \(G \)-symmetry of the set \(B \) it is enough to prove the following two implications: (a) \(P_0, P_1 \notin B \Rightarrow P_2, P_3 \in B \). (b) \(P_0, P_2 \notin B \Rightarrow P_1, P_3 \in B \).
Case (iii)(a): Let $P_0 = (0 : 1 : a)$ and $P_1 = (b + 1 : 0 : -1)$ where $a, b \notin S_p$. Thus $a \in \mathbb{F}_p, a + 1 \in \mathbb{F}_p$, $b \notin \mathbb{F}_p$, and $b + 1 \in \mathbb{F}_p$. Let $P_2 = (c : -(c + 1) : 0)$, $P_3 = (-1 : -d : d + 1)$. From $\{P_0, P_1, P_2\} \subset l$ we get $c = -a(b + 1)/(ab + a + 1)$; note that $ab + a + 1 \neq 0$ since $ab \notin \mathbb{F}_p$ and $-(a + 1) \notin \mathbb{F}_p$. We want to show that $c \in S_p$. If $c \in \mathbb{F}_p$ then we are done. Otherwise, $c \notin \mathbb{F}_p$ and $a(b + 1) \notin \mathbb{F}_p$ together imply $1/(ab + a + 1) \notin \mathbb{F}_p$.

Since $c + 1 = (ab + a + 1)$, we conclude that $c + 1 \notin \mathbb{F}_p$ and so $c \in S_p$ which implies $P_2 \in B$.

From $\{P_0, P_1, P_3\} \subset l$ we get $d = -b/[(b + 1)(a + 1)]$. From $b \notin \mathbb{F}_p$ and $b + 1, a + 1 \in \mathbb{F}_p$ we get $d \in \mathbb{F}_p$. Therefore, $d \in S_p$ and $P_3 \in B$.

Case (iii)(b): Let $P_0 = (0 : 1 : a)$, $P_2 = (c : -(c + 1) : 0)$ where $a, c \notin S_p$. Thus $a \in \mathbb{F}_p, a + 1 \in \mathbb{F}_p, c \in \mathbb{F}_p$, and $c + 1 \in \mathbb{F}_p$. Let $P_1 = (b + 1 : 0 : -1)$ and $P_3 = (-1 : -d : d + 1)$. We want to show that $P_1, P_3 \in B$. From $\{P_0, P_1, P_2\} \subset l$ we get $b = -(c + ac + a)/[a(c + 1)]$ and thus $b + 1 = -c/[a(c + 1)] \notin \mathbb{F}_p$. Therefore, $b \in S_p$ and $P_1 \in B$.

Similarly, we find $d = -(c + ac + a)/(c(a + 1))$. Interchanging a and c, the argument is the same as in the previous paragraph. □

The following theorem removes the condition that $p \equiv 3 \pmod{4}$ imposed in the previous theorem; the cardinality of the set increases by 1.

Theorem 2.3. Let $p \geq 7$ be a prime. There is a proper double blocking set in $\text{PG}(2, p)$ of size $3p + 2$.

Proof. Let $l_0 = [1 : 0 : 0], l_1 = [0 : 1 : 0], l_2 = [0 : 0 : 1]$ and let $H \cong S_3$ be the subgroup of $\text{PGL}(3, p)$ consisting of the six 3×3 permutation matrices. As in the previous proof, $H(x : y : z)$ will denote the H-orbit of the projective point $(x : y : z)$. By $H([a : b : c])$ we will denote the H-orbit of the line $[a : b : c]$.

Let

$$T := l_0 \cup l_1 \cup l_2.$$

Further let

$$B' := (T \setminus H(0 : 1 : 2)) \cup H(1 : 2 : 3) \cup H(1 : -2 : -2)$$

and

$$B := B' \setminus \{(-2 : -2 : 1)\}.$$

We have $|B| = 3p - 6 + 6 + 3 - 1 = 3p + 2$.

We will first show that B' is a proper double blocking set. By noticing the H-symmetry of the set B' one quickly realizes that there are exactly four cases (up to symmetry) of lines l such that $|(T \setminus H(0 : 1 : 2)) \cap l| < 2$. These four cases are listed in Table 1. Each row of that table corresponds to one H-orbit of lines affected by the removal of $H(0 : 1 : 2)$ from T. Each such H-orbit is indicated by one representative line l written in the first column; in the second column we verify that $|B' \cap l| \geq 2$ for that line. The proof for the remaining lines in the same orbit follows by symmetry.

Finally, it is clear from the table that the set $B := B' \setminus \{(-2 : -2 : 1)\}$ is still a double blocking set. The fact that B is a proper double blocking set follows from $|B \cap l_i| = p + 1 - 2$ for $i = 0, 1, 2$ and from an easy observation that for each $p \geq 7$ and each $l \notin \{l_0, l_1, l_2\}$ we have $|B \cap l| \leq 5 < (p + 1) - 2$. □

<table>
<thead>
<tr>
<th>l</th>
<th>$l \cap B'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[2 : 0 : -1]$</td>
<td>$[(1 : 3 : 2), (0 : 1 : 0)]$</td>
</tr>
<tr>
<td>$[1 : 1 : -2]$</td>
<td>$[(1 : 3 : 2), (3 : 1 : 2), (1 : -1 : 0)]$</td>
</tr>
<tr>
<td>$[4 : 1 : -2]$</td>
<td>$[(1 : 2 : 3), (1 : -4 : 0)]$</td>
</tr>
</tbody>
</table>

Table 1

Intersections of B' with lines in special orbits
References