DISSERTATION

HORIZONTAL VORTICITY REDISTRIBUTION AND VORTEX ALIGNMENT IN
DEVELOPING AND MATURE TROPICAL CYCLONES

Submitted by

PAUL D. REASOR

Department of Atmospheric Science

In partial fulfillment of the requirements
for the degree of DOCTOR OF PHILOSOPHY
Colorado State University
Fort Collins, Colorado

Summer, 2000



COLORADO STATE UNIVERSITY

June 5, 2000

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER
OUR SUPERVISION BY PAUL D. REASOR ENTITLED HORIZONTAL VORTICITY
REDISTRIBUTION AND VORTEX ALIGNMENT IN DEVELOPING AND MATURE
TROPICAL CYCLONES BE ACCEPTED AS FULFILLING IN PART REQUIRE-
MENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY.

Committee on Graduate Work

Adviser

Department Head

ii



ABSTRACT OF DISSERTATION

HORIZONTAL VORTICITY REDISTRIBUTION AND VORTEX ALIGNMENT IN
DEVELOPING AND MATURE TROPICAL CYCLONES

The three-dimensional redistribution of vorticity within a vortex is examined here
in the context of tropical cyclone (TC) structure and intensity change. Aspects of the
horizontal vorticity mixing dynamics are first presented in a novel analysis of high temporal
resolution wind fields derived from airborne dual-Doppler observations of Hurricane Olivia
(1994). Seven consecutive composites of Olivia’s wind field with 30-min time resolution
depict a weakening storm undergoing substantial structural changes.

The problem of vortex alignment (and the attendant three-dimensional redistribu-
tion of vorticity) is then re-examined in an effort to further understand the underlying
dynamics of TC-like vortices tilted by vertical shear. The study is motivated in part
by the analysis of Hurricane Olivia. Olivia’s asymmetric evolution in the presence of
increasing environmental vertical shear is consistent with that predicted by existing “vor-
tex in shear” theories. These theories, however, are based on a nonlinear interpretation
of unforced vortex alignment originally developed to explain the emergence of vertically-
coherent vortex structures in geostrophic turbulence. For small to moderate vortex tilts, a
simpler and more insightful linear model for unforced vortex alignment is presented. This
model provides the basis for a deeper understanding of the dynamics of rapidly-rotating,
vertically-sheared vortices.

The linear model is formally valid as long as the tilted vortex can be meaningfully
represented through a wave, mean-flow decomposition. This is typically true if the vortex

cores at upper and lower levels overlap. The validity of the linear model is tested for
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a range of vortex tilts using a quasi-geostrophic model in both its complete and linear,
equivalent-barotropic forms.

The vertical alignment dynamics in the aforementioned small to moderate tilt regime
is accurately captured by linear vortex Rossby wave processes. For internal Rossby defor-
mation radii larger than the horizontal scale of the tilted vortex, an azimuthal wavenumber
one near-discrete vortex Rossby wave, or quasi-mode, exists. The quasi-mode is charac-
terized by its steady cyclonic propagation, long lifetime, and resistance to differential
rotation, behaving much like a discrete vortex Rossby wave. The quasi-mode traps dis-
turbance energy causing the vortex to precess and thus prevents alignment. For internal
deformation radii smaller than the horizontal vortex scale, the quasi-mode disappears into
the continuous spectrum of vortex Rossby waves which promote complete alignment by
irreversibly (but linearly) redistributing potential vorticity (PV).

The linear alignment theory is extended to stronger vortices in the Asymmetric Bal-
ance system with results similar to those for geostrophic vortices. In addition to providing
new insight into the asymptotic dynamics of vortex merger in three dimensions, these
results also are believed to have relevance to the problem of tropical cyclogenesis. Cy-
clogenesis initiated through the merger of low-level convectively-generated positive PV
within a weak incipient vortex is captured by quasi-linear dynamics. A potential dynam-
ical barrier to TC development in which the quasi-mode frustrates vertical alignment can

be identified using the linear alignment theory in this case.
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Department of Atmospheric Science
Colorado State University
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Chapter 1

INTRODUCTION

Despite decades of research on the dynamics and thermodynamics of tropical cy-
clones (TCs), prediction of intensity remains an operational challenge (DeMaria and Ka-
plan 1997). Although previous studies have identified the primary mechanisms for TC
intensity change, including atmosphere-ocean interaction (Ooyama 1969; Rotunno and
Emanuel 1987; Emanuel 1999), forcing by the large-scale atmospheric flow (Molinari et
al. 1995; Montgomery and Farrell 1993), and the internal vortex dynamics (Montgomery
and Kallenbach 1997; Montgomery and Enagonio 1998; Schubert et al. 1999; Moller and
Montgomery 1999, 2000), no one influence is generally regarded as the determining factor
in most situations. A case in point is the rapid intensification of Hurricane Opal (1995)
as it approached the Florida panhandle on 4 October 1995. During a 12-hr period prior
to the eye making landfall, Opal’s maximum tangential winds increased by roughly 20-25
ms~! (NHC Best Track). The dramatic strengthening of Opal has been attributed to both
the presence of a warm-core oceanic eddy (Shay et al. 2000) and the favorable interaction
of the storm with a nearby upper-tropospheric trough (Bosart et al. 2000). Thus, in some
situations intensity change may result from a combination of mechanisms.

It is well known that the import of latent heat energy into the cyclone core is necessary
for sustaining convection and strengthening a TC (Ooyama 1969). But can the fluctuations
in intensity, which are sometimes dramatic, be explained simply through axisymmetric,
thermodynamic arguments? Emanuel (1999) suggested that intensity change in most
cases (including Opal) is controlled to zeroth order by the response of the axisymmetric
TC to variations in the thermodynamic structure of the ocean. In many of the cases

he presented where environmental vertical shear was not a factor, the long-time trends



in intensity were captured by his axisymmetric atmosphere-ocean model. The results do
not confirm, however, that axisymmetric thermodynamics is solely responsible for the
more rapid changes in intensity (i.e., fluctuations > 20 ms~! per day) observed over open
ocean, suggesting that environmental and internal asymmetric mechanisms are also likely
contributing.

The uncertainty in intensity change prediction applies not only to mature storms,
but also to incipient tropical disturbances. The large-scale environment is an important
factor in TC genesis, as has been documented in climatological studies (e.g., Gray 1968;
Zehr 1998). But why do so few storms form even under the best synoptic and oceanic
conditions? On average 100 tropical disturbances are observed in the Atlantic basin during
hurricane season, yet only about 10-15 develop into tropical storms (Frank 1975).

Bister and Emanuel (1997) proposed an axisymmetric model for TC genesis based on
observations of TC Guillermo (1991) and supporting axisymmetric numerical simulations.
A re-analysis of the Guillermo Doppler wind data by Bracken (1999), however, suggests
a more prominent role played by asymmetries during the initial stages of genesis. Mont-
gomery and Enagonio (1998, hereafter ME98) demonstrated that TC genesis can occur
asymmetrically through the merger of convectively-generated low-level positive potential
vorticity (PV) within an incipient vortex. Might the presence of convective blow-ups near
the incipient vortex core be an additional condition for genesis? Once again, the role of
internal (asymmetric) vortex dynamics in intensity change must be evaluated.

In the absence of in-situ and radar measurements within and in the vicinity of a
TC, just quantifying intensity is a challenge. Determining the relative importance of
various phenomena in producing intensity change is therefore a difficult task. Remote
measurements from satellite are relied upon in such a situation. Satellite remote sensing
can provide some information on the sea-surface temperatures (SSTs) (which may not
necessarily be representative of the thermodynamic makeup of the ocean immediately
below the surface) and the large-scale thermodynamic structure of the TC (Velden and
Brueske 1999). Additionally, it can provide valuable information on the synoptic flow in

which the TC is embedded.



Presently, satellite remote sensing is incapable of providing detailed mappings of the
three-dimensional flow structure of a TC, which are needed to quantify the dynamical role
of asymmetric external forcings and internal vortex dynamics. Airborne techniques for
sampling a TC wind field have improved since the early days of aircraft measurements
along the flight track, where composites over many storms had to be performed just
to resolve the symmetric structure. Airborne Doppler radar was first used in the early
1980’s (Marks and Houze 1984) and now permits the three-dimensional, low-azimuthal
wavenumber TC core structure to be resolved for a single storm over an extended period
of time. Despite the limited spatial coverage of the aircraft data, the flight-level winds still
can be quite useful when used in conjunction with a sound dynamical theory, as exemplified
in a recent study of vorticity mixing in the hurricane core by Kossin and Eastin (2000).
The aircraft data also provide an important means of validating the Doppler-derived wind
fields. But whereas the aircraft measurements can only suggest vortex-scale phenomena,
the Doppler-derived wind fields can provide a complete picture of the low-wavenumber
vortex core evolution, allowing the symmetric and (aliased) asymmetric structure to be
clearly defined and distinguished (except in the hurricane eye). Consequently, asymmetric
aspects of TC dynamics can now be studied observationally in conjunction with theory,
as was done for decades in the study of axisymmetric mechanisms, thus bringing a greater
balance to the study of intensity change.

In the work described below the role of internal asymmetric vortex dynamics in in-
tensity change is examined from the perspective of newly-developed theoretical insights
and a novel analysis of the evolving three-dimensional wind field of an observed TC. The
role of horizontal vorticity redistribution in effecting structure and intensity change in
the TC core, as discussed in recent numerical and theoretical studies (e.g., Montgomery
and Kallenbach 1997, hereafter MK; ME98; Schubert et al. 1999, hereafter S99; Moller
and Montgomery 1999, 2000; Kossin et al. 2000), is first addressed utilizing dual-Doppler
radar observations of Hurricane Olivia (1994). The vorticity redistribution ideas are also
applied to the problem of vortex vertical alignment. A new linear conceptual model for

quasi-geostrophic (QG) vortex alignment is developed for vortices exhibiting small initial



tilts, with application to the problem of T'C genesis. The QG results are then extended
to higher Rossby number vortex flows as a first step in understanding the basic dynamics
of arbitrarily strong vortices embedded in vertical shear. An observational strategy for
exploring the dynamics of a TC in vertical shear is presented, again using wind data from

Hurricane Olivia.

1.1 TC Vorticity Dynamics

A vorticity asymmetry placed on a continuous vortex monopole will tend to be sheared
to finer radial scales by the differential rotation of the (azimuthal) mean tangential flow.
This process was illustrated by Melander et al. (1987) in a nonlinear 2D nondivergent
model initialized with an elliptical patch of vorticity. Filaments of vorticity were thrown
outwards as the core of the vortex became circular. The reduction of the aspect ratio of
the vortex patch in this way is referred to as ‘axisymmetrization’. Guinn and Schubert
(1993) related the formation of spiral bands in hurricanes to the filamentation of PV
often observed in vortex axisymmetrization experiments. The spiral bands were shown to
project minimally onto the fast inertia-gravity wave component and were argued to form
as a result of PV wave breaking. Using a two-dimensional nondivergent model and shallow
water Asymmetric Balance (AB) model (Shapiro and Montgomery 1993), MK, building
upon the spiral band work of Guinn and Schubert, showed that when the aspect ratio of the
vorticity ellipse is close to unity, the axisymmetrization of vorticity can be explained using
linear dynamics. MK further demonstrated that the outward moving filaments of vorticity
are actually radially propagating vortex Rossby waves which owe their existence to the
radial gradient of azimuthal-mean vortex vorticity. A local vortex Rossby wave mechanics
developed by MK provides standard wave quantities like phase and group velocity as well
as the stagnation radii for these radially and azimuthally propagating waves.

The fact that the vortex Rossby waves are confined to the vortex and therefore must
interact with it as they are sheared to finer radial scales was utilized by MK in an appli-
cation to hurricanes. They proposed a mechanism by which vorticity perturbations (e.g.,

convectively or environmentally induced) to the symmetric hurricane vortex disperse as



vortex Rossby waves, propagate radially outward, and then interact with the mean vor-
tex. The radially-inward momentum flux associated with the sheared vortex Rossby waves
leads to an acceleration of the mean tangential flow inside the stagnation radius and a
deceleration radially outside this radius. A vortex can undergo substantial structure and
intensity changes through this mechanism.

ME98 validated the predictions of MK for small, but finite-amplitude vorticity dis-
turbances in a barotropic nondivergent model and then applied the theory to the problem
of tropical cyclogenesis at order one wave amplitudes in a three-dimensional QG model.
They demonstrated how three-dimensional axisymmetrization of convectively-generated
PV anomalies near a weak mid-level parent vortex can lead to the spin-up of a surface
cyclonic circulation beneath the pre-existing mid-level vortex. The development of a
warm-core vortex was found to be a natural by-product of axisymmetrization.

A subsequent study by Moller and Montgomery (1999) extended ME98 to larger
Rossby numbers through an investigation of the axisymmetrization of small, but finite
amplitude and large amplitude disturbances in the nonlinear AB shallow water model.
The spin-up of the mean tangential winds agreed with the quasi-linear predictions of MK
as well as the predictions of a primitive equation model. Moéller and Montgomery (2000)
next examined vortex axisymmetrization in the context of a three-dimensional AB model.
To avoid changes in the vortex center that result from a “single-cluster” PV perturbation
(e.g., from a single, mesoscale blow-up of convection) Moller and Montgomery (2000)
focused primarily on double-cluster perturbations to the mean vortex. Through successive
double-cluster pulses, a vortex of tropical storm strength was intensified to hurricane
strength. This asymmetric mode of intensification, which occurred largely through wave-
mean interactions for the perturbation amplitudes considered, is an alternative to the
conventional symmetric mode of intensification (Ooyama 1969).

As Fig. 1.1 shows for Hurricane Olivia (1994), the symmetric component of wind
magnitude in the inner-core region in the lower to middle troposphere can be an order of
magnitude greater than the higher wavenumber contributions (see also Fig. 1 of Shapiro

and Montgomery 1993). Thus, in the absence of strong flow instability, linear theory and



its wave-mean predictions should give useful qualitative insight into the vorticity dynamics
of the near-core region and internally-generated intensity change.

The nonlinear vorticity dynamics of the hurricane core region has also received atten-
tion in the work of S99. They proposed that during periods in which convective forcing
is weakened or suppressed altogether the breakdown of the PV ring encircling the hurri-
cane eye via barotropic instability will promote vorticity mixing in the eye region, thereby
influencing the eye dynamics and thermodynamics. As part of the breakdown process, eye-
wall mesovortices were observed to form before the ultimate reconsolidation into a vortex
monopole. In real hurricanes these secondary vortices may have local wind speeds which
exceed that of the symmetric circulation, increasing locally the destructive potential of

the hurricane (Black and Marks 1991; Hasler et al. 1997).

1.2 Airborne Doppler Radar Observation of TCs

While the vorticity dynamics of the hurricane’s near-core region has been the subject
of recent numerical and theoretical studies, it has yet to be explored in great observational
detail. The lack of observational focus on the vorticity dynamics may be, in part, a
consequence of the complications that convection provides to the idealized dynamical
theories described above, but is also likely a result of inadequate observations of the
hurricane near-core evolution. Aside from the chance encounter of a landfalling hurricane
with a ground-based radar, the only way to get a three-dimensional look at the wind field
(both vortex scale and mesoscale) of the hurricane core is to fly through the storm with a
radar-equipped plane.

The use of airborne Doppler radar to study air motions in convective storms was
first proposed by Lhermitte (1971). In pushing for the implementation of airborne radar,
Lhermitte emphasized the freedom that an airborne platform affords by allowing the
scientist to go to the phenomenon of interest. One of the first questions that had to be
addressed was what kind of radar to use. Balancing concerns over attenuation, radar size,
and beam width, the 3.2 cm wavelength X-band radar was chosen. Lhermitte envisioned

the airborne radar pointing vertically up or down in a non-scanning mode (i.e., vertical
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Figure 1.1: Olivia dual-Doppler derived wind magnitude (m s~!) at 1.5 km height averaged
over the observation period. Shown are the symmetric, wavenumber one, wavenumber two,
wavenumber three, and wavenumber four components. The “no-scatter” region of the eye
(i.e., within approximately 8 km radius) is blocked out here and in subsequent plots.



incidence) as the plane traversed the convective storm. Vertical cross-sections through the
storm could then be obtained over a timescale short enough to consider the measurements
stationary.

In 1976 the National Oceanographic and Atmospheric Administration (NOAA)
equipped two WP-3D aircraft with tail X-band radars. Doppler measurements were made
possible once the Doppler receivers were installed during the period 1980-1981. The radars
not only could make vertical incidence measurements, but could also scan in the vertical
plane perpendicular to the flight track, thus providing the possibility of horizontal wind
measurements. The first successful test of the Doppler system was made by Jorgensen et
al. (1983) in a comparison of airborne and ground-based Doppler winds. The accuracy

of the airborne Doppler radial winds was found to be ~ 1 ms™!

, confirming Lhermitte’s
(1971) predictions.

The first airborne Doppler radar study of TC wind structure was reported by Marks
and Houze (1984) for Hurricane Debby (1982). A pseudo dual-Doppler approach was
employed in which a single plane flies near-orthogonal legs through the storm and sta-
tionarity of the flow is assumed. From the two radar views a horizontal wind vector can
be constructed, most accurately in the horizontal plane of the radar. The wind fields
suggested the presence of small-scale eddies embedded in the primary circulation, as well
as an apparent mesocyclone and its attendant low-level vorticity. They speculated that
advection of the mesocyclone vorticity into the storm core by the radial inflow might in-
fluence storm development. Marks and Houze (1987) extended this work to a more fully
developed storm, Hurricane Alicia (1983). The first observational confirmation of the ra-
dial outflow layer at upper levels was made. Additionally, they included an analysis of the
vertical winds along the flight track. This was the first study to capture the inner-core
secondary circulation in a single storm.

A more complete three-dimensional mapping of the hurricane wind field, including the
vertical wind, was performed by Marks et al. (1992, hereafter MHG) for Hurricane Nor-
bert (1984). Only a single wind composite spanning roughly 2 h was made, so information

on the time evolution of the three-dimensional wind field was unavailable. Nevertheless,



with an average time separation of about 7.5 min between measurement of orthogonal
components of the horizontal wind, details of the mesoscale structure of the eyewall could
be provided in each individual quadrant of the storm. At 3 km height and above they
observed a cyclonic and anticyclonic vortex couplet in the flow field with maximum am-
plitude at the radius of maximum tangential wind (RMW). Individual changes in and the
interaction between the mean horizontal flow and this vortex couplet were discussed as

possible mechanisms for intensity change.

1.3 Descriptive Outline of Dissertation

The subject of this dissertation is the asymmetric vorticity dynamics of the tropical
cyclone from genesis to lysis. We begin by addressing the problem of horizontal vorticity
redistribution in the TC core. According to the theoretical arguments and numerical
simulations discussed above, symmetrizing bands of vorticity and discrete vorticity features
in the eyewall should be present as part of this ongoing redistribution of vorticity. We

therefore ask:

e Can asymmetric vorticity redistribution be demonstrated observationally
using wind fields derived from airborne dual-Doppler radar measurements

within the TC core?

A review of radar meteorology in the TC setting is provided in Chapter 2 for those unfa-
miliar with the basic ideas behind radar remote sensing. This includes a brief discussion of
TC microphysics and standard airborne dual-Doppler techniques. Also discussed are the
data used and the wind analysis methodology. The evolution of symmetric and asymmetric
components of storm vorticity are presented in Chapter 3 in the context of the dynam-
ical theories discussed in Section 1.1. This is the first study to analyze Doppler-derived
asymmetric vorticity within the hurricane core with these ideas in mind. Complimenting
the observational analyses are barotropic numerical simulations which suggest that the
observed vorticity evolution is intimately related to the barotropic stability of the mean

vortex.
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With regards TC genesis, both the horizontal redistribution of vorticity and vertical
alignment of vorticity are necessary for development. Previous work has viewed the vertical
alignment of a geostrophic vortex as a fundamentally nonlinear process. In light of recent

work on vortex merger summarized in Section 1.1 we hypothesize:

e The evolution of a vortex exhibiting small initial tilt can be understood using

linear vortex Rossby wave theory.

Chapter 4 presents the numerical models used to test this hypothesis. In Chapter 5 we
demonstrate that the co-rotation of upper- and lower-level PV anomalies associated with
an initially-tilted vortex is explained by the presence of a near-discrete vortex Rossby
wave, or more precisely a long-lived quasi-mode of the geostrophic vortex. Complete
alignment occurs through the irreversible redistribution of PV by sheared linear vortex
Rossby waves. In Chapter 6 we extend the QG results to include finite Rossby number
effects and demonstrate how external shear can be included in the linear problem to more
accurately represent tropical conditions. An analysis of dual-Doppler observations of a
hurricane interacting with increasing vertical shear shows consistency with recent dynam-
ical arguments regarding the transverse circulation of a vortex in shear. The asymmetric
PV generation excited by the coupling of this transverse circulation with the boundary

layer may impact the alignment dynamics. We propose that:

e The dual-Doppler wind analysis procedure outlined here, in conjunction
with the new insights into vortex alignment, can be used towards the goal of

understanding and predicting tropical cyclogenesis.

In Chapter 7 the major conclusions of this dissertation are summarized.



Chapter 2

ATRBORNE RADAR OBSERVATIONS: HURRICANE OLIVIA (1994)

2.1 TC Radar Meteorology

2.1.1 Radar Basics

The basic idea behind radar remote sensing is as follows: A pulse of electromagnetic
(EM) energy is emitted from the radar antenna and propagates through the atmosphere
until a scattering object, or target, is encountered. Part of the initial pulse energy is
backscattered in the direction of the radar receiver, which measures the power of the
returned signal and notes the time it took for the pulse to reach the target and return.
The power scattered by the target will depend on its shape, size, and intrinsic properties
(e.g., phase in the case of water targets) as well as the wavelength of the incident radiation.
Since EM waves travel at the speed of light, ¢, the travel time is easily converted into a
range, r, from the radar. Assuming isotropic scatterers, the power, P., returned from a

single target is given by
Ae

Pr:P'—7
Pam?

(2.1)

where P; is the power intercepted by the target and A, is the effective cross-sectional area
of the radar. Since the EM energy is initially focused into a beam by a parabolic dish, the
transmitted power is given by the original value P,,; multiplied by the radar antenna gain,
G. Meteorological targets do not in general radiate isotropically. An effective target area
can be defined, however, which backscatters energy as an isotropic source, but returns the

same backscattered power at the radar as the actual target. This effective area is called
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the back-scattering cross-section, o;. The power backscattered by the target is then given

by
7
P, =P,G - —. 2.2
= PouG 70t (22)
The effective cross-sectional area of the antenna is (Battan 1973)

G\?

Ao = —, (2.3)
47

where A is the wavelength of the emitted EM radiation. From a practical standpoint this is
a very important relation. To minimize attenuation, longer wavelength radars are desired.
But the effective area of the antenna goes like the square of the wavelength. Therefore, for
airborne platforms, where bulk must be minimized, only wavelengths around 3-5 cm can
be used. The unfortunate consequence is that in heavily precipitating regions the radar
range may only be 30-40 km. This turns out to be a real restriction in TC flights where
one would like to obtain the vortex structure over as large a domain as possible.
Combining equations (2.1)—(2.3) and considering the power returned by a pulse vol-

ume (which will contain a number of targets),

0 2
V=n <%> %T (for a circular beam), (2.4)

where 6 is the beamwidth and 7 is the pulse duration (typically ~ 1 us), yields the so-called

radar equation,

N

P, = AP,,,G*\?0°1 - i (2.5)

where A = ¢/5127% and 7 is the back-scattering cross-section per unit volume, commonly
referred to as the radar reflectivity (cm?m™2). The returned power has been averaged over
several samples of the pulse volume.

For Rayleigh scattering conditions (i.e., when the radar wavelength is much greater
than the target diameter) the backscattering cross-section is known. Given a homogeneous
distribution of spherical targets, the radar reflectivity is expressed as

5
™
n=S5IKP Y DL, (26)

vol
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where |K| is a dielectric factor and D; is the diameter of the ith target in the unit volume

(denoted by wvol). The reflectivity factor, Z (mm®m~3), is defined as

Z=>_D;. (2.7)

vol
Note that the reflectivity factor involves an inherent ambiguity since it depends on both
target size and the distribution of targets. Many small targets can give the same reflectivity
as a few big targets. This is especially important to keep in mind when trying to relate
particle fall speed or rain rate to the reflectivity factor.

For a 3-cm wavelength radar the Rayleigh approximation is valid for particle diameters
less than approximately 2 mm. For larger drop sizes, scattering from higher order electric
and magnetic dipoles must be included in the expression for the backscattering cross-
section. A more general expression for the backscattering cross-section which includes
these effects is given by Mie theory (see Battan 1973 for discussion). In tropical cyclones
the particle concentration tends to peak near 1 mm, so Eq. (2.6) is only marginally valid
(although it will give qualitatively correct results). To account for the departures from
Rayleigh scattering conditions, Z is replaced by an effective reflectivity factor, Z..

Rewriting the radar equation (2.5) in terms of the effective reflectivity factor yields

|K|*Z.
T2

P, = A'P,,,G*60*r (2.8)

where A’ is a constant proportional to A which also takes into account the fact that the
power is not uniform across the beam width. Given the power, range, radar parameters,

and target properties, one can solve for Z.. Typically Z, is converted into dBZ,

This quantity will henceforth be referred to as the reflectivity.

In the above discussion we have alluded to certain choices that must be made in
deciding which type of radar to use and how to use it. In designing a field experiment
several factors, in fact, must be weighed. We briefly discuss a few of the more important

ones in the context of TCs.
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Given radar size limitations, the 3-cm X-Band radar is typically used on airborne
platforms (e.g., NOAA WP-3D tail radars, NCAR Electra ELDORA radar). The physical
dimensions of the radar antenna (i.e., dish diameter, D) and the wavelength determine
the beamwidth. For a circular paraboloidal antenna, the beamwidth is given by (e.g., see
Fowles (1989) for a discussion of the diffraction pattern of a circular aperture)

1.27)
b=—"5". (2.10)

In the case of the WP-3D tail radars (which usually scan perpendicular to the flight
track) the horizontal and vertical beamwidths are 1.35° and 1.9°, respectively. Because
uncorrelated samples are desired at each (radar) azimuthal viewing angle, the beamwidth
sets a maximum azimuthal resolution. Large beamwidths can lead to insufficient filling
of the pulse volume at large range. For example, at 50 km range a vertical beamwidth
of 2° results in a 1.5-2 km pulse volume depth, a fraction of which may contain targets
(especially near echo top).

The need for good resolution along the flight track necessitates a rapid scan rate in
the azimuth. But this must be weighed against the need for many independent looks at
the same pulse volume for the best sampling statistics. The resolution along the beam
(i.e., range gate spacing) is set by the pulse length and is typically about 150 m for a 1 us
pulse.

The pulse repetition frequency (PRF) sets the maximum unambiguous range

c

=— 2.11
mer = 5 PRF (2.11)
which is how far a pulse can go out in range and get back to the radar in time for the
next pulse to be sent out. More importantly for TC applications, the PRF also sets the

maximum unambiguous velocity

A-PRF
Umaz = (2.12)

which is the maximum velocity that can be sampled along a radial without aliasing. It is
based on the maximum frequency that the radar can detect, i.e., the Nyquist frequency

PRF
fmaz = —]; : (2.13)
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Combining (2.13) with the Doppler shift frequency, f = 2v/\, yields (2.12). Velocities
measured beyond v, are “folded”. As an example, the PRF of the WP-3D tail radar is
1600 Hz, resulting in v, =~ 13 ms~'. A measured velocity of 20 ms~! will be recorded as
-6 ms~!. Unfolding the velocity can be a time consuming process, especially in cases where
multiple folds occur and in regions of strong shear. The unfolding process is facilitated in
the case of airborne Doppler radar since in-situ aircraft measurements at the radar can
be used as a first guess in the unfolding of the data. An automated routine based on the

method of Bargen and Brown (1980) is generally able to unfold much of the wind data.
2.1.2 TC Microphysics

The hurricane is comprised of a generally precipitation-free eye surrounded by a con-
vective eyewall, outside of which are found stratiform rainbands (with embedded convec-
tive cells) spiraling around the storm (see Fig. 2.1). Using reflectivity data from the tail
radar of the NOAA WP-3D aircraft when it was pointing vertically, Jorgensen (1984)
documented the radius-height structure of hurricane precipitation in each of these regions
for multiple storms. His results are summarized below.

Within the eyewall of a mature storm reflectivity is typically greater than 40 dBZ
with local maxima of 50-55 dBZ. Because of sloping updrafts in the eyewall (Shapiro and
Willoughby 1982; Jorgensen 1984; Marks and Houze 1987) hydrometeors fall out at radii
outside of the convective updraft at low levels, leading to a mismatch between the location
of maximum low-level vertical velocity and reflectivity. Black et al. (2000) have recently
documented the azimuthal structure and evolution of convection in the eyewall. They
observed convective cells initiated at low levels in the eyewall grow as they are advected
by the tangential flow of the vortex. The reflectivity maxima occur downwind of the region
of cell initiation as hydrometeors fall out of the mature convective cells. As the cells move
above the 0°C isotherm, falling precipitation induces low-level downdrafts. Above 6 km
height ice particles are swept around the storm and radially outward in the upper-level
outflow layer.

The rainbands are characterized by reflectivities of about 30-35 dBZ and isolated

cells of 40 dBZ. They lie within a larger region of stratiform precipitation with reflectivity
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less than 30 dBZ. The stratiform regions show a clear bright band in reflectivity below the
0°C isotherm (~ 5 km height). The bright band results from the coating of ice particles
with water as they fall below the melting level. The radar basically sees large liquid
hydrometeors. Since Z oc DO, elevated reflectivity (the bright band) is observed. As the ice
lattice collapses and the drops become less concentrated in space, the reflectivity decreases
below the bright band. Although the heaviest rain rates are in the convective eyewall, the
stratiform precipitation region covers a much greater area. According to Marks (1985), 50
to 60 percent of inner-core rainfall can be accounted for by the stratiform precipitation.
For purpose of estimating particle fall speeds (V) and rain rates (R) using reflectivity
data, it is important to understand how particle size and concentration contribute to 7

in the TC setting. Equation (2.7) can be written in terms of the particle concentration,
7= ZN(Di)D?, (2.14)
where N has units of number of particles per m®. The rain rate (mm h~!) is given by
ZN D;) D3V (D;). (2.15)

Using a PMS Optical Array Spectrometer Probe mounted on the WP-3D aircraft, Jor-
gensen and Willis (1982) obtained particle size and distribution measurements in a hurri-
cane. From these measurements, and estimates of V, both Z and R were computed using
Egs. (2.14) and (2.15), respectively.

Typical drop-size distributions in a hurricane, which is comprised of both convective
and stratiform regions, compare well with measurements made in general tropical con-
vective systems. Drop-size distributions in tropical cloud cores compiled by Cunning and
Sax (1977) during the GATE experiment show that the particle concentration peaks for
D; <1 mm. Drop sizes greater than 4 mm are rare except near cloud base in the convec-
tive regions. The Z-R relationship derived by Jorgensen and Willis (1982), applicable to

both the convective and stratiform regions of a hurricane below the 0°C isotherm, is

Z = 300R™°. (2.16)
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Figure 2.1: Composite of lower fuselage reflectivity from Hurricane Olivia at 2028 UTC,
25 September 1994. Contour interval is 10 dBZ. (1) The precipitation-free eye. (2) The

convective eyewall. (3) The stratiform spiral rainband region.
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2.1.3 TC Dual-Doppler Methods

Velocity is measured using Doppler radar by computing the phase shift between the

emitted and returned EM pulses
47y

Ap=—. (2.17)

The Doppler velocity is then obtained from the time rate of change of the phase, i.e.,

A do
= ——. 2.18
v 4 dt ( )

Since it is actually a pulse volume that is measured, a distribution of velocities is returned
from which a mean radial velocity can be computed. The distribution can actually be
quite broad in turbulent situations or regions with large shear. Such regions are identified
by large spectral width.

Constructing a three-dimensional wind field from raw airborne Doppler data is in
large part a scientific endeavor, but also admittedly involves a fair amount of artistry.
Unlike ground-based dual-Doppler observations, the geometry of the airborne platforms
is constantly changing. Aircraft translation, drift, pitch, and roll must all be taken into
account in converting from radar-relative to earth-relative winds (Lee et al. 1994). Nav-
igation errors resulting from uncertainties in the inertial navigation system have, for the
most part, been eliminated with the advent of GPS tracking.

For the purpose of this discussion, we will focus on dual-Doppler observing methods
based on track-normal scanning of the tail radar (i.e., the tail radar scans in a plane
perpendicular to the aircraft flight track). The FAST scanning method in which the
tail radar alternately scans fore and aft of the normal to the flight track is discussed
by Gamache et al. (1995) in the hurricane context and will not be discussed here. In a
single plane mission through a hurricane, pseudo dual-Doppler observations are obtained
by flying consecutive near-orthogonal legs into and out of the storm core. In this way two
independent views of the horizontal winds are made in an individual quadrant. Of course,
for azimuthal elevation angles of the radar near zero this is an accurate statement. When
the beam is pointing so as to project onto the vertical, the wind vector that one constructs

no longer lies in the horizontal plane, and in fact is no longer simply a measurement of
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air motion. The hydrometeor fall speeds must be removed. To remove the fall speeds
one needs to know how large the particles are. Reflectivity is a strong measure of particle
size, but it also depends on concentration. Nevertheless, standard empirically-based Z-Vr

relations are used above and below the 0°C isotherm (Marks and Houze 1987):

0.107 :
Vp = { 2.67 , altitudes < 5.1 km (2.19)

0.81729-063 altitudes > 7.5 km.

The larger exponent for the fall velocity below 5 km reflects observations of rain at those
levels. Above 5-6 km ice is commonly observed which has a much smaller fall velocity,
as reflected in the reduced exponent. Both of these relations, which are based on surface
observations, are applied at higher vertical levels by multiplying by a density correction,

1945 where pg is the surface density.

[po/p(2)

There are numerous ways of deriving a three-dimensional wind field using iterative
(Marks et al. 1992) or variational techniques (Gamache 1998) with different vertical bound-
ary conditions. In the iterative method the two Doppler measurements of velocity at a
point (vﬁl) and v,(?)) are expressed in terms of the Cartesian velocity components (Jor-

gensen et al. 1983),

o = ysin M sin 1) + v cos B sin 8D + (w + Vi) cos 8 (2.20)

r

0? = usin %) sin 0 + v cos S sin 0P + (w + Vg) cos P,

where 8() are the antenna pointing angles for each radar relative to north and () are the
elevation angles from the vertical. In order to solve this system of equations, an initial
guess for W = w + Vp must be made. One typically uses W = 0 as a first guess, but can
use W = Vp given by Eq. (2.19) as a more accurate estimate. After solving for « and v,
an estimate of w can be attempted by vertically integrating the mass continuity equation.
The new estimate of w is then substituted back into (2.20) and new u and v are computed.
This procedure is repeated until some convergence criterion is met. If the two Doppler
velocity measurements were made far apart in time such that horizontal derivatives of the
composited wind field cannot be trusted, it makes little sense to try and converge on a

solution. The first guess for the horizontal wind field is probably the best one can hope
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for. Only if the wind field is approximately stationary during the compositing period
should the iterative scheme be employed. Beams at elevation angles greater than 45° (and
therefore minimal projection onto the horizontal winds) should not be included in the
analysis since they tend to make the iterative scheme unstable.

Obtaining w is not a trivial matter. Boundary conditions on w must be assumed for
each vertical column. Since airborne radar is generally unable to resolve the boundary
layer when flying at 3-4 km height due to sea clutter, setting w equal to zero at the
lowest resolved level is bound to result in large errors in the upward integration, especially
in a hurricane where boundary layer convergence is known to be large. Furthermore the
density weighting of the convergence will only accentuate low-level errors. Thus, downward
integration of the continuity equation using w = 0 at echo top is the preferred method.
Errors will still arise even if the reflectivity top can be defined, since w does not necessarily
have to be zero there.

The wind fields used in this study were created through a refinement to the above tech-
nique. A variational method outlined by Gamache (1998), and in the spirit of the MUS-
CAT technique of Bousquet and Chong (1998), was employed in which the dual-Doppler
equations and continuity equation are solved simultaneously. According to Gamache
(1998) this solution method should be more stable than the iterative method for Doppler
radials with high incidence angle (i.e., large elevation angles from the horizontal). As
opposed to the iterative method which accumulates errors in the downward integration of
the continuity equation, the variational scheme attempts to distribute the errors in a more
natural way by effectively integrating the continuity equation along the path perpendicular
to the planes containing the two Doppler velocity vectors (i.e., the characteristic).

Following Gamache (1998), the cost function is given by

F=puO0 L@@ 46356 44,4, (2.21)
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where

]'(1) = Z(v(l) — U;jk Sin ﬂl(l) sin 91(1) — Vjjk, COS ﬂl(l) sin 91(1) — (wijr + V:ﬁ,ll)) cos 91(1))2, (2.22)

r,l

ijkl
i = 2(07("2!) — w;jj Sin ﬂl(Q) sin 9;2) — Vjjk, COS ﬁl@) sin 91(2) — (wijr + Vﬁ)) cos 91(2))2, (2.23)

ijkl
i3 = Z[v (e Vijr)?, (2.24)

ijk
and

i = YUV i) + (Vo) + (Vwige)?). (2.25)

ijk
The 7, j, and k indices denote x, y, and z locations, respectively, and the [ index accounts
for multiple views from the same radar at a given location. The p factors are the weights
for each of the cost functionals. The first two functionals are the Doppler radar equations,
the third is the continuity equation, and the fourth is the Laplacian filtering. The cost
function is minimized with respect to u, v, and w, ultimately yielding the three-dimensional

wind field.

2.2 Data

2.2.1 Hurricane Olivia on 25 September 1994

Eastern Pacific storm Olivia strengthened into a hurricane near 115°W and 15°N
on 24 September 1994. According to Pasch and Mayfield (1996), Olivia continued to
strengthen on 24 September, reaching a minimum surface pressure of 949 mb by the end
of the day. SSTs were approximately 28°C (Gamache et al. 1997). Peak intensity was
observed around 1200 UTC on 25 September with sustained tangential wind speeds of
approximately 67 m s~'. Following this time Olivia fell under the influence of a mid- to
upper-tropospheric cyclone west of southern California, resulting in a 4-5 m s~! northward
storm motion. Late on 25 September two NOAA Aircraft Operations Center (AOC) WP-
3D research aircraft flew through Hurricane Olivia. The eyewall reflectivity was found to
be axisymmetric at the beginning of the observation period, and to evolve into a highly
asymmetric distribution over the following 4 h (Fig. 2.2). As Olivia continued to move
north-northeast under increasing southwesterly vertical shear and somewhat cooler SSTs

(~ 27°C), the winds gradually weakened to tropical storm strength late on 26 September.
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X (km)

Figure 2.2: Composites of Olivia’s inner-core reflectivity near 5 km height derived from
the TA radars for each flight leg. See Table 2.1 for the compositing times associated with
each leg. Contour interval is 5 dBZ. In this and all subsequent horizontal contour plots,
geographical north is located at the top of the plot. Note regions of attenuation radially
outside the reflectivity maximum in the northern quadrant of the storm.
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Composite  N42RF (3 km) N43RF (4 km)

Leg time (UTC) flight track flight track
1 2027-2039 N to S ENE to W
2 2100-2113 SE to NW SSW to NNE
3 2132-2143 W to E N to S

4 2204-2217 NE to SW SSE to NW
5 2244-2253 StoN WSW to ENE
6 2310-2330 NW to SE NNE to SSW
7 2343-2355 EtoW StoN

Table 2.1: Dual-Doppler composite times for the seven flight legs through Hurricane Olivia
on 25 September 1994, and the NOAA WP-3D aircraft (N42RF at 3-km altitude, N43RF
at 4-km altitude) flight tracks through the inner core.

2.2.2 Radar Observation of Hurricane Olivia

The two WP-3D aircraft equipped with Doppler radar flew simultaneous, near-
orthogonal flight tracks through the inner core of Hurricane Olivia on 25 September 1994.
Seven consecutive flight legs through the eye were made during the period 2027-2355 UTC
(see Table 2.1 for details). Dual-Doppler coverage was available out to a radius of 60-70
km from the storm center.

Horizontal scans of radar reflectivity obtained from the lower fuselage (LF) C-band
(5.5 cm wavelength) radar antenna of the lower aircraft are used in Chapter 3 to look at
the fine-timescale evolution of Olivia’s inner core. Throughout the rest of this dissertation
three-dimensional composites of reflectivity from the tail (TA) X-band (3.2 cm wavelength)
radar antenna, which scans perpendicular to the aircraft ground track, are used to show
the reflectivity evolution over the 3.5 h observation period. Further details of the TA
and LF radars are provided by Jorgensen (1984). The method of TA radar reflectivity
compositing is discussed by Marks and Houze (1984).

The use of two TA radar platforms allows for a true dual-Doppler sampling technique
to be employed. The upper and lower aircraft fly orthogonal legs through the hurricane
inner core, providing near-simultaneous measurements of orthogonal components of the
horizontal wind over a period of 10-15 min. In the two quadrants of the storm where

the TA radar beams intersect, the average time separation between measurement of the
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horizontal wind components is 2.7 min. In the other two quadrants of the storm an
average time separation of 6 min exists. The time between three-dimensional samplings
of the inner-core wind field is roughly 20 min. Seven consecutive wind composites were
constructed for the 3.5 h observation period.

The domain of the TA wind and reflectivity composites extends 30 km from the storm
center in the horizontal and from 0.75 km to 6 km in the vertical. Data above 6 km height
are available, but not used (except in the calculation of area-averaged horizontal wind
discussed in Chapter 6). The filtering of the dual-Doppler data used in this study is not
uniform in space. This is in large part a consequence of the difference in tangential and
radial velocity found in a hurricane. Between Doppler wind measurements at a point in
space, features in the wind field are advected much greater distances in the azimuth than
in the radial. During the average time separation between measurements in the eyewall
(~ 3 min) parcels are advected 5-10 km in the azimuth (20—40° at 15 km radius) and 1-2
km in radius. Thus, we will focus on wavenumbers 0, 1, and 2 in the azimuth and scales

> 4 km in radius.
2.2.3 Data Quality

The winds derived from the true dual-Doppler sampling of Olivia are compared to the
in-situ aircraft wind measurements made along the flight tracks at 3 km height. Flight-
level wind measurements were smoothed with a 2-km Bartlett filter to match the Doppler
analysis resolution (courtesy of Matthew Eastin, personal communication). Figure 2.3
shows the flight-level estimate of the wind at a point along the flight track versus the
Doppler-derived estimate nearest that point in space. All flight-level points within the
dual-Doppler domain are considered, and all seven flight legs are utilized. Good agreement
exists for the horizontal components of the wind (Figs. 2.3a and 2.3b). The slopes of the
linear best fits to the U and V winds are 0.98 and 1.01, respectively. The correlation
coefficient for the U-fit is 0.98, while for the V-fit is 0.99. These findings are consistent
with those found by MHG for pseudo dual-Doppler measurements in Hurricane Norbert

(1984).
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Figure 2.3: Point-by-point comparison between aircraft wind measurements at 3 km height
during the period 2027-2355 UTC and the Doppler-derived wind estimates nearest in
space. The (a) zonal and (b) meridional components of the wind (m s~!') are shown
separately. Interpolated data within Olivia’s eye are included in the comparison.
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The agreement between aircraft and Doppler-derived vertical velocities is not expected
to be as good as found for the horizontal winds. As noted by MHG, the inherent spatial
averaging involved in the computation of Doppler-derived vertical velocity from horizontal
wind divergence alters the magnitude and location of the vertical velocity maxima. MHG
did find however that the distributions of vertical velocity for the Doppler and in-situ

observations in Hurricane Norbert were quantitatively similar.

2.3 Wind Decomposition

Based on the results of Fig. 1.1 and other observations of the hurricane near core (e.g.,
MHG; Franklin et al. 1993) we may regard the hurricane inner-core horizontal winds as
a superposition of an axisymmetric tangential flow plus weaker azimuthal perturbations,
with weak radial flow above the inflow layer and below the upper—tropospheric outflow
layer. In order to focus on the symmetric and asymmetric components of the vortex
winds separately, and to obtain insight into the dynamics governing the evolution of these
components of the total flow, an azimuthal Fourier decomposition of the wind field is
performed. The storm-relative winds (V) are first obtained by subtracting the storm

motion from the total (earth-relative) winds (Viotar):

V, = Vigtal — Vsa (226)

where V is the time-dependent, spatially-constant storm motion vector (see Willoughby
and Chelmow 1982). The initial wind analysis at each level is centered on the flight-level
vortex center at roughly 3 km height. Following MHG, we instead choose to center the
vortex at each height at the origin of a common cylindrical coordinate system, thus min-
imizing the asymmetry due to vortex center mislocation. In studying vortex alignment
one would not necessarily want to make this transformation. A coordinate system based
on the vortex centroid would be more useful. But because of the general lack of scatter-
ers within the eye, the Doppler-derived wind field within roughly 8 km from the storm
center cannot be obtained. By centering the vortex at each level we reduce the chance

of incorporating interpolated wind data within the eye into our Fourier decomposition of
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the wind. A simplex algorithm is used to find the center that maximizes the symmet-
ric component of the tangential winds within an annulus centered on the RMW (Neldar
and Mead 1965). Using the newly defined center at each level, V, is decomposed into
azimuthal mean and perturbation wind components. The perturbation wind field is then
Fourier decomposed in azimuth in order to focus on the structure and evolution of the
low-wavenumber components.

The asymmetric component of V, will contain, in addition to internally-generated
vortex asymmetries, the environmental flow and asymmetries resulting from the interac-
tion of the hurricane with its environment (e.g., upper-level PV anomalies, beta-gyres,
etc.). Consequently, it is not a straightforward task to simply separate V. into environ-
mental and hurricane components. Nevertheless, it proves useful and convenient to define

an estimate of the environmental vertical shear:

v, L 27 frmes OV,
(2) = / / fotal (. 3\ 2 )rdrd), (2.27)
0 0

2
0z T2 e 0z

where 7,0, = 28 km. This quantity will henceforth be referred to as the local vertical
shear. The wind vector V. is the area-averaged total wind at each level, which should
contain information on the environmental flow as discussed by MHG for Hurricane Norbert

(1984).



Chapter 3

OBSERVATIONS OF VORTICITY MIXING IN THE TC CORE

3.1 Symmetric Vortex Evolution

3.1.1 Tangential Wind Budget

Figure 3.1 shows the symmetric structure of Hurricane Olivia’s primary circulation
at the beginning (Fig. 3.1a) and end (Fig. 3.1b) of the observation period. In the vicinity
of the RMW (~ 12 to 16 km) the tangential winds decrease by 5-10 m s~ ! just above

I around 6 km height. A near-

the boundary layer and by a more substantial 10-20 m s—
linear decrease in tangential winds with time is observed near the RMW. The f-plane

contributions to the observed tendency in symmetric tangential wind in the inner core are:

%z—(erZ)ﬂ—wg—(u'—curw'%)Jrﬁ (3.1)
where u is the radial velocity, v the tangential velocity, w the vertical velocity, f the Coriolis
parameter, and ¢ the vertical vorticity. The bar denotes an azimuthal average and the
prime a departure therefrom. The first two terms are the radial flux of mean vorticity
by the mean radial wind and the vertical advection of mean tangential momentum by
the mean vertical wind, respectively. The next two terms are the eddy counterparts of
the first two terms, and the last term represents frictional and unresolved effects. The
symmetric transverse circulation involved in the first two terms is shown in Fig. 3.2.
Over the observation period the symmetric transverse flow is highly variable. Although
some of the structure may be accounted for by errors in the three-dimensional variational
scheme (recall the discussion in Chapter 2 regarding the difficulty in computing vertical

velocity), one cannot rule out the possibility that the features are physical. Mechanisms
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likely involved in the evolution of the secondary circulation include frictional and diabatic
forcing, precipitation loading, inertia-gravity wave propagation, and asymmetric vorticity
dynamics. It should be noted that the period of pure inertial oscillations in the inner core
ranges from 10 to 40 minutes, which is less than or equal to the time resolution of the
data. Thus, the presence of inertia-gravity waves may preclude quantitative, and perhaps
qualitative, comparison between observed and budget tendencies from one wind composite
to the next.

The role of vorticity asymmetry in producing mean flow change is considered in
Section 3.2. Here, we focus on purely symmetric phenomena. A comparison of the left-
hand side of (3.1) and the sum of the first two terms on the right-hand side is shown in
Fig. 3.3 for the flow evolution from leg 1 to 7. Although the observed tangential wind
tendency is an order of magnitude less than the budget tendency, qualitative agreement
between the two is found. Both depict a negative tendency in the vicinity of the RMW
and a positive tendency outside this radius.

Insight into the observed weakening trend in the primary circulation may be obtained
using axisymmetric vortex spin-down ideas. For an axisymmetric hurricane in approximate
gradient and hydrostatic balance the theoretical predictions of Eliassen and Lystad (1977,
hereafter EL) are appropriate. EL predicted the decrease in tangential winds with time
for a vortex with differential rotation under the influence of a quadratic drag law for the
surface stress in a neutrally-stratified atmosphere. Figure 1.1 shows the wind asymmetry
to be an order of magnitude smaller than the symmetric wind in the case of Olivia, but
measurements of the stratification are unavailable. Neutral buoyancy in the near core-
region (excluding the eye) is supported by Emanuel (1986). As long as these assumptions
hold approximately true, EL’s theory appears to be useful as a zeroth-order description
of hurricane spin-down.

The basic dynamics of vortex spin-down are relatively simple. The departure of the
flow from exact cyclostrophic balance in the vortex boundary layer due to the presence
of frictional drag drives a radial inflow. This radial inflow transports angular momentum

into the inner core, compensating for the frictional losses of angular momentum into
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the ocean. In the absence of diabatic forcing and the attendant radial inflow above the
boundary layer, the free atmosphere radial flow will be outward at all levels (Willoughby
1979). By conservation of angular momentum the tangential winds above the boundary
layer must decrease, and the vortex spins down.

The time average of Olivia’s symmetric transverse flow over the 3.5 h observation
period is shown in Fig. 3.4. Although inflow is still observed up to 3.5 km height, the flow
above this level is outward at all radii. This prevalence of radial outflow was also observed
by MHG for weakening Hurricane Norbert.

The rate at which the spin-down occurs was determined heuristically by EL for weak
vortices (maximum tangential winds ~ 10 m s~!). They used a first-order K theory to
parametrize the eddy stresses in the mixed layer and a quadratic drag law for the surface
stress. A state of near-cyclostrophic balance was assumed to exist throughout the fluid in

an absolute coordinate system. The free-atmosphere tangential wind, v(r,t) is given by

1 1 Cpx’t
o LA 3.2
ol = ool TH - (3:2)

where |vg(r)| is the initial tangential wind, C'p the assumed constant drag coefficient, y the
ratio of the boundary layer to free atmosphere tangential wind, i.e., the reduction factor, H
the total depth of the fluid, and A the boundary layer depth. Snell and Montgomery (1999)
and Montgomery et al. (2000) investigated the validity of (3.2) for hurricane-strength
vortices (maximum tangential winds > 33 m s~ ') using an axisymmetric Navier-Stokes
model which includes the non-cyclostrophic terms neglected by EL. They found that
the model-derived half-life times of the stronger vortices showed good agreement with
the predictions of EL. We therefore use (3.2) to predict the time-evolution of Olivia’s
tangential winds above the boundary layer (~ 3 km height) at 12 km radius from the
vortex center and compare with the observations. Using the drag coefficient of Deacon
(Roll 1965) for 49 m s~! winds in the boundary layer (Cp ~ 3 x1073), H =15km, h = 1
km, y = 0.8, and |vg| = 61 m s~ !, we estimate a tangential wind of 58 m s~! during
leg 4 and 55 m s~ ! during leg 7. The observed tangential winds during legs 4 and 7 are

1

approximately 54 m s~! and 51 m s~!, respectively. Thus, in spite of the simplifications
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made in deriving (3.2) and the greater complexity of Olivia’s environment (e.g., vertical
shear), the magnitude of the observed spin-down of the tangential winds is consistent with

the axisymmetric predictions of EL.
3.1.2 Symmetric Vorticity Evolution

The evolution of Olivia’s symmetric vorticity derived from the dual-Doppler winds
at 3 km height is shown in Fig. 3.5a. Consistent with the vortex weakening discussed in
the previous section is a decrease in the radial vorticity gradient near the RMW, most
pronounced between legs 3 and 5. One explanation for this gradient reduction is the sym-
metric divergence(convergence) of absolute vorticity inside(outside) ~ 12 km radius. Such
changes to the symmetric vorticity profile can also occur through asymmetric mechanisms.
The vortex spin-down ideas may only be a partial explanation for the observed symmetric
evolution. For example, the interaction of convectively-forced vortex Rossby waves with
the mean flow will lead to changes in the mean vorticity profile (MK; ME98; Méller and
Montgomery 1999, 2000). Nonlinear mixing of vorticity through the barotropic instability
mechanism discussed by S99 will also erode sharp radial gradients of symmetric vorticity.

The details of the internal asymmetric mechanisms are dependent upon the symmet-
ric structure of the vortex. Consider a vortex with monotonically decreasing vorticity
with radius. This flow satisfies Rayleigh’s sufficient condition for exponential stability,
prohibiting the mixing mechanism of S99. Vorticity redistribution through vortex Rossby
waves can still occur. The Rossby wave phase and group velocities, and the location of
wave-mean interaction for such a stable vortex will depend on both the symmetric shear
and vorticity profiles. In the case where a reversal in the sign of the vorticity gradient is
present and exponential instability is possible, the mean vorticity structure will determine
which azimuthal wavenumbers are unstable and their growth rates. Thus, in consider-
ing the asymmetric dynamics of Olivia’s inner core, it proves useful to first examine the
symmetric vorticity structure.

The lack of scatterers within the eye prohibits us from obtaining the complete sym-
metric vorticity profile in Olivia’s inner core using dual-Doppler data alone. If the aircraft

wind measurements at 3 km height are averaged over a sufficient number of flight legs
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through the storm, a proxy for the azimuthal-mean vorticity within the eye can be com-
puted (Fig. 3.5b). Averaging the six radials through Olivia during legs 1 through 3, we
find that the radial profile of vorticity takes the form of a ring, with maximum values
around 9.5 km radius. A similar analysis for legs 5 through 7 shows a weaker vorticity
gradient near the RMW as depicted in Fig. 3.5a. Also observed is a broader region of
maximum vorticity inside 10 km with values reduced from earlier legs. The lack of flight-
level data inside 6 km radius during legs 5 and 6 precludes an accurate extension of the
“symmetric” profile to the vortex center. The vorticity profile derived solely from leg 7
data does show a small depression of the vorticity down to about 8 x 102 s~!. This
evolution of the symmetric vorticity resembles that presented in S99 for a hurricane-like
vorticity ring perturbed by a broad-band vorticity asymmetry. They predicted that some
of the high vorticity of the ring is ultimately mixed into the center of the hurricane vortex,
forming a monotonic symmetric vorticity profile. High vorticity is also ejected outward,
qualitatively in accordance with what is expected from simple vortex Rossby wave theory.
We will revisit these observations and ideas in Section 3.2 when considering the source of
Olivia’s vorticity asymmetry.

Kossin and Eastin (2000) have performed a more comprehensive study of the evolution
of symmetric vorticity derived from flight-level data for a number of different storms.
They confirmed that during hurricane intensification the vorticity profile tends to be ring-
like. For most cases when the storm is steady or weakening the vorticity profile becomes
more monotonic, consistent with the barotropic instability mechanism of S99 and the

observations presented here.

3.2 Asymmetric Vorticity Structure and Evolution

Figure 3.6 shows the azimuthal variance of vorticity averaged over the 3.5 h observa-
tion period. Above 3 km height most of the variance is explained by wavenumber 1. We
should note that the magnitude and, to some extent, the structure of wavenumber 1 in
vorticity is sensitive to the vortex center definition at each level. Wavenumber 2, which

accounts for most of the variance below 3 km height, is fairly robust under changes to the
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vortex center identification. Higher wavenumbers show a smaller contribution to the total
variance, but this may be in part a consequence of the aliasing that occurs during the sam-
pling of the inner core. Ideally, one would like actual snapshots of the wind field at each
level. The TA radar, however, scans perpendicular to the flight track, requiring planes to
fly through the inner core in order to obtain a horizontal wind composite. Parcels of air
moving with the tangential winds at the RMW will go through about 90 degrees during
the time it takes to composite the inner 15 km of the storm. Therefore, some of the energy
contained in the higher wavenumbers will be projected onto lower wavenumbers. While
wavenumbers 1 and 2 will be modified by aliasing, simple dynamical ideas to be discussed
below do support their observed dominance.

Examination of the perturbation vorticity, ¢/, at 3 km height in Fig. 3.7 shows spi-
ral bands of vorticity with radial wavelengths on the order of 5-10 km located radially
outside the regions of high vorticity associated with the above-mentioned wavenumber 2
asymmetry. They are persistently located near 20 km radius during the first three legs
and then slightly outside this radius during the final legs. The maximum vorticity of
the bands ranges from 0.5-1x1072 s~!. The bands may be symmetrizing vortex Rossby
waves, predicted by MK to occur in the hurricane near-core region. If so, this is the first
observational evidence of such features in the hurricane wind field. One source for the
bands may be the symmetrization of the large wavenumber 2 vorticity perturbation near
12 km radius.

We also note the persistent bands of elevated reflectivity in the vicinity of the vor-
ticity bands (see Fig. 2.2). Enhanced convection could be triggered by the asymmetric
transverse circulation generated in response to momentum flux convergences associated
with the vorticity bands. Inner-core spiral bands of reflectivity over open ocean have also
been observed by Gall et al. (1998) using ground-based radar. They speculated that the
features were similar to boundary layer rolls (Fung 1978), but had insufficient data to
make definitive statements about their origin. As discussed in Chapter 1, understanding
the role of vortex Rossby waves in tropical cyclone structure and intensity change is an
important motivation for this work. The possibility that this data may lend itself to the

resolution of fine-scale spiral vortex Rossby waves is encouraging.
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is 0.4 x 1072 s~!. Negative values are depicted by the dashed curves.
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The azimuthal structure of perturbation vorticity at 12 km radius is shown in Fig.
3.8. Maximum values of positive vorticity are approximately 3-4x10~2 s~ . During legs 1
and 2, when the symmetric vortex from low to mid levels is nearly barotropic, the vorticity
asymmetry tilts little in the azimuth with height. A clear azimuthal wavenumber 2 pattern
exists at all heights within the domain during leg 1 and only below 3 km during leg 2.
As the vertical shear, vortex tilt, and baroclinicity of the symmetric vortex increase, the
azimuthal tilt becomes more pronounced. It is also observed following leg 2 that the
vorticity in the northern quadrant above 3 km height is persistently large and appears to
join with an equally large perturbation just above, and extending down into, the boundary
layer of Olivia. During legs 4 through 7 a second positive vorticity asymmetry is observed
in the southern quadrant of the storm, although it appears to extend up from low levels and
does not reach much above 4 km height. This accounts for the dominance of wavenumber
2 at low levels and the transition to wavenumber 1 at middle levels observed in Fig. 3.6.

The evolution of the wavenumber 2 component of vorticity at low levels is shown in
Fig. 3.9. Since the phase and radial location of the wavenumber 2 asymmetry are nearly
constant with height below 3 km, we have vertically averaged the vorticity at low levels to
provide a bulk estimate of the amplitude. Approximately 20 min separates the end of one
composite and the beginning of the next. A parcel of air being advected by the tangential
winds at the RMW will make almost an entire orbit around the storm during this time
period. The wavenumber 2 vorticity asymmetry may not move with the advective speed,
making time continuity difficult to discern simply by looking at consecutive composites.

Following Kuo et al. (1999) we use high temporal resolution radar reflectivity compos-
ites to provide an indication of the “instantaneous” tangential speed of this wavenumber
2 feature. In their study of Typhoon Herb (1996) using reflectivity from a WSR-88D
Doppler radar, Kuo et al. found an approximately elliptical eye rotating cyclonically with
a period of 144 min. They hypothesized that the eye rotation observed in the reflectiv-
ity might be the manifestation of a propagating wavenumber 2 vortex-Rossby edge wave.
According to the linear wave theory of Kelvin (Lamb 1932), the azimuthal phase speed of

a vortex-Rossby edge wave propagating on the vorticity discontinuity of a Rankine vortex
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Figure 3.8: Azimuth-height cross-section of perturbation vorticity at 12 km radius from
the storm center for each flight leg. North is located at 90° and west is located at 180°.
Contour interval is 0.5 x 1072 s~!'. Negative values are depicted by the dashed curves.
The heavy, solid vertical line denotes the direction of storm motion.
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is given by

1

¢ = Vmax(l — E)’ (3.3)

where vp,q, 18 the maximum tangential wind speed and n the azimuthal wavenumber.
Thus, for wavenumber 2 the propagation speed is one half v,,4,. Relating the observed
elliptical eye rotation period in the reflectivity field to the propagation period for a vortex
Rossby edge wave, Kuo et al. found that (3.3) was approximately valid. It should also be
noted that the nonlinear Kirchhoff solution for elliptical eye rotation (Lamb, 1932) agrees
well with the above linear solution as long as the ratio of minor to major axis is close to
unity. Figure 3.10 shows the LF reflectivity evolution of Hurricane Olivia’s inner core at
3 km height during the period spanned by leg 5. As in the case of Typhoon Herb, the
eye appears elliptical and rotates cyclonically in time. The ratio of minor to major axis
is approximately 0.7. Over the 7 minute period the eye rotates through about 50 degrees.
The eye rotation period is then estimated to be 50 minutes. From the wind analysis during
this time the RMW and maximum tangential wind speed at 3 km height are 14 km and 57

1 respectively. The circulation period for a parcel being advected around the vortex

ms
at the RMW is then 25 minutes, or one half the eye rotation period, as predicted by (3.3).

Supplementing the reflectivity with the wind field data allows this hypothesis linking
the rotation of the reflectivity ellipse to the rotation of the associated vorticity asymmetry
to be examined further. The orientation of the reflectivity ellipse observed in Fig. 3.10 is
consistent with the phase of the wavenumber 2 component of vorticity shown in Fig. 3.9
for leg 5, i.e., the positive vorticity asymmetry lies along the major axis. An attempt to
extend this interpretation to other times by comparing the observed phase evolution to
that predicted by (3.3) was met with limited success. Only between legs 5 and 6 did the
phase of wavenumber 2 evolve in a manner consistent with a vortex-Rossby edge wave.
In addition to aliasing issues, discrepancies between observations and the linear theory
described by (3.3) may be attributed to physical complications heretofore neglected.

The basic state vorticity shown in Fig. 3.5 is not Rankine. Although the radial gradi-

ent of mean vorticity outside the RMW is quite steep, discrepancies between Kelvin’s edge

wave solution and the wave solution on a continuous vorticity profile are expected. In the
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Figure 3.10: Olivia inner-core LF reflectivity composites at 3 km height. Period spanned
is 2244-2251 UTC at 1 min time intervals. Contour interval is 10 dBZ.
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inviscid limit the vorticity waves described by (3.3) propagate indefinitely around the vor-
tex as discrete normal modes which never axisymmetrize. When the gradient of vorticity is
no longer confined to a single radius (but the profile remains monotonic), axisymmetriza-
tion of the initial vorticity asymmetry is expected for all azimuthal wavenumbers in the
linear problem (Sutyrin 1989; Carr and Williams 1989; Smith and Montgomery 1995;
MK). The axisymmetrization mechanism also effects the phase propagation such that as
the central radial wavenumber increases due to the shearing by the basic state flow, the
azimuthal phase speed of the Rossby waves approaches the local tangential wind speed

The influence of cumulus convection on the Rossby wave propagation must inevitably
be considered. The extension of the two-dimensional barotropic local dispersion relation
for vortex Rossby waves derived by MK to a stably stratified barotropic circular vortex in
gradient balance is given by (M6ller and Montgomery 2000)

Eﬁ__o qo(r)
R Go [k* +n?/R? + (ijo&om?)/N?]’

w=n + (3.4)

where n, k, and m are the azimuthal, radial, and vertical wavenumbers, respectively, R
the reference radius (see MK), ¢ the radial derivative of the barotropic basic state PV,
7o the absolute vorticity, & the inertia parameter, and Qg the angular velocity. In regions
of convection the static stability, and thus N2, will be reduced from that in the non-
convective regions, so the phase propagation of the waves will be modified. According
to (3.4), the decrease in Rossby deformation radius in the convective regions will reduce
the retrograde propagation of vortex Rossby waves. The precise dependence of vortex
Rossby wave propagation on static stability could be explored with a high spatio-temporal
resolution data set generated by a full-physics numerical model.

We conclude that over the time interval defined by leg 5 (and perhaps leg 6) the
wavenumber 2 asymmetry in vorticity propagates in a manner consistent with a vortex
Rossby wave packet of near-discrete structure. Although symmetrization and convection
will modify its propagation speed, the greatest obstacle to extending this interpretation

to other observation times is the 30-min time resolution of the dual-Doppler wind data.
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The hypothesized propagation period of the vorticity asymmetry is approximately 50 min.
Thus, to shed further light on the propagation characteristics, snapshots of the wind field
would be required about every 10 min. Insight into the source of the wavenumber 2
vorticity asymmetry may still be obtained by examining the observations in the context

of recent numerical and theoretical studies of vortex dynamics.

3.3 Sources of Vorticity Asymmetry

3.3.1 Convective and Environmental Sources

Asymmetric convection in the eyewall is expected to produce asymmetries in PV.
The gradient of the diabatic heating rate associated with convection projected onto the
absolute vorticity vector tends to be positive at low levels and negative at high levels.
Thus, according to the PV equation, a positive(negative) anomaly will tend to be produced
at low(high) levels (Haynes and McIntyre 1987). Convection in the eyewall will project
onto a number of azimuthal wavenumbers, but it is not apparent from observations of
Olivia’s vertical velocity and reflectivity structures that wavenumber 2 is being preferred.
Nevertheless, convective asymmetries will play an important role in the internal vorticity
dynamics to be discussed below by providing broad-band vorticity perturbations to the
symmetric vortex.

The interaction of Hurricane Olivia with the large-scale deformation field could have
excited the near-core wavenumber 2 asymmetry in vorticity (e.g., Glatz and Smith 1996).
Another facet of the vortex-environment interaction is the vertical shearing of the hurri-
cane. The downward projection of the upper-level PV of the tilted vortex on the low-level
vortex PV results in vorticity asymmetry at low levels. Wavenumber 1 will dominate the
asymmetry in the case of unidirectional shear. Higher wavenumbers may become increas-
ingly important if the direction of vortex tilt varies with height. As will be discussed in
Chapter 6, this vertical shear mechanism could be activated following leg 3, when the
local vertical shear increases, but seems an unlikely candidate for the production of the
wavenumber 2 asymmetry observed during leg 1. At that time the vortex shows little tilt

with height.
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The enhanced convection on the east side of Olivia argued in Chapter 6 to be triggered
by increased vertical shear following leg 2 is generally flanked radially inward by strong
downdrafts. Gamache et al. (1997) suggested that perturbation vorticity may be produced
in such regions via the tilting of radial vorticity filaments by the radially-sheared vertical
winds (e.g., in the front right quadrant of Fig. 3.7 during leg 5). The positive vorticity in
the front quadrant of Olivia following leg 2 near 12 km radius could have resulted from
such a mechanism, leading to the persistent wavenumber 1 in vorticity above 3 km height.
One could alternatively make the argument that pre-existing vertical vorticity associated
with the vorticity asymmetry in the southern quadrant during leg 2 was vertically and
azimuthally advected. Stretching of this vorticity in the region of strong updrafts in the
eastern quadrant could have then resulted in the mid-level vorticity asymmetry observed
during leg 3. Both mechanisms, while plausible, mainly shed light on the origin of the

wavenumber 1 vorticity asymmetry observed above 3 km height.
3.3.2 Internal Dynamics: An Analogue Model

We now consider the possibility that the production of the dominant wavenumber 2
asymmetry in vorticity at low levels is directly tied to the inner-core symmetric vortex
profile of Olivia. To elucidate the dynamical mechanisms we utilize the nondivergent

barotropic vorticity equation,

Al S S

ot or  rox 0, (3.5)

in a series of four numerical experiments. A semispectral model was used to perform
the simulations. A discussion of the pertinent model details is provided in Chapter 4 in
the more general equivalent barotropic context. The nondivergent model is recovered by
setting the baroclinic terms to zero. The radial grid spacing used here is 0.5 km and the
number of radial points is 200. The azimuthal truncation is 16 modes.

Figure 3.11 shows the initial vorticity profiles used in each of the four cases. The
profiles are based on Olivia’s observed symmetric vorticity shown in Fig. 3.5 with some
modifications. Although the aircraft measurements suggest a ring profile of vorticity,

we first consider the case where the vorticity inside the eye is well-mixed as in a modified
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Rankine vortex (Cases A and B). We then examine the asymmetric dynamics of an elevated
vorticity ring (Cases C and D) as discussed in S99. In Cases A-C the profile of dual-Doppler
derived tangential wind outside 18 km radius was replaced by an %% fit to the flight-
level observations. In Case D we consider the effect of the “bump” in symmetric vorticity
observed near 25 km radius during legs 1 and 2 on the asymmetric evolution of the flow.
All of the above vortices were perturbed with an initial pulse of cyclonic vorticity centered

at 12 km radius and radially aligned:
= gr’nmef(r’/rd)a (3.6)

where ¢! .. = 0.1(paw, ¢ = 5 km, and 7/ is the radius from the asymmetry center.
Cases A and B demonstrate the dependence of the asymmetric vorticity evolution on
the slope of the mean vorticity gradient in the vicinity of the RMW. Solid-body rotation
is assumed inside the RMW in both cases, but the larger radial vorticity gradient of Case
A reflects the observations of leg 1 and the weaker gradient of Case B the observations of
leg 4. In cases A and B the vortex is exponentially stable for all azimuthal wavenumbers
(Gent and McWilliams 1986). The linear dynamics is then governed exclusively by the
continuous spectrum of sheared vortex-Rossby wave disturbances (Smith and Montgomery
1995; MK). The linear evolution of the vorticity perturbation (3.6) appears similar in
both cases, taking the form of vortex-Rossby wave trailing spirals (not shown). This is in
contrast to the observations in Fig. 3.7 which, for many of the flight legs, show a more
modal (i.e., non-changing) structure to the vorticity asymmetry. When the profiles for
Cases A and B are instead perturbed with a pure wavenumber 2 asymmetry, a noticeable
distinction between the initial linear evolutions is evident. The steeper profile supports
vortex Rossby waves which initially look modal in structure like the waves predicted by
Kelvin’s solution (Figure 3.12a). The estimated propagation period for the wave (~ 35
min) is consistent with (3.3). The profile with the radially broader transition region from
high to low vorticity supports more tightly wound vortex Rossby waves (Figure 3.12b).
Although the anticyclonic horizontal shear is less in this case, the Rossby elasticity is

also less. The net result is a greater tendency for sheared, trailing spiral disturbances. In
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Figure 3.11: Initial profiles of symmetric vorticity (s~') used in the nondivergent,
barotropic numerical simulations. Shown are Case A (solid), Case B (short dash), Case C
(long dash), Case D (dash dot), and Case D’ (dash dot dot dot).
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both cases the wavenumber 2 vorticity asymmetry ultimately decays as axisymmetrization
proceeds. This distinction in wave structures for Cases A and B is not readily apparent in
the observations shown in Fig. 3.9. We also note that these profiles, while they may allow
azimuthal propagation of wavenumber 2, do not prefer the emergence of wavenumber 2
over other wavenumbers.

The next two profiles (C and D) highlight the potential importance of barotropic
instability in the generation of asymmetric vorticity in the near-core region, and more
specifically a mechanism preferring the emergence of wavenumber 2. (Algebraic instabili-
ties associated with wavenumber 1 may also be playing a role in the asymmetric evolution
of Olivia (Smith and Rosenbluth 1990; Nolan and Montgomery 2000)). Both profiles C and
D satisfy Rayleigh’s necessary condition for barotropic instability (Gent and McWilliams
1986). To determine whether the profiles indeed support linearly unstable modes, we per-
formed an inviscid, nondivergent eigenanalysis of the continuous problem (see Appendix
C). Nonlinear simulations in which the mean profiles were perturbed by (3.6) have been
carried out and are summarized in order to convey the effects of nonlinearities on the
asymmetric vorticity evolution.

The ring profile of Case C is exponentially unstable for wavenumbers 2 through 4,
with wavenumber 2 being the most unstable. All other wavenumbers are exponentially
stable. The e-folding time for the unstable wavenumber 2 eigenmode is 45 min. Changes
in the width of the vorticity ring or the ratio of the maximum vorticity to the vorticity at
the vortex center will alter the growth rate (S99). Keeping in mind that Olivia’s actual
vorticity profile may depart from the observations shown in Fig. 3.5, this value of the
e-folding time is therefore considered a reasonable estimate of the actual growth rate.

The nonlinear simulation in which the Case C profile is perturbed by (3.6) shows the
emergence of the unstable wavenumber 2 modal structure in the vicinity of the RMW after
a few e-folding times (Figure 3.12¢). Elevated vorticity from the ring mixes into the vortex
center after 4-5 hours, resulting in a vortex profile with maximum symmetric vorticity at
the center. The change in mean tangential wind over the first 4 hours of the simulation

is shown in Fig. 3.14. As predicted by Stoke’s theorem, the transport of vorticity into
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Figure 3.12: Numerical simulation of the wavenumber 2 component of vorticity for (a)
Case A and (b) Case B. Contour interval is 0.4 x 1072 s~!. Initial condition is followed by
snapshots of the evolution every 10 min. Negative values are depicted by the dashed curves.
Also shown are numerical simulations of the total (mean plus perturbation) vorticity for
(c) Case C and (d) Case D’. Contour interval is 2 x 1072 s~!. The initial condition derived
from (3.6) is followed by snapshots of the evolution every 2 h, except for the last plot in
the sequence which depicts the well-mixed state at 10 h.
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the vortex center results in an increase in the mean tangential wind inside the RMW of
approximately 7 ms~! and a decrease at the RMW of roughly 3 ms™ 1.

The transition of Olivia’s symmetric vorticity from a well-defined ring to a near-
monotonic profile, or at least a broader ring, resembles this simulated evolution. Figure
3.15 shows the change in mean tangential wind over the 3.5 hour observation period.
Consistent with the Case C evolution, the mean tangential wind decreases in the vicinity
of the RMW and increases inside the eye. It is plausible that the weakening of symmetric
eyewall convection in Olivia inferred from Fig. 2.2 reduced the symmetric PV generation
in the eyewall. In the absence of sufficient PV generation to maintain the ring, barotropic
instability then set in to stabilize the vortex profile. The wavenumber 2 asymmetry at
low levels of Olivia, according to Case C, could then be interpreted simply as a by-
product of the vorticity mixing process. The magnitude of the spin-down (~ 10 ms™!)
and the presence of an acceleration outside the RMW are inconsistent with the barotropic
instability mixing mechanism and are most likely the result of the axisymmetric spin-down
mechanism discussed in Section 3.1.1.

The dual-Doppler observations in Fig. 3.5a indicate a possible secondary vorticity
ring around 25 km radius during legs 1 and 2. This bump is incorporated into the profile
of Case D. Before examining its effect on the inner-core dynamics, we consider first the
question of why this bump in vorticity might exist where it does in the first place. The
primary ring of vorticity is believed to form through frictional convergence and vortex-tube
stretching in association with strong cumulus convection in the eyewall (e.g., Moéller and
Smith 1994). One explanation for the secondary bump in vorticity is that vortex Rossby
waves excited in the eyewall prior to leg 1 propagated radially outward, stagnating outside
the RMW. The nondivergent, barotropic simulations of MK suggest that the subsequent
wave-mean interaction produces a decrease in mean relative vorticity in the vicinity of
the stagnation radius and an increase in mean relative vorticity radially outward of the
stagnation radius. The radial distance between the center of the initial wave packet and
the stagnation radius, derived from (3.4), is given by

&odl 1

§r = 040 _ , 3.7
"= R, T w2 (hofam?) /N7 3.7
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where kg is the initial radial wavenumber. Using Olivia’s vortex profile at R = 12 km
during leg 1, we estimate &y &~ 1 x 1072571, 5o = Tx 1073 871, o = N2%ijp =~ 7 x 1077 573,
ROy~ -3 x 1073 57! and ¢) ~ —3 x 1071 m~1s73. Assuming an initial central radial
wavenumber of 1/5 km™! (inverse horizontal eyewall scale), a vertical wavenumber of 1/5
km~! (approximate inverse depth of the vorticity bands), and N? ~ 1 x 107* s72, the
stagnation radius for wavenumber 1 is found to be approximately 20 km from the RMW.
In the convective regions the static stability N? will likely be less than the value used in
the above calculation (Emanuel et al. 1987; Montgomery and Farrell 1992). Reduced static
stability and the presence of symmetric radial inflow will reduce the value of §r. Thus,
the estimated stagnation radius is consistent with the separation between eyewall and
secondary bump, providing possible evidence for a vortex-Rossby wave induced change in
the symmetric vortex.

The impact of the vorticity bump on the asymmetric vorticity evolution may be impor-
tant, causing deviations from the evolution described for Case C. Laboratory experiments
involving two-dimensional perturbations to two-dimensional vortices with monotonically
increasing vorticity from the RMW to the vortex center and a bump in vorticity outside
the RMW (i.e., an associated secondary tangential wind maximum) have been found to
produce tripolar vortex structures dominated by wavenumber 2, with a central elliptical
region of high vorticity and satellite regions of anticyclonic vorticity along the minor axis
of the ellipse (e.g., Legras et al. 1988; Polvani and Carton 1990; Kloosterziel and van Heijst
1991). If the vorticity profile satisfies Rayleigh’s necessary condition for barotropic insta-
bility, one often finds that such stable tripolar vortex structures emerge. Montgomery and
Enagonio (1998) were evidently the first to reveal a tripolar vortex in three-dimensional
vortex flow in the published literature. When a two-cluster convective anomaly was used
to perturb an initially barotropic vortex, a tripole-like structure emerged at the upper
levels of their QG model. In the context of 2D nondivergent dynamics Kossin et al. (2000)
demonstrated that tripolar vortices can also emerge from hurricane-like vortex profiles
with a symmetric secondary vorticity maximum radially outside the maximum at the

vortex center.
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Experiments using the modified Rankine profile of Case A with the secondary bump
of vorticity of Case D did not produce a stable tripolar vortex. A barotropic stability
analysis of a piecewise-uniform approximation to this profile showed that wavenumber 2
is in fact marginally stable (James Kossin, personal communication). A stable tripolar
vortex was observed to emerge, however, upon increasing the vorticity of the bump by 35
percent. The question then arises of whether a stable tripolar vortex can emerge when
the vorticity is depressed in the central region of the vortex, as might be expected in the
lower- to mid-tropospheric portion of a hurricane (see Fig. 3.5Db).

The vorticity profile for Case D’ is similar to that of case D, but with the secondary
bump in vorticity elevated by 35 percent. A continuous nondivergent eigenanalysis of this
profile found, in addition to the mode described in case C, a second unstable mode for
wavenumber 2. Upon examining the vorticity map plot of this eigenmode, the mode is
identified with the phase-locking of vortex Rossby waves propagating on the outer edge
of the primary ring and the inner edge of the outer bump (not shown). Its e-folding time
is 85 min, or approximately twice that of the mode associated with the primary vorticity
ring. According to linear dynamics, then, the unstable mode observed in Case C should
emerge first and tend to dominate the solution. Whether this remains true once wave-wave
interactions become significant has important implications for the excitation of tripolar
vortex structures in the lower-tropospheric region of hurricanes that are weakly forced.

The nonlinear simulation in which the Case D' profile is perturbed by (3.6) shows
essentially the same evolution of total vorticity as was observed in Case C (Fig. 3.12d). A
tripolar vortex structure is not observed to emerge at long times. As long as the growth
rate of the unstable mode associated with the primary ring is significantly larger than
that of the bump, we find that tripolar structures do not materialize. Thus, based on the
simple nonlinear initial-value experiments presented here, the most plausible (barotropic)
internal mechanism for producing Olivia’s wavenumber 2 asymmetry in vorticity at low
levels during the observation period is the barotropic instability of the primary ring of
vorticity.

The role of vorticity redistribution in TC development is next considered in the three-

dimensional context. Redistribution of vorticity by vortex Rossby waves is found to play
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a key role in the vertical alignment (or non-alignment) of vortices exhibiting small initial
tilts and in the merger of convectively-generated PV within an incipient vortex. The
latter is believed to be especially relevant to the problem of tropical cyclogenesis as first
demonstrated by ME98. We further show that a dynamical barrier to TC development

can be elucidated using linear vortex Rossby wave thinking.



Chapter 4

NUMERICAL MODEL DESCRIPTIONS

4.1 Three-Dimensional QG Model

Motivated by the geostrophic nature of large-scale flows in the middle-latitude atmo-
sphere and ocean, the QG system has been used extensively in the study of vortex merger
and alignment (McWilliams 1989; Polvani 1991; Viera 1995; Dritschel and Juarez 1996;
Sutyrin et al. 1998). Its utility as a benchmark model for testing basic dynamical theories
also has been exploited in recent studies of TCs (ME98; Smith et al. 2000). The PV
conservation equation, invertibility relation, and thermodynamic equation in Boussinesq

form on an f-plane are, respectively,

dq B
| T =0, (a)
10 (pof2ov
q:fo-i-vi?ﬂb‘f'%& (F;[if—;g) ; (4.2)
00 0

where ¢ is the PV, ¢ the flow streamfunction (which equals the geopotential, ¢, divided by
fo), po the density, fo the constant Coriolis parameter, N2 the constant static stability, and
w the vertical velocity. In Cartesian coordinates the Jacobian, J (v, q) = 0¢/0x - dq/dy —
0 /9y - dq/dx. The details of the three-dimensional numerical model used to solve Egs.
(4.1)—(4.3), henceforth referred to as QG3D, are described by ME98. One difference from
ME98 is that in the non-dimensional numerical simulation of (4.1)—(4.3) we will not require
the horizontal scale, L, equal the Rossby deformation radius, Lr = NH/f, where H is the
model depth. The thermal vorticity in the nondimensional invertibility relation (ME9S8,
Eq. 5) is then multiplied by the vortex Burger number, (Lr/L)%. Unless otherwise stated,

no explicit diffusion is included in the model.
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4.2 Equivalent Barotropic QG Model

A tilted PV column vertically bound by rigid lids can be decomposed into a barotropic
mode and internal baroclinic modes. In general the interior flow results from both interior
PV and potential temperature anomalies on the vertical boundaries (Hoskins et al. 1985).
Hurricane observations show that the potential temperature gradients on the boundaries
are weak (e.g., Hawkins and Rubsam 1968). Consistent with these observations and recent
numerical studies of TCs (e.g., Méller and Montgomery 2000), we make the simplifying
assumption of isothermal vertical boundaries at z = 0 and H. The streamfunction and PV
can then be expressed as the sum of the vertical modes:

U(r, A, z,t) = i U (7, A, £) cOS <%> (4.4)

m=0

ad mmz
A t) = Am 7/\7t )
dr A8 = Y dmlr Aot cos (777

m=0

where m is the vertical wavenumber. Substitution of (4.4) into Eqs. (4.1)—(4.3) yields
an equivalent barotropic (EQB) system of nonlinear equations for the real-valued, time-
dependent amplitudes, @m and ¢m. The nonlinear equations truncated at m = 1 are
shown below. Because of the natural circular geometry of the problem, the equations are
evaluated in cylindrical coordinates. The semi-spectral model described by ME9S (see also
Montgomery et al. 2000 for more detail), modified to allow finite Lg, is used to perform the
numerical computations (see below). A 2000 km radius domain with radial grid spacing
Ar =5 km and 8 mode azimuthal truncation was used. All nonlinear simulations were
run with a diffusion coefficient v varying from 100 to 200 m?s~' to keep the integration

stable at long times.
4.2.1 Nonlinear Initial-Value Model

For the tilted vortex (Section 5.1) and m = 1 isolated PV anomaly (Section 5.2)
experiments, it is sufficient to simulate the vortex evolution using only the barotopic

mode (m = 0) and first internal baroclinic mode (m = 1). Truncating (4.4) at m = 1 and
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then substituting into the PV equation (4.1) yields the following nonlinear PV tendency

equations for m = 0 and 1, respectively,

O 10Uy & 104y 0 1 (101 0 19 0 . B
(875 * r or OX 1 O 37‘) o(r, A, 8)+ (7‘ or OX r OA Or a(n A =0, (45)

and

O 10y & 19U d 101 & 19U, 8

This system of equations will tend to underestimate the magnitude of the azimuthal mean

gt r Or 9N r O\ Or

flow change since the m = 2 tendency associated with the self interaction of (m,n) = (1,n)
is excluded.
In Section 5.1, where the wave-mean interaction is not critical to understanding the

vortex evolution, the above truncated system is solved. The (A) are first expanded in a

m

truncated azimuthal Fourier series following Appendix B of ME9S:

U (r, A, 1) Z U (7, 1) ™ (4.7)
n=—N

and

(r, A\ t) Z G (7, )€™, (4.8)

where n is the azimuthal wavenumber, N is the azimuthal mode truncation, and (N)mn
are the complex Fourier coefficients. This semi-spectral formulation is advantageous for
swirling flows where the mean flow dominates the asymmetric component of the flow. Since
the radial and azimuthal resolutions are independent, one can reduce the number of degrees
of freedom by choosing a minimum allowable azimuthal resolution. For simple experiments
involving axisymmetrization on stable vortex monopoles, one may only need to retain a
few azimuthal wavenumbers to accurately capture the flow evolution. This dimensionality

reduction will reduce computational time (Montgomery et al., 2000). Substitution of (4.7)

and (4.8) into the flux form of equations (4.5) and (4.6) yields, respectively,

812071 —9
o = V5, Fou(r, 1) (4.9)
and
Min _ Vi 2Fy,(r,t), (4.10)

ot
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where
~ 1 L0 - o N
Fon(T,t) = _{ Z [Zk_(wﬂ,kqo,nfk)_lnq{),nfk wo,k‘i‘
r ar or
|k|<N
In—k|<N
L. 9d -~ . R T
5(¢’i£(¢1,k6]1,njk) — indin—r—g )] +
- dg ~ _dip . N
in2Yomn = in—-don} +VV5d0n, (4.11)
3 1 g 0 . o
Fi(r,t) = ;{ > [ZkE(wO,kQLn—k)_’an1,n—k o T
|k[<N
In—k|<N
L0, - o N
(lkg(wl,k%,nsz) — iNGon—k g;k)] +
_dC - _dy 5
an_g lvn_an_/lfqun}—l_Vv%nql,nv (4:]_2)

and V2, = (1/r)9/0r + 0?/or* — n?/r? — ~2,, where v, = mm/Lp is the inverse Rosshy
deformation radius for internal mode m. ( is the azimuthal-mean geostrophic relative
vorticity and 1 is the azimuthal-mean streamfunction. The last term in both equations is
the explicit diffusion. Note that the linear terms involve only the barotropic component
of the azimuthal mean vortex, i.e., ¥ (r,t) = 1200(7‘,25) and q(r,t) = Goo(r,t). The tendency
in the azimuthal mean quantities is transferred to the mean vortex after each time step,
and then set to zero before the next time step. Consistent with the barotropic mean
vortex constraint, we impose Fip = 0. In other words, we neglect the small nonlinear
interactions between the m = 1 asymmetries and the m = 0 asymmetries that project
onto the azimuthal mean vortex.

In Section 5.2 where the mean flow change predicted by the QG3D and EQB models
is compared, we wish to include the full effect of the self-interaction of (m,n) = (1,n),
i.e., both the (0,0) and (2,0) contributions. The wave-mean terms which contribute to
the tendency in (0,0) are in fact the same terms that contribute to the tendency in (2,0).
Thus, to account for the m = 2 tendency we simply double the wave-mean terms in the
(0,0) equation. This approximation is equivalent to assuming m = 0 in the inversion of
potential vorticity for streamfunction, and will tend to overestimate the magnitude of the
mean-flow change. The inclusion of m = 2 in this way is consistent with the quasi-linear

approximation presented in Section 5.2.
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4.2.2 Linear Initial-Value Model

An advantage of the above semi-spectral formulation is that it allows easy implemen-
tation of the linearized system of equations governing the evolution of perturbations to a
circular vortex flow. Retaining only the linear terms in Eqs. (4.11) and (4.12) yields the

following inviscid linear equations for the Fourier coefficients:

indC ~

0 o=\ .
(& + an) ln(r,2) = " S () =0, (4.13)
]_ 8 8/12777,77, n2 2 7 ~
19 _ X - > )
r or (T or ) (7’2 - 7m) Yn = net e
1d [ dy _

The vortex evolution simulated by the linear EQB model will be compared to that simu-
lated by the nonlinear models in Chapter 5 to gain insight into the nature of the alignment
dynamics.

For disturbances that are sheared by the differential rotation of the basic state flow,
finer and finer radial scales will be produced placing a limit on how long the inviscid linear
simulations can be integrated. This time limit was shown by Smith and Montgomery

(1995) to be
7r

—_— 4.16
nArdQ/dr|’ (4.16)

tmax S

where n is the azimuthal wavenumber, Ar is the radial grid spacing, and Q is the
azimuthal-mean angular velocity. For n = 1, Ar = 5 km, and the mean vortex to be
described in Section 5.1, t4, = 54 days. All inviscid integrations shown here are re-
stricted to time intervals less than 54 days.

Before the first timestep, the QG3D model subtracts the mass-weighted average of PV
from the total field to ensure conservation of domain-integrated PV. This small correction
to the total PV adds a constant anticyclonic rotation to the domain. For comparison with
the EQB simulations the QG3D map plots are rotated cyclonically by the azimuthal angle

consistent with this constant rotation.
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4.3 Equivalent Barotropic Asymmetric Balance (AB) Model

Finite Rossby number effects are not contained within the QG system. To con-
sider more rapidly rotating vortices we could use Eliassen’s (1951) balance formulation
which views a vortex as proceeding from one (quasi) gradient balanced state to the next.
Eliassen’s formulation, however, is valid only for symmetric vortices. A more generalized
balance theory is required to capture the non-axisymmetric processes of vortex merger and
alignment. The Asymmetric Balance (AB) theory for rapidly rotating vortices (Shapiro
and Montgomery 1993) has proven useful in the context of asymmetric TC dynamics (MK;
Moller and Jones 1998; Moller and Montgomery 1999, 2000). AB theory is accurate for
order unity Rossby numbers and order unity asymmetric divergence, remains qualitatively
useful at even higher Rossby numbers (Méller and Montgomery 1999; Montgomery et al.
1999), and has the desirable property of filtering gravity and inertia waves (as in the QG
formulation). As the Rossby number approaches zero, the AB system reduces to the QG
system.

The linear equivalent barotropic AB model is derived following the three-dimensional
derivation of Shapiro and Montgomery (1993). The radial and tangential momentum,
thermodynamic, and continuity equations in hydrostatic, Boussinesq form on an f-plane,

linearized about a barotropic mean vortex are, respectively,

le’)::l _E = _%_f, (4.17)
D—; (%—‘i’) + N2 =0, (4.19)
where

is the material derivative operator following the mean tangential wind, ¢’ is the pertur-

bation geopotential, ¢ = f + 27/r is the modified Coriolis parameter, and 77 = f + ( is the
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absolute vertical vorticity. The mean tangential wind is assumed in gradient balance with
the mean geopotential field, i.e.,
—2 e
v o)
T+ —=—. 4.22
fr+ . o (4.22)
Differentiating (4.17) and (4.18) with respect to 2t and then cross-substituting (4.17)

and (4.18) into these expressions to eliminate the first derivatives of ' and v’ yields

DX ., D, [(0¢ £0¢

v 1q S ) R 4.2
Dt? + ey +Dt <8r> r O\ (4.23)
D' __, 1D, (9¢ ¢’

v 45 S (e G P 4.24
Dt2+n§U+TDt<8/\> T or (4.24)

A naive scaling of the orbital “acceleration” D?/Dt? yields (Shapiro and Montgomery
1993)

ol (4.25)

A local Rossby number squared defined as the square of the ratio of the orbital acceleration

to the inertial frequency is given by

R’ = @ (4.26)

IS

For local Rossby number squared much less than unity the first term in Eqgs. (4.23) and
(4.24) can be neglected compared to the second term. Shapiro and Montgomery (1993)
verified this approximation using observations from Hurricane Gloria (1985). They ob-
served R? less than unity everywhere within the storm except just outside the RMW
and within an isolated region at three times the RMW in the upper troposphere. Moller
and Montgomery (1999) showed that the actual value of D2?u//Dt? can be much smaller
than the naive estimate n2(72/r?)u’ for hurricane-like vortices. Therefore, the actual local
Rossby numbers within Gloria’s core are likely much less than unity. For the weak vortices
considered in this dissertation, the AB predictions will be accurate.

Solving for «/, v', and w’, and then substituting into the continuity equation results

in a predictive equation for the geopotential perturbation:

7 O\

13{ r D, <8_¢’> 18¢’]+13[ T;EID);<8_¢I>+18_¢I]+<WM->2M_

LA B - - mr —0
ror | 7& Dt \ or r O\ o\ € or NH Dt ’
(4.27)
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where we have used the fact that 9%¢'/92% = —m?272¢'/H? for the equivalent barotropic

system. Rearranging (4.27) yields

Dy |7 0 (L%') 19" oyl _€dq10¢
Dt l r or \gé or r2 ON? (1) gdrr ON 0, (4.28)

where § = N27 and ~2,(r) = (mn/NH)?(7¢). Note that this predictive equation is
virtually identical to (4.13) for the linear QG system, but with additional geometric factors
in front of the radial derivatives and non-constant =,,. Thus, the linear semi-spectral
model used to time-integrate the QG EQB system is also used here with the appropriate
modifications (i.e., redefine § and ,,, and add the geometric factors).

The quantity in brackets in Eq. (4.28) is not the perturbation PV. The perturbation
pseudo-PV is given by

NZy2
¢ =N’k-V x u; — 7 #, (4.29)

where ufé is the generalization of the geostrophic wind and is written

w=|-—=—--,= (4.30)

,_< 1 8¢/ 1a_¢'>'

The perturbation pseudo-PV evolution equation can be obtained through a re-casting of
(4.28) and is given by
DU ! / da
— — =0. 4.31
Dt Qe T v dr ( )
This equivalent barotropic AB system is used in Chapter 6 as a first step in the

generalization of the QG vortex alignment findings presented in Chapter 5.



Chapter 5

QG VORTEX ALIGNMENT

A vertically-tilted vortex in the atmosphere either resists external forcings to align or
succumbs to such influences by irreversibly shearing apart. The question of how and under
what circumstances vertical alignment occurs has been addressed in previous studies with
the large-scale atmospheric and oceanic circulations in mind (McWilliams 1989; Polvani
1991; Viera 1995; Dritschel and Juarez 1996; Sutyrin et al. 1998). The conceptual picture
put forth for the evolution of an unforced tilted vortex is that PV at upper levels is
advected by the vertically-penetrating flow associated with the PV at lower levels, and
vice versa. Described in this way, the mutual advection is assumed to be a nonlinear
process. Accordingly, the initial vertical tilt is a crucial parameter in determining the
subsequent vortex evolution. Polvani (1991) showed that the evolution of a tilted vortex
patch in a two-layer QG model can be predicted on the basis of its nearness to a geometric
configuration known as a stable V-state in which the PV rotates without deformation of
shape at a constant rate. Alignment tends to occur when the vortex is initially far from
a V-state. The vortex in this case approaches a circular barotropic configuration through
filamentation and axisymmetrization (e.g., Melander et al. 1987).

Here a new and complimentary approach to understanding the vertical alignment
process for continuously-distributed vortices is developed utilizing the fact that for over-
lapping upper- and lower-level PV centers, the vortex is meaningfully decomposed into
an azimuthal mean and departure therefrom (i.e., a wave, mean-flow partitioning). We
explicitly simulate the linear interaction of perturbation and mean flow as well as the fully
nonlinear vortex evolution to elucidate the alignment dynamics. Vortex Rossby waves

are shown to play a key role in the vertical alignment process, just as they do in the



69

two-dimensional and quasi two-dimensional vortex axisymmetrization process described
by MK and later confirmed by ME98, Moller and Montgomery (1999, 2000) and Enagonio
and Montgomery (2000). A simple conceptual picture of vortex alignment emerges for
small vertical tilts based solely on linear dynamics. Of course linear dynamics can only
be expected to capture alignment for a certain range of vortex tilts, but it will be shown
that this range can be surprisingly large. A physical explanation is provided for why lin-
ear thinking can be applied to vortices exhibiting large initial tilts in certain parameter
regimes.

Recent dynamical studies of TCs have emphasized how such vortices resist the effects
of vertical shear and other external strains during all lifecycle stages (Jones 1995; Smith
et al. 2000). Jones (1995) considered the evolution of a hurricane-like vortex embedded
in vertically-sheared flow. Her physical interpretation of the evolution from aligned to
tilted vortex largely follows that of Polvani (1991) and other similar studies. Smith et al.
(2000) reduced the TC vortex alignment problem in vertical shear to a two-layer nonlinear
analogue model, solvable analytically. As an extension of Polvani (1991), they presented
a portrait of upper- and lower-level vortex trajectories as a function of shear magnitude,
vortex strength, and coupling between layers. The qualitative results of the model were
verified using a two-layer QG model, but it should be noted that their analogue model
becomes singular as the initial upper- and lower-level PV separation goes to zero. Our
work compliments these studies by taking a step back and exploring the unforced problem
for small to moderate initial tilts. According to our interpretation of the unforced vortex
dynamics, the addition of vertical shear simply makes the problem a forced linear one as
long as departures from vertical alignment are not too great. The extension of the present
work to the forced problem is addressed in Chapter 6.

An axisymmetric view of TC genesis has been offered by Bister and Emanuel (1997)
based on observations of TC Guillermo (1991) and supporting axisymmetric numerical
simulations. A re-analysis of the Guillermo Doppler wind data by Bracken (1999), however,
suggests a more prominent role played by asymmetries during the initial stages of genesis.

ME98 presented an asymmetric model for genesis in which a pre-existing vortex (e.g.,
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a mid-level mesoscale convective vortex (MCV) or closed circulation associated with an
easterly wave) aligns with nearby convectively-generated positive PV at low levels.

An immediate application of the present work is towards further understanding the
dynamics of the asymmetric TC genesis mechanism of ME98. This chapter is therefore
organized as follows: The evolution of an initially-tilted vortex is examined in Section 5.1.
In Section 5.2 we apply the linear alignment ideas to the problem of three-dimensional
merger of an isolated anomaly with a pre-existing vortex. The simulations in the latter
section are presented in the context of TC dynamics. During the initial stages of TC
genesis convectively-generated positive PV at low levels moves into the core region of
the pre-existing vortex. If the convection is initially close to the vortex core (i.e., within
the RMW), the linear merger ideas will accurately describe this process. As the vortex
becomes more vertically coherent, the tilted vortex ideas of Section 5.1 then become

relevant.

5.1 Vortex alignment starting from a tilted vortex: Causes and conditions

5.1.1 Initial Conditions

In the experiments presented here the azimuthal-mean vortex will be assumed

barotropic. The initial symmetric PV takes the form

A1) = Tpawe 7, (5.1)

where G,,,,, 1S the maximum mean PV and o is the inverse decay length of the PV profile.
The mean vortex for §,,,, = 9.0 x107° s~ and ¢! = 167 km, used by ME9S, is depicted
in Fig. 5.1. The maximum wind speed is 5 ms~! and the RMW is 200 km. As demonstrated
in Section 5.1.4, the fundamental findings of this work are independent of the precise form
of the monotonic profile of PV. We will therefore present most of our findings with this
basic state vortex.

The initial PV asymmetry has the vertical structure of the first internal baroclinic

mode (m = 1), unless otherwise stated, and is consistent with the assumption of isothermal
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Figure 5.1: The azimuthal-mean vortex (solid) used in all simulations unless stated other-
wise in the text. The vortices depicted by the dashed curves are described in Section 5.1.4.
The (a) tangential wind is in units of ms~! and the (b) PV is in units of 1075 s~ 1. The
(¢) Rossby number is defined as Q/f, where Q is the azimuthal-mean angular velocity.
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vertical boundary conditions discussed in Chapter 4. For simplicity, the mean vortex is

perturbed with a single azimuthal Fourier mode:
{(r Nz t) = Re {qln(q«, 1) cos (%Z)em)‘} , (5.2)

where Re denotes the real part of the bracketed quantity. In the general case n can be
any azimuthal wavenumber. Isolated anomalies composed of a superposition of azimuthal
wavenumbers are considered in Section 5.2 in our investigation of the merger and alignment
of convectively-generated PV within a pre-existing vortex. The horizontal structure of the
PV perturbation is that of the azimuthal wavenumber one pseudo-mode (Michalke and
Timme 1967; Weber and Smith 1993; Smith and Montgomery 1995; MK). The pseudo-

mode in two-dimensional flows represents a vortex displacement and has the radial PV

structure:
in(r) = a5 (53
T) = N— .
q11 a
where & is a constant conversion factor. We define & = aq,.,/(dq/dr)max, where

(dq/dr)max is the maximum mean PV gradient and « is a non-dimensional amplitude
factor.

For a given mean vortex with horizontal scale L (roughly the RMW) and vertical
scale H the only two adjustable parameters are a and <. For n = 1, variation of «
changes the angle of inclination of the PV column from the vertical. Equations (5.1)—(5.3)
best represent a tilted vortex for values of @ much less than unity. As « approaches unity,
regions of negative PV arise and this initial condition is no longer suitable for studying
the evolution of a tilted vortex. To better simulate large tilt in the EQB model higher
azimuthal harmonics are included in expression (5.2) and a more accurate form for ¢q is
used.

Before investigating the full « and 1 parameter space, we begin by defining a bench-
mark case and comparing the vortex evolution simulated by the QG3D and EQB models.
The benchmark simulation using o = 0.3 and v; = 3.14 x 107% m~! is shown in Fig.
5.2 in terms of PV. Mid-latitude values of f = 107* s7!, H = 10 km, and N = 102

s~ are used to define ;. To verify that (5.1)-(5.3) is a valid approximation to a tilted
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vortex, the QG3D model is initialized with a linearly-tilted PV column having an angle
of inclination from the vertical nearly identical to that of the EQB benchmark vortex.
The vortex evolution simulated with the QG3D model (Fig. 5.2a) is replicated well by the
nonlinear, truncated EQB model (Fig. 5.2b). The vortex wobbles about the stationary
mid-level centroid with no obvious sign of alignment over the 47, period (where 7, denotes
a circulation period, which is approximately 2.9 days for this vortex). As evident from
comparison of the two simulations, the interaction between vertical modes is not crucial
to understanding the vortex evolution for the small tilts considered here. Therefore in our
exploration of the alignment mechanism, the EQB model will be primarily used. All of
the principle results to be shown, however, are still verified with the QG3D model.

The dependence of the alignment process on « is considered below. The initial hori-
zontal distance between upper- and lower-level PV centroids (d;) defined by

o I- [, xqdA ? [ yqdA 2—I 2
d,_2[<m> +<W>J : (5.4)

(where the integral over the domain area A can be evaluated at either the upper or lower
level due to the mirror symmetry of the simulations about the middle level), and the tilt
angle (0) defined by

tan® = d;/H (5.5)

are listed in Table 5.1 for each of the simulations. The mid-latitude value of v = 3.14 %
1075 m~! is used in all simulations, except in Section 5.1.3 where the y-dependence of

vortex alignment is explored.
5.1.2 Linear Vortex-Rossby Wave Dynamics

A useful diagnostic in the study of vortex merger and vortex axisymmetrization on a
vortex with monotonically-decreasing basic state vorticity is the vortex beta Rossby num-
ber, Rg (Moller and Montgomery 2000; Enagonio and Montgomery 2000). Mathematically
it is defined as the ratio of the nonlinear terms in the PV equation to the effective “beta”
term involving the mean PV gradient of the basic state vortex. Whereas the vortex itself

is the perturbation in the problem of vortex motion on a S-plane (McWilliams and Flierl
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Figure 5.2: Evolution of vortex PV (from left to right) at t = 0, 1.57¢, 2.57, and 47, for
the benchmark run with @ = 0.3 and ~; = 3.14 x 107% m~'. Only the inner 300 km x
300 km is shown to emphasize the vortex tilt. The vertical depth is 10 km. Results from
(a) the QG3D model with PV isosurface 8.0 x 107> s~! and (b) the nonlinear EQB model
with PV isosurface 8.5 x 107> s~! are shown. The different initial conditions are described
in the text. Contour interval is 2.0 x 107> s™!.
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Figure 5.3: see Fig. 5.2.
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M o 0 d; Rs
(x1076 m~1) (degrees) (km)

3.14 0.1 78 41 0.08
3.14 0.3 86 110 0.25
3.14 0.5 88 200 0.50
20.0 0.3 86 110 0.08

Table 5.1: Parameters used in the control simulations. For the benchmark basic state
vortex the two parameters which define each simulation are the inverse internal Rossby
deformation radius (1) and tilt amplitude («). Useful parameters derived from these two
are the initial vortex angle of inclination from the vertical (#), upper- and lower-level PV
intercentroid separation distance (d;), and vortex beta Rossby number (Rg). The latter
is defined in Section 5.1.2.

1979; Montgomery et al. 1999), here the perturbation is the departure from vertical align-
ment. In studies of vortex motion the beta Rossby number is large compared to unity.
The tilted vortices considered here are characterized by beta Rossby numbers less than
unity. In the non-divergent limit the vortex beta Rossby number scales as

VI

~— 5.6
s (5.6)

Rg

where V' is the perturbation velocity amplitude, L' the perturbation horizontal scale,
and d{/dr the radial vorticity gradient of the basic state vortex. It provides a measure
of how important nonlinear advection is compared to the vortex Rossby wave restoring
mechanism. For R much less than unity perturbations on an everywhere monotonic
mean vortex are expected to disperse as vortex Rossby waves. The wave-mean ideas of
MK usefully and accurately characterize the dynamics in this parameter regime.

In previous work vortex alignment has been described in much the same way as vortex
merger in two dimensions: The flow induced by the upper-level PV anomaly advects the
lower-level anomaly, and vice versa. Implied in this conceptual picture is that the dynamics
is fundamentally nonlinear, and therefore strongly dependent upon the initial horizontal
separation of the PV anomalies (i.e., magnitude of the vertical tilt). We agree that this
view is the correct one for upper- and lower-level anomalies initially separated by large
distances, as one might observe in geostrophic turbulence simulations (McWilliams 1989;

McWilliams et al. 1999; Dritschel et al. 1999). But is it true for upper and lower-level
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anomalies separated by small distances, as one might observe in the case of an initially
upright TC tilted by vertical shear? We propose that the asymptotic dynamics (i.e.,
when the vortices are close enough together) of vortex merger and alignment in three
dimensions is more accurately viewed as linear. This is not to say that nonlinear advection
is identically zero, but rather that its role in the evolution of vortices with small initial
tilts is secondary to linear advection. The approach taken here is to begin with an aligned
vortex and systematically increase the vertical tilt. With each progressive increase in the
separation between upper- and lower-level anomalies we ask the question: To what extent
is the subsequent vortex evolution described by linear dynamics?

A schematic illustration of what is meant by linear dynamics is shown in Fig. 5.4.
The tilted PV column is decomposed into an azimuthal mean, g, which for simplicity is
assumed barotropic, and a departure from that mean, ¢’. In the linear approximation, g
at upper(lower) levels is radially advected by the perturbation wind field associated with
the upper(lower)-level PV anomaly and, depending upon the magnitude of the vertical
penetration depth of the vortex flow, fL/N, the lower(upper)-level PV anomaly. It is this
radial advection in conjunction with the azimuthal advection of ¢’ by the mean tangential
wind, 7, that governs the evolution of the tilted vortex in the linear approximation. Of
course in the limit of large vertical tilt (and presumably large Rg), ¢’ approaches the
magnitude of g, and linear theory will no longer be valid. Our intent is to provide physical
insight into the vortex alignment process at small vertical tilts and to then illustrate the
range of applicability of the linear ideas.

For the benchmark run with a = 0.3, R, computed using the strict mathematical
definition stated above, is found to be approximately 0.25 in the vicinity of the PV per-
turbation maximum. Figure 5.5 shows the total and wavenumber one PV at the surface
(z = 0) from the linear and nonlinear EQB models. Although Rg is not infinitesimally
small in this case, good agreement between the linear and nonlinear simulations is nev-
ertheless observed. Both vortex simulations show radially-propagating, sheared vortex
Rossby waves superposed on a quasi-discrete PV feature. The radial vortex Rossby wave

propagation is illustrated in Fig. 5.6 for the linear simulation. Consistent with MK, the
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Figure 5.4: Schematic illustration of the linear vortex alignment mechanism. A PV column
bound by rigid lids at z = 0 and H is tilted from west to east with height. For small tilts this
configuration is decomposed into an azimuthal-mean barotropic vortex (with tangential
wind and PV, 7 and @, respectively) and an azimuthal wavenumber one asymmetry with
vertical structure of the first internal baroclinic mode. The tendency in perturbation PV
at upper(lower) levels is attributed to azimuthal advection of the perturbation PV by ©
and radial advection of 7 by the perturbation wind associated with the upper(lower)-level
PV anomaly and, through vertical penetration (denoted by the coupling coefficient k), the
lower(upper)-level PV anomaly.
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radial propagation speed of the wave packets decreases in time as the waves are sheared to
finer and finer radial scales. The quasi-discrete wavenumber one PV asymmetry persists
over the 57, period with only a 10-20% decrease in amplitude. Consistent with a quasi-
discrete vortex Rossby wave it propagates cyclonically around the vortex at a speed less
than the local mean tangential wind. Figure 5.5 also shows the PV evolution for the same
initial vortex using the QG3D model. The azimuthal propagation and structure of the
wavenumber one PV asymmetry are virtually identical in the two nonlinear simulations.
Both nonlinear simulations also show less sheared vortex Rossby wave propagation than
the linear simulation.

Figure 5.7 shows the domain-integrated perturbation energy (kinetic and available
potential) contained in wavenumber one. The linear solution indicates only a 30% decrease
in energy over the 57, period. Most of the initial asymmetry energy is trapped in the quasi-
discrete vortex Rossby wave which slowly loses its energy through the outward propagating
sheared vortex Rossby waves. Due to wave-wave interactions the nonlinear solution shows
a more modest decrease in wavenumber one energy of 5-10%. The use of the pseudo-mode
to represent the initial horizontal structure of wavenumber one PV is fortuitous since it
projects strongly onto the quasi-discrete vortex Rossby wave. A general initial condition
will tend to project more onto the sheared vortex Rossby waves, obscuring the quasi-
discrete structure at early times. As demonstrated by Smith and Montgomery (1995, and
references therein) and later extended by MK to account for the Rossby wave effects, the
energy contained in the sheared Rossby waves will ultimately diminish with time. Thus,
the quasi-discrete wave structure will eventually emerge. It is interesting to note that
higher wavenumbers show a markedly different behavior than wavenumber one with the
energy falling to near zero after only a 1-27, period. We conclude that wavenumber one is
unique within the parameter regime under consideration. The co-rotation resulting from
the long-lived propagation of the wavenumber one asymmetry observed in the nonlinear
simulations is reproducible using linear dynamics alone, validating the conceptual model
illustrated in Fig. 5.4.

To determine the range of o for which linear vortex Rossby wave theory captures the

essence of the alignment process we compare the intercentroid distance, d;, between upper-
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Figure 5.5: Evolution of total vortex PV (shaded) and wavenumber one component of PV
(contour interval 0.5 x 107> s~! with negative values dashed) at z = 0 over a 57, period for
the benchmark run (see Fig. 5.2). From left to right are shown the results from the linear
EQB, non-linear EQB, and QG3D models, respectively. Aside from the PV correction in
the QG3D model, the initial conditions are identical.
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Figure 5.6: Radius-time plot of the wavenumber one PV amplitude at z = 0 over a 57,
period for the benchmark run. The dashed lines denote the crest of the wave packets as

they propagate radially outward in time. The quasi-discrete vortex Rossby wave persists
-1

near 130 km radius. Contour interval is 1.0 x 1076 s
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Figure 5.7: QG equivalent barotropic volume-integrated energy contained in wavenumber
one from the nonlinear (dashed) and linear (solid) EQB benchmark runs as a function of
time. Also shown is the linear energy evolution for initial conditions with the pseudo-mode
radial structure, but azimuthal structure of wavenumbers two and three. The energy is
normalized by its initial value in all cases.
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and lower-level PV centroids predicted by the linear and nonlinear EQB models. Figure
5.8a shows the trajectories of the upper- and lower-level centroids for the benchmark
case. In both simulations the centroid makes slightly more than one orbit at a radius
of approximately 60 km during the 57, period. The discrepancy between the linear and
nonlinear predictions of d; increases to about 5 km during the period, as shown in Fig.
5.8b. The nonlinear prediction shows a reduced rate of alignment, although we would
argue that the linear dynamics is still capturing the essence of the co-rotation and slow
alignment of upper- and lower-level PV anomalies.

For an even smaller tilt amplitude of a = 0.1, little discrepancy between linear and
nonlinear simulations is found. In this case Rz ~ 0.08 which confirms the negligible role
played by nonlinear advection. The quasi-discrete vortex Rossby wave has essentially the
same structure and propagation speed in both simulations (see Fig. 5.9).

To simulate a vortex with more exaggerated tilt the EQB model is initialized with
the mean vortex given by (5.1), but displaced 100 km to the east of the polar coordinate
system origin at z = 0, and tilted linearly with height to the west. An azimuthal and
vertical wavenumber decomposition of this initial condition shows that only four modes
need be included in the EQB initialization: (m,n) = (0,0), (1,1), (2,0), and (0,2). In
keeping with the assumption of a barotropic mean vortex, the n = 0 component of the
vortex at z = 0 is used at all levels. For simplicity, the n = 1 and n = 2 components of
the vortex at z = 0 are used to construct (1,1) and (0,2), respectively. For initial upper-
and lower-level PV centers separated by 200 km, a =~ 0.5 and Rg ~ 0.5.

Figure 5.10 shows the evolution of total and wavenumber one PV from the linear and
nonlinear EQB models. Also shown is the PV at the lowest level of the QG3D model
for a vortex tilted linearly with height (without the above approximations). The two
nonlinear simulations basically agree, confirming the utility of the truncated equivalent
barotropic approach even for relatively large vortex tilts. Even more remarkable is the
similarity between linear and nonlinear simulations. Although there is considerably more
radial vortex Rossby wave dispersion in the linear simulation (see Fig. 5.11), the rotation

frequencies of the low-level vortex about the mid-level centroid are virtually the same (see
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Figure 5.8: Evolution of the EQB PV intercentroid separation between z = 0 and H over
57 for the benchmark run. (a) Trajectory of the PV centroid at upper (solid) and lower
(dashed) levels. The heavy lines show the nonlinear evolution, while the fine lines show
the linear evolution. (b) Timeseries of intercentroid separation distance from the linear
(solid) and nonlinear (dashed) models.
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also Fig. 5.12). The details of the d; evolution over 57, and departure from that shown in
Figs. 5.8 and 5.9 can be attributed to the greater projection of the initial PV asymmetry
onto sheared vortex Rossby waves. But overall the linear dynamics still captures the
essence of the tilted vortex evolution. Thus, while nonlinear effects increase in importance
with increasing Rz and modify the vortex structure (i.e., counteract the sheared vortex
Rossby wave dispersion), the underlying quasi-discrete vortex Rossby wave persists in
dominating the solution.

These results suggest a new interpretation for the co-rotation of vertically-separated,
overlapping vortices for internal Rossby deformation radii greater than the horizontal scale
of the vortex. Polvani (1991) explained the presence of co-rotation geometrically as a con-
sequence of the initial vortex configuration being near a geostrophic PV equilibrium (i.e.,
a stable V-state). Here the co-rotation of continuously-distributed vortices is attributed to
the cyclonic propagation of a quasi-discrete wavenumber one vortex Rossby wave. Analyt-
ical solutions to the linear QG equivalent barotropic problem are currently unavailable for
continuous PV distributions, but may present themselves for carefully constructed initial
conditions. Such a solution would allow one, for example, to predict the linear co-rotation
frequency. For now we will continue to explore this linear interpretation of the alignment

process, considering the effect of varying ~;.
5.1.3 Dependence on Internal Deformation Radius

Varying 1 can be viewed in terms of changing the depth of the vortex, the static
stability, or the planetary vorticity. The dependence of vortex alignment on vortex depth
has been explored in recent studies motivated by observations from QG turbulence sim-
ulations (McWilliams 1989; Viera 1994; Dritschel and Juarez 1996). The tilted vorticity
configurations in these studies attain equilibrium at certain vertical scales. Moist convec-
tion will increase v; by reducing the static stability (Emanuel et al. 1987; Montgomery
and Farrell 1992). As further discussed in Section 5.2, for more rapidly swirling flows,
f in the expression for ~; is replaced by the geometrical mean of the modified Coriolis

parameter and absolute vorticity associated with the basic state circular vortex (Shapiro
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and Montgomery 1993). We may anticipate the vortex evolution for more rapidly swirling
flows by increasing f in the QG formulation.

The dependence of vertical alignment on internal deformation radius and horizon-
tal vortex scale is known from QG contour dynamics (CD) model simulations (Polvani
1991; Dritschel and Juarez 1996). For horizontal vortex scales greater than the internal
deformation radius the vertically-tilted vortex tends towards alignment, while for smaller
vortex scales alignment is inhibited and co-rotation is observed. The linear interpretation
of the alignment mechanism can help explain why this is so.

In the benchmark simulation (see Fig. 5.2) we found that alignment was inhibited and
the vortex precessed about its mid-level centroid with a small increase in the discrepancy
between linear and nonlinear simulations with time out to several .. Figure 5.13 shows the
evolution of the same initial vortex, but for larger v; = 20.0 x 107 m~!. The QG3D (not
shown) and nonlinear EQB models show nearly identical results, so we will focus on the
vortex evolutions simulated by the EQB linear and nonlinear models. In both simulations
alignment of the initial vortex and attendant filamentation of PV are observed, as found in
previous studies (Polvani 1991; Viera 1995; Dritschel and Juarez 1996). The linear results
confirm that the filamentation observed in the nonlinear simulation near the core of the
stable vortex monopole is primarily a consequence of linear vortex Rossby wave dynamics
and not ‘wave breaking’. In both simulations the vortex undergoes a complete alignment
within 57, at virtually identical rates (see Fig. 5.15).

The increased agreement between linear and nonlinear simulations for this larger value
of 71 is understood by examining the y-dependence of Rj. Figure 5.16 shows the initial
Rg in the vicinity of the maximum perturbation PV for various « as a function of ;. In
Section 5.1.2 it was shown that for a given value of the internal deformation radius, Rg
decreases with decreased perturbation amplitude (recall Rg ~ V') leading to increased
agreement between linear and nonlinear simulations. The naive scaling (5.6) would not
predict a dependence on 7, contrary to Fig. 5.16 which clearly shows Rg decreasing
with increasing values. Farge and Sadourny (1989) explained the dependence of their QG

shallow water turbulence simulations on deformation radius from the perspective of energy
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Figure 5.13: Evolution of vortex PV (from left to right) at t = 0, 1.57, 2.57, and 47,
for = 0.3 and ; = 20.0 x 107% m~!. Only the inner 600 km x 600 km is shown to
emphasize the vortex tilt. Results from (a) the nonlinear EQB model with PV isosurface
5.0x107° s~ and (b) the linear EQB model with PV isosurface 5.0 x 107> s~ ! are shown.
The contours shown are (0.1,1,3,5) x 107> s~!.
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Figure 5.14: see Fig. 5.13.
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and enstrophy spectra. For large rotation rates (i.e., large ) they demonstrated that the
cascade of potential enstrophy to smaller scales is inhibited. This behavior can also be
explained geometrically by examining the dependence of the QG (baroclinic) perturbation
PV inversion on 7. For small v, the Green’s function decays slowly with radius and PV
over a broad area is incorporated into the inversion for streamfunction at a point. In this
case the streamfunction field is unable to replicate strong curvature of the PV field. For
much larger 7, the Green’s function decays rapidly with radius and the streamfunction
field is better able to reproduce the curvature of the PV field over the entire domain,

leading to near-parallel PV and streamline contours (see Fig. 5.17), i.e.,
J(W' q') — 0 as v — oo. (5.7)

Thus for 44 — 00, R tends to zero and the linear and nonlinear simulations converge. An
additional consequence of this dependence of Rg on <1 is that linear vortex Rossby wave
dynamics will accurately capture the alignment process for a wider range of amplitudes
the larger v1 is. Although our focus here is on small to moderate tilts from the vertical,
even vortices for which d;/L ~ 2 (i.e., the RMW’s of the upper and lower vortices just
overlap) the alignment process should still fall within the linear regime as long as ~; is
large enough.

The complete picture of the dependence of vortex alignment on y; for small initial tilts
(o = 0.1) is shown in Fig. 5.18. The intercentroid distance after 57, for both linear and
nonlinear simulations is plotted as a function of 71. As expected, no discernible difference
between the simulations is observed. After 107, the curve is essentially the same, except
the transition region between small and large ~; is steeper (not shown). Three regions are
clearly identifiable in the ~; phase space.

For v; > 10.0x 10~% m~! complete vertical alignment takes place. The corresponding
threshold internal deformation radius is 100 km which is smaller than the scale of the
current, vortex. The presence of vertical alignment at small « (or equivalently small initial
d;) should be contrasted with the two-layer CD results of Polvani (1991). There, co-

rotation was observed for all 4; in this range. As discussed in Appendix B, this is a
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for the benchmark run. Negative values are dashed. (a) y; = 2.5 x 107¢% m~! (b)
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parallel with increasing v;. Note also that the perturbation streamfunction amplitude de-
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consequence of using a single PV interface in the CD model. Utilizing the fact that the
dynamics is fundamentally linear in this regime we can demonstrate why continuously-
distributed vortex alignment must occur for all small initial d;. The argument is essentially
that when 4y is large, the effective “beta” term in the linearized PV equation can be
neglected. The perturbation PV is then materially conserved following the local mean
tangential winds, leading to simple spirals around the vortex and algebraic decay of the
perturbation streamfunction in the limit of long times (see Appendix B for details). It
is the sheared vortex Rossby waves which provide the irreversible deformation of the PV
field needed for alignment.

The small-amplitude version of the benchmark run (y; = 3.14x 10~ m 1) falls within
the transition zone in what we call the slowly aligning regime. The horizontal vortex scale
lies close to the midpoint of this regime. It should be noted that the vortex does not
actually align here according to our definition which requires d; = 0. At longer times this
transition region becomes narrower. Vortices at the large vy end of the transition region
enter into the alignment regime after a sufficiently long period of time, while little change
in the structure of the curve at small ¥4 is ever observed during long-time integrations of
the model.

The behavior of a tilted vortex for which v < 2.5 x 1076 m™! is unlike that found
in the rest of the y; phase space. Recall that the initial value of d; is approximately 41
km. Thus, there is virtually no tendency for alignment (even after 107.) in this regime.
The vortex co-rotation is accounted for by the azimuthal propagation of the quasi-discrete
vortex Rossby wave first noted in the benchmark simulation. In the limit of vanishing v;
the stationary pseudo-mode discussed by MK is recovered. As 7; is increased from the
nondivergent limit, the long-time radial structure of azimuthal wavenumber one PV still
closely resembles the pseudo-mode, but rotates at a non-zero frequency. If ; becomes
too large, the quasi-discrete feature ceases to exist, as discussed above. The origin and
complete characteristics of this quasi-discrete vortex Rossby wave are discussed below.

Figure 5.19 shows a plot of the dependence of d; on 7 as in Fig. 14, but for o = 0.3.

There is a more noticeable discrepancy between linear and nonlinear simulations for this
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larger value of tilt, although the difference is small. The tilted vortex evolution is still
captured by linear dynamics for all values of 7. While a decrease in discrepancy with
increasing 7, in the alignment regime is expected based on vanishing Rj, the decrease
in discrepancy with decreasing 7; in the strict non-alignment regime was not entirely
anticipated. We believe that the continued good agreement between linear and nonlinear
simulations in the latter regime is a consequence of the robustness of the quasi-discrete

vortex Rossby wave.
5.1.4 Quasi-mode interpretation of three-dimensional vortex co-rotation

For an initially-tilted vortex satisfying Rs < 1 and small v, the long-time inviscid
solution is an azimuthal wavenumber one asymmetry with vertical structure of the first
internal baroclinic mode propagating on the mean vortex. Although the rotation rate of
the asymmetry is approximately constant (see Fig. 5.20) and the radial structure appears
largely unaffected by differential rotation, the slow, almost imperceptible decay of the
asymmetry for 43 < 2.5 x 1075 m™! suggests that it is not a neutral mode. In the
nondivergent limit (y = 0) wavenumber one does in fact become a smooth stationary
mode, but it loses this modal characteristic once the Rossby deformation radius becomes
finite. To understand this behavior of wavenumber one, consider stable solutions to Eq.

(4.13) of the form

&mn(rvt) = ngn(r)e_iwmntv (5.8)

where wy,,, is a constant rotation frequency. Substitution into Eq. (4.13) yields

27 7 2 =
T (G i i = G0
This is an eigenvalue problem with eigenvectors, qgmn, and corresponding eigenfrequencies,
Wmn- In the nondivergent case an exact solution to (5.9) for n = 1 is ¢ = ¢v with
w = 0, where ¢ is a constant (Michalke and Timme 1967). This is the aforementioned
stationary pseudo-mode solution. For higher azimuthal wavenumber perturbations to a
two-dimensional vortex with monotonically decreasing mean vorticity, there are no smooth

modal solutions. Only singular continuous spectrum solutions exist, which decay to zero
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algebraically in the limit of long times (Sutyrin 1989; Carr and Williams 1989; Smith and
Montgomery 1995; MK).

According to the QG numerical simulations at small ¢, the rotation frequency of
wavenumber one is small, but non-zero. The Doppler-shifted frequency, Q — w, will there-
fore pass through zero at some large, but finite value of r. Since the simulated wavenumber
one streamfunction is not observed to pass through zero and d(/dr is non-zero for all r
away from the origin and r = oo, solutions must reside in the continuous spectrum of
discrete singular modes. Why, then, do we observe a smooth, long-lasting wavenumber
one asymmetry in the numerical simulations?

An answer is found through close examination of the (m,n) = (1,1) eigenmodes of
(5.9) for the benchmark mean vortex (5.1) and 7; = 1.25 x 1075 m~!. The eigensolver
following Gent and McWilliams (1986) and discussed in Appendix C is used, modified so
as to permit finite deformation radius. Figure 5.21 shows the PV eigenvectors surrounding
the eigenmode whose eigenfrequency is closest to the numerically-simulated wavenumber
one rotation frequency. A grouping of eigenmodes with slightly different eigenfrequencies
is found centered on the numerically observed rotation frequency with both a smooth
structure and small-amplitude singular spike. The smooth structure is identical to that
found in the numerical simulation at long times. The spikes occur at the radii where the
Doppler-shifted frequency associated with each eigenmode equals zero and (5.9) becomes
singular. There is in fact a continuum of these singular modes for frequencies between
Qin and Q40 (Case 1960).

If dC/dr is zero outside some radius, 7,, there is a possibility of the vortex supporting
a smooth, discrete mode since (5.9) is non-singular for » > r,. Schecter et al. (1999)
demonstrated this in the nondivergent context for two-dimensional vortex monopoles and
n = 2 by taking a profile with d(/dr everywhere nonzero and setting the gradient to
zero outside some radius. A discrete mode was found in this case. Upon replacing the
zero vorticity gradient region with a profile having small, but nonzero gradient, an eigen-
analysis showed eigenstructures similar to the discrete mode for eigenfrequencies near the

discrete mode value, but with small singular spikes, as in Fig. 5.21. The superposition
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of these weakly singular continuum modes with nearly identical phase speeds is referred
to as a quasi-mode because of the tendency for the singular modes to interact (linearly)
and maintain a near-discrete structure in the presence of shear. Previous studies have
investigated quasi-modes in the upper-tropospheric flow (Rivest and Farrell 1992) and in
two-dimensional nondivergent vortex flows (Schecter et al. 1999). The singular modes
that comprise the quasi-mode move with slightly different phase speeds, so the quasi-
mode will slowly decay in time. Co-rotation of a geostrophic vortex with small initial tilt
is therefore more accurately explained as the azimuthal propagation of a three-dimensional
quasi-mode.

The longevity of the quasi-mode can be assessed by considering its spectral distribu-
tion. To illustrate this, an arbitrary linear PV perturbation is expanded in a weighted

sum of the PV eigenmodes,
Grt) = Ape’ & (r), (5.10)
k

where Ay, is the expansion coefficient for the kth eigenmode, ék, and wy, is the corresponding
eigenfrequency. The right-hand side of Eq. (5.10) is the discrete equivalent of a Fourier
transform from the frequency domain to the time domain. For the PV perturbation given
by Eq. (5.3), inversion of (5.10) at t = 0 yields the A;. The expansion coefficients are
plotted as a function of eigenfrequency in Fig. 5.22 for various values of 4. A discrete
mode would be represented here as a d-function in eigenfrequency space. The quasi-mode
is clearly identified at small «; as the narrow spike in the expansion coefficient spectrum.
As vy increases, the quasi-mode spectral peak broadens and takes on a more dipolar
structure. The broader the peak, and therefore the broader the distribution of phase
speeds of the individual modes that make up the quasi-mode, the faster a given initial
wavenumber one asymmetry will find itself in the continuous spectrum of sheared vortex
Rossby waves. In nondivergent analyses of two-dimensional vortex monopoles, Schecter
et al. (1999) were able to relate the decay rate of the quasi-mode to the half-width of the
spectral peak in the special case where only a single narrow peak exists. Since the quasi-

mode closely approximates a discrete mode in this case, one can bring the eigenvector
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Figure 5.21: PV eigenvector solutions to Eq. 5.9 for the benchmark mean vortex and
(m,n) = (1,1). Eigenfrequencies centered on the numerically-simulated rotation frequency
are shown as well as Q — w for the central frequency. The units of w are 1076 s~ 1.
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outside the summation over frequency in Eq. (5.10). The time dependence of §(r,t) is
then obtained by computing the Fourier transform of A(w). This was done by Schecter et
al. (1999) assuming a Lorentzian form for A(w) in the vicinity of the spectral speak. The
presence of a dipole structure in the expansion coefficient spectrum found here prohibits
an identification with a single decay rate.

Changing the width of the horizontal PV profile does not alter the basic results
presented here. Figure 5.23 shows the PV intercentroid separation distance after 57, as
a function of v; for mean vortices smaller and larger than that used in our benchmark
simulation (see Fig. 5.1). Recall that the vortex Burger number, (Lr/L)?, is the parameter
which appears in nondimensionalized invertibility relation and determines the partitioning
between absolute and thermal PV. We observed in Section 5.1.3 that as the Burger number
decreases from the nondivergent limit (i.e., 71 increases from zero) the vortex moves from
the quasi-mode to alignment regime. For a value of 4 within the transition regime an
increase(decrease) in L will decrease(increase) the vortex Burger number, bringing the
vortex closer to(further from) the alignment regime. As Fig. 5.23 shows, the result is that
the quasi-mode regime contracts with increasing vortex scale.

According to the arguments presented above, the existence and longevity of the quasi-
mode depends on there being a region of near-zero mean vorticity gradient beyond some
radius. As the scale of our Gaussian monopole increases, the radial region of small,
but non-zero vorticity gradient decreases. Thus, there is a smaller range of frequencies for
which Eq. (5.9) will support the weak singularity associated with the quasi-mode solutions.
Precisely how this translates into the v-dependence shown in Fig. 5.23 will depend on how
vortex structure and v; determine the quasi-mode frequency. This, we currently do not
know, but hope to understand through ongoing work.

For a tilted vortex monopole with nonzero mean vorticity gradient at all radii (exclud-
ing the origin and r = 00), alignment technically will always occur as t — oo, regardless
of the nonzero value of ;. But for application to the atmosphere on physically-relevant
timescales of a few 7., it is useful and insightful to make the distinction between the
quasi-mode and the rest of the singular mode continuum, and therefore co-rotation and

alignment.
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Figure 5.22: Expansion coefficient A as a function of eigenfrequency wy for values of v;
in the quasi-mode and transition regimes. The wave one asymmetry given by Eq. 5.3 and
eigenvectors shown in Fig. 5.21 were used to obtain Ag.
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Figure 5.23: As in Fig. 5.19 but for mean vortices smaller and larger than the benchmark
vortex.
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5.2 Application to Tropical Cyclogenesis

5.2.1 Tilted Vortices

A small fraction of all tropical disturbances develop into TCs. For example, on average
100 tropical disturbances are observed in the Atlantic during hurricane season yet only
about 10-15 achieve tropical storm status (Frank 1975). In addition to the existence of low-
to mid-level cyclonic vorticity, environmental factors like weak vertical shear and warm
sea-surface temperatures are generally regarded as necessary conditions for development.
The role of vertical shear in inhibiting TC genesis and development has been explored
both in observational studies (Gray 1968; Zehr 1992) and in numerical and theoretical
works (Jones 1995; DeMaria 1996; Bender 1997; Frank and Ritchie 1999). According to
Zehr (1992) the 200-850 mb vertical shear threshold above which development is severely
inhibited is 12.5-15 ms™'.

Before considering the more complicated problem of a weak vortex forced by vertical
shear it is necessary to understand the unforced problem. One can interpret the tilted
vortex of Section 5.1 as having resulted from some external forcing like environmental
vertical shear or horizontal strain associated with nearby vortices. Depending upon the
horizontal scale of the vortex and v, the vortex will either return to a vertically-aligned
state through the sheared vortex Rossby wave mechanism or precess about its mid-level
centroid due to the wavenumber one quasi-mode propagation. For tropical conditions
f=5x107%s!' H=15%km, and N = 10"2 s~ !, resulting in 7y = 1.0 x 10°% m~1,
For the mean vortex depicted in Fig. 5.1, v; < L~!, well within the non-alignment regime
shown in Figs. 5.18 and 5.19. In the non-aligned state the vortex is especially vulnerable
to further external forcing.

Recently Dritschel and Juarez (1996), using a multi-layer QG CD model, found that
a vortex column subjected to two-dimensional strain will become unstable and reduce its
vertical scale if the ratio of vortex height to width is greater than 3f/N, or equivalently
y1 < w/6L. Thus, for our vortex with L = 200 km, if vy < 2.5 x 1075 m~!, vortex

break down should occur. Recall that this range of 4; was identified using linear theory in
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Section 5.1 as the non-alignment regime. Therefore, a hypothetical weak tropical vortex
extending through the depth of the troposphere and supporting a quasi-mode will tend
to reduce its vertical scale in the presence of external shear until the alignment regime is
reached. As noted by Dritschel and Juarez (1996), the vortex height to width ratio of 3f /N
is commonly observed for atmospheric vortices, including TCs. (Note that although TCs
generally do not fall within the QG regime, by generalizing f to include vortex rotation
effects, as discussed in Section 5.1.3 and demonstrated in Chapter 6, it is possible to
extend the present results to vortices in approximate gradient balance.)

In the case of TCs, the asymmetric transverse circulation required to maintain ther-
mal wind balance in the small-y; tilted configuration may actually help development. If
the persistent asymmetric low-level convergence and enhanced convection to the right of
the tilt vector (Jones 1995; see also Chapter 6) is larger than would be produced through
symmetric mechanisms alone, an enhanced strengthening of the vortex circulation through
symmetrization of convectively-generated PV will occur (MK; ME98; Moller and Mont-
gomery 1999, 2000). According to the QG vortex alignment mechanism, even though the
vortex has strengthened, it would still continue to wobble about its mid-level centroid
since 1 has not changed. If one naively extends the findings of Section 5.1 to include
finite Rossby number effects by replacing f2 in the expression for 4? with the product
of the modified Coriolis parameter and absolute vorticity of the associated vortex flow,
the increase in vortex strength will increase ;. The vortex could potentially leave the
non-alignment regime and re-align itself without changing its vertical scale. In Chapter 6
preliminary experiments using the AB model (Shapiro and Montgomery 1993) in which
the standard Rossby number approaches unity demonstrate that the qualitative findings

of Section 5.1 still hold.
5.2.2 Merger of a Tropical Vortex and Convectively-Generated PV

We now extend the tilted vortex results of the previous section to the merger of a
convectively-generated PV anomaly within an incipient vortex (e.g., easterly wave closed
circulation, MCV, ITCZ-derived). The dynamics of this problem was explored by ME9S8 in

the context of tropical cyclogenesis. They suggested the role of vortex Rossby waves in the
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merger process by showing good agreement between nonlinear and quasi-linear predictions
of mean flow change for a barotropic wavenumber two asymmetry on a barotropic mean
vortex. Quasi-linear estimates of the mean flow change for a baroclinic two-cluster PV
anomaly on a barotropic vortex also agreed with nonlinear simulations. Here we explicitly
compare linear and nonlinear simulations of the merger of a single-cluster convectively-
generated PV anomaly with a weak vortex to assess the nature of the dynamics.

The same barotropic mean vortex as ME98 is used (see Fig. 5.1). The single-cluster

isolated anomaly with positive(negative) PV at lower(upper) levels is given by

Gse(r, A, 2) = ige™ )" cos (), (5.11)

where x is an amplitude factor, § is the inverse decay length of the asymmetry, and
(67)2 = (v — 2)2 + (y — ye)?. The parameters . and y. denote the Cartesian location
of the asymmetry center. In the experiment presented here x = 0.5 and 3 = 1.0 x 107>
m~!. In order to initialize the EQB model with a barotropic mean vortex, as in the
previous section, the azimuthal wavenumber zero component of the anomaly at z = 0 is
added to the pre-existing mean vortex at all heights. In contrast to Section 5.1 we do
allow the generation of azimuthal-mean vertical wavenumber two in the nonlinear EQB
model through the wave-mean interaction of (m,n) = (1,1), but it is incorporated into
the barotropic mean vortex (see Chapter 4). No modifications to (5.11) were made in
the QG3D model, so the mean vortex contains a small baroclinic component. The grid
spacing for this QG3D model simulation is 7.5 km and the domain is now 1500 x 1500 km.
Horizontal “del-squared” diffusion of PV has also been included with v = 100 m?s~!.
The isolated anomaly is placed inside the RMW of the pre-existing vortex at x, = 125
km and y. = 0 km to simulate an outbreak of convection near the vortex core. Figures
5.24 and 5.26 show the PV evolution over 2.57, simulated by the EQB and QG3D models
for 41 = 3.14 x 1075 m~'. Although we are now considering tropical conditions, a value of
f=1.0x10"*s"! was used as a crude way of including the vorticity of the vortex in the

definition of v; (see ME98). The linear and nonlinear simulations agree well, consistent

with small R (~ 0.2) and the presence of the quasi-mode also observed in the tilted
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vortex experiments at this value of v;. Because of the greater departure of the horizontal
structure of the initial PV asymmetry from the barotropic pseudo-mode, more sheared
vortex Rossby wave dispersion is evident. At longer times the sheared waves symmetrize,
leaving just the quasi-mode. Discrepancies between the nonlinear simulations are likely
accounted for by the different initial mean vortex structures used. The phase difference
in the azimuthal wavenumber one PV fields after 2.57, is, however, only 30-40 degrees.

Complete merger of the low-level convectively-generated PV with the incipient vortex
is not expected during the time period considered here due to the presence of the quasi-
mode. But forward Lagrangian trajectories from the linear simulation do show that PV
from the low-level positive anomaly is transported radially inward into the vortex core (see
Fig. 5.27). Of course total PV is not materially conserved as the parcel moves towards the
vortex center in the linear approximation, as evidenced by the reduction in peak PV in Fig.
5.26, but the linear vortex Rossby waves do irreversibly transport PV nonetheless. The
radially-inward transport of cyclonic eddy vorticity and eddy PV implies a strengthening
of the low-level mean tangential winds in the vortex core by Stokes’ Theorem, and vice
versa. This is illustrated in Fig. 5.28 for the above experiment. Over 2.57, the QG3D
model shows an increase in low-level tangential winds of approximately 0.21 ms~' radially
inside the location of the initial PV asymmetry. The nonlinear EQB simulation produces
a similar structure for the tangential wind change, 6w, but with a maximum value of 0.18
ms~!.

It is not surprising that the QG3D and nonlinear EQB models should agree as well as
they do given that the low-level PV evolution is largely captured by linear vortex Rossby
wave dynamics. Since wave-wave interactions are small (recall Rg ~ 0.2), the bulk of the
mean flow change is effected by the self-interaction of vertical wavenumber one (i.e., wave-
mean interaction) as shown in Fig. 5.28. MK predicted, and it was later confirmed in a
nondivergent model for small but finite-amplitude disturbances (ME98) and for near order
one amplitude disturbances (Enagonio and Montgomery 2000), that in such a situation
one can use the linear solution to estimate the mean flow change that would occur in
a model where the wave-mean interaction was computed explicitly. The so-called quasi-

linear approximation is an estimate because the mean flow is prohibited from changing
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Figure 5.24: Evolution of vortex PV (from left to right) at t = 0, 0.57¢, 1.57., and 2.57,
for the case of a barotropic mean vortex perturbed with an isolated baroclinic anomaly.
Only the inner 600 km x 600 km is shown. The vertical depth is 10 km. The contour
interval is 2.0 x 107° s~!. (a) QG3D model (b) linear EQB model.
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Figure 5.25: see Fig. 5.24.
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Figure 5.26: As in Fig. 5.5 but for the isolated anomaly experiment. See text for details

on the initial conditions. Asymmetry contour interval is 0.3 x 107> s
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Figure 5.27: Forward Lagrangian trajectories of parcels originating within the isolated
anomaly at z = 0 computed using winds simulated by the linear EQB model over 2.57..
Note that high PV is transported in towards the vortex centroid.
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Figure 5.28: Change in azimuthal-mean tangential velocity at z = 0 over 2.57, as a

function of radius for the isolated anomaly experiment. Shown are results from the QG3D
and EQB models illustrating the quasi-linear nature of the low-level intensification of the
mean flow by vortex Rossby waves.
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in the linear model. The feedback on the wave dynamics is not captured as it is in the
wave-mean model.
The quasi-linear formulation in the QG context is obtained following Held and Phillips

(1987) and Holton (1992; Section 12.4). Starting with the mean PV equation,

Jq 10
S (et = = (r), (5.12)
and using the fact that
0A
ruq = — (5.13)

where A(r,t) = r¢2/(2dg/dr) is the wave activity (or pseudo angular momentum), one

obtains the following equation for the change in mean PV:

10

67 = -5 (64), (5.14)

where ¢ denotes the difference between a mean quantity at t — oo and ¢ = 0.

Given the PV perturbation,

¢ = q(r, A\ t) cos (%) ; (5.15)

where ¢; is real-valued, the wave activity can be written as

A= é {1 + cos (%)] , (5.16)

where A = r¢2/(2dg/dr). Therefore §A has both a barotropic and vertical wavenumber
two component. The mean angular momentum change due to the barotropic component
is obtained directly

6(rvg) = =6 A, (5.17)
while the wavenumber two component is obtained by first solving the invertibility relation,

10 (0, — — 10 [6A
T or (7“5(5%)) — 30, = ror (7) ) (5.18)

and then differentiating the incremental streamfunction

5(rvy) = r%(é%). (5.19)
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The total mean angular momentum change is the sum of these two contributions:

§(r5) = 8(rT0) + 6(rT2) cos (2%) . (5.20)

Since 79 is relatively small in our case, we may assume vy = 67y to provide an upper
bound on 6v. The quasi-linear result derived from the linear EQB simulation is shown in
Fig. 5.28. It not only replicates the general radial structure of the nonlinear év predictions,
but is also of the correct magnitude.

As a final note on the merger of an isolated anomaly with an incipient vortex, we com-
ment on ME98’s experiment involving the merger of an MCV-like vortex with convectively-
generated PV. The initial pre-existing vortex has a large baroclinic component and the
anomaly is given by (5.11). The anomaly in their experiment is placed well outside the
RMW of the MCV vortex. For a convective blow-up inside the RMW, like that considered
above, we would expect to be able to capture the subsequent alignment process using our

linear model (linearized about a baroclinic mean vortex).



Chapter 6

VERTICAL ALIGNMENT OF STRONGER, SHEARED VORTICES

6.1 The Effects of Flow Curvature

For the benchmark mean vortex used in Chapter 5 with a 200-km RMW and maxi-
mum tangential wind of 5 ms™!, the Rossby number is approximately 0.3 at the RMW.
Although this value is less than unity, it is not entirely negligible either. To more accu-
rately describe this vortex, we wish to utilize a balance theory appropriate for swirling
flows. The AB model described in Chapter 4, based on a local Rossby number expansion,
is used to validate the results of Chapter 5. Recall that the linear equivalent barotropic
AB system looks very similar to the QG counterpart, except that the internal Rossby
deformation radius is now a function of the mean vortex swirl and there are additional
geometric factors. Therefore, to the extent that the local Rossby number is much less than
unity and the AB formulation is formally valid, we expect at least qualitative agreement
with the QG results, i.e., co-rotation at small values of 7, and alignment at large values of
~v1. Because of the dependence of 77 on radius we choose to characterize the simulations
by the value at the RMW.

In the first experiment the benchmark vortex of Chapter 5 is used. The local Rossby
number squared, standard Rossby number squared, and ~; are shown in Fig. 6.1. Because
R? < 1, we expect the linear AB theory to be highly accurate for tilted vortices with
Ro close to, but less than, unity. At large radius 7 — f and £ — f, so the value of
1 = 3.14 x 1075 m~! used in the QG simulation is recovered. Figure 6.2 shows the

1 in this case.

evolution of pseudo-PV at z = 0 over a 57, period. 7 = 4.3 x 1076 m~
The evolution of pseudo-PV is nearly identical to that shown in Fig. 5.5 simulated by the

linear QG model. The radial vortex Rossby wave propagation is slightly more pronounced



120

in the AB simulation. We conclude that the inclusion of curvature effects in the case of a
weak vortex does not substantially alter the quasi-mode found in the QG system.

Keeping the same tangential wind profile, but altering f and N should produce the
same variability in vortex evolution presented in Chapter 5, obtained there by varying just
~1. Figures 6.3 and 6.4 show the evolution of psuedo-PV upon increasing f and decreasing
N by a factor of four, respectively. In the former case R? is decreased and vy = 13.7x 106
m~!, and in the latter case R? remains the same as in 6.1 and 7; = 17.2x 107 m~!. Both
simulations show axisymmetrization of perturbation pseudo-PV, i.e., vortex alignment,
consistent with the QG evolution at v; = 20.0 x 107 m~' shown in Fig. 5.13. The
complete picture of vortex alignment is therefore captured by QG theory for weak vortices.

The question remains as to whether the QG formulation still captures the essence of
the alignment mechanism for rapidly rotating vortices. Figure 6.5 shows R?, Ro?, and
1 for the benchmark vortex (and benchmark environmental conditions), but with the
maximum mean tangential wind increased to 10 ms~'. The local Rossby number squared
is still much less than unity in this case and therefore we still expect the AB theory to
be accurate. Figure 6.6 shows the evolution of the stronger benchmark vortex. In this
case we estimate v; = 5.4 x 107% m~!. The wavenumber one PV asymmetry rotates at a
faster rate than in the benchmark case (~ twice as fast), but retains an underlying quasi-
mode structure. The sheared vortex Rossby waves are much more prominent. Recall the
discussion in Chapter 5 where it was noted that a general initial condition will tend to
project more onto the sheared vortex Rossby waves at early times than when the vortex
is perturbed with an asymmetry having the quasi-mode structure. Although the vortex in
this simulation has been perturbed with an azimuthal wavenumber one asymmetry having
radial PV structure of the pseudo-mode (which was identical to the quasi-mode structure
in the QG simulations), the quasi-mode in the AB system at higher swirls may not take
on this form. Therefore, sheared wave dispersion occurs as the vortex asymptotes to the
quasi-mode solution. This hypothesis will be tested in future work by performing an AB
eigenanalysis similar to that done for the QG system.

The above results are important in two regards. First, they suggest that the QG

vortex alignment findings may be directly applied to the tropical cyclogenesis problem
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Figure 6.1: Benchmark vortex (a) Local Rossby number squared for azimuthal wavenum-
ber one (dashed) and standard Rossby number squared (solid), and (b) inverse internal
Rossby deformation radius for vertical wavenumber one (units 1075 m~1).
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for weak incipient vortices. The addition of finite Rossby number effects modifies the
radial structure of the quasi-mode and governing dynamical equations somewhat, but the
transition from alignment to non-alignment regimes deduced from the QG simulations
remains approximately true. Second, it is likely that a quasi-mode in near-gradient bal-
ance exists at higher swirls. The precise radial structure of this quasi-mode is currently
unknown. The quasi-mode may be relevant to hurricane-strength vortices, although the
combination of higher swirl speeds and reduced static stability would put the vortex well
into the alignment regime according to the QG picture. It remains to be demonstrated
at what horizontal scale and internal deformation radius the transition from alignment to

non-alignment actually occurs in the higher swirling case.

6.2 The Effects of Vertical Shear

6.2.1 Forced Vortex Alignment

Vertical shear can be included in the linear model as follows. For simplicity we

consider the QG problem. First, let
v(r,\, 2, 1) =0(r,2) + 0 (r, A, 2, t) + vs(r, A, 2) (6.1)

/U/(T, A? 27 t) = uI(T7 A? Z? t) + uS(T7 A? Z)

q(/r7 A?’Z?t) = q(,r? Z) _I_ql(/r, A?’Z?t) + QS(Tv A? Z)

where () and ()" are here defined as the vortex azimuthal mean and perturbation com-
ponents, respectively, and ()s are the environmental shear components of the total wind
and PV fields. Linearizing the QG PV equation (4.1) by first neglecting the product of

vortex perturbation quantities yields

g v o , ,dq
9,9 “_p 2
<8t+r8)\>Q+udr (6.2)
where
. 1 0qs 0 . vs0¢ 0qs  vs Oq, s
Fs:_ AN s— / e / -5 s 6.3
@+ )7’8)\+u8r(q+Q)+r8/\+u or r8/\+u or (6.3)



128

Let the environmental flow be purely zonal and vary with height so as to preserve the

isothermal vertical boundary conditions, i.e.,

mnz 1 0y
s = == —— 4
u Ucos)\cos< i ) X (6.4)
mnz 0
s = —U 1 )\ = R
v sin A cos ( ) .

where U is the maximum zonal wind. The environmental streamfunction and PV are then

given by
s = —Ursin A cos (mgz) (6.5)
10 [ 0, 1 0%, | f2 0% . mmz
= o ( ar ) TR TN —VmUTS'l“C‘)S( 2] )

Note that the last two terms of Eq. (6.3) cancel since

mmnz

A2 Urcos A4 U cos A - 42U sin /\> cos ( o ) =0, (6.6)

Us dqs 0qs < —Usin A

T8A+u88r_ r

i.e., the zonal mean flow is itself an exact solution to the linearized PV equation (6.2).
Therefore, Fs can be written

= / 1 /
Fs=-U { (wf,ﬁ-l- % + 920"+ (?9—(i> cos A + (73,11/ - ;%) sin /\} cos <%) . (6.7)

The only deformation radius in the QG system is Lr = NH/f, so there is no way
to independently change the deformation radius of the vortex and environment. Since
the PV associated with the environmental flow consists entirely of thermal vorticity and
is proportional to 47 times the streamfunction, the PV and its meridional gradient will
increase with decreased deformation radius (assuming the mean zonal wind remains fixed).
Therefore, for very large v; the solution to the forced linear problem will be dominated by
Rossby waves propagating on the environmental PV gradient excited by the vortex. The
degree to which the initial vortex disperses as Rossby waves is characterized by the beta
Rossby number. The beta Rossby number differs from the wvorter beta Rossby number
(5.6) in that the vortex is now regarded as the perturbation and the mean PV gradient is

associated with the environment. The ratio of the vortex interaction terms in the linear PV
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equation (6.2) to the “effective 3" term in (6.7), which is proportional to B.r v = 17U,

scales as

2 2
~ vmaac/L _ Umax

R =
7 ﬂeffvma:r ﬂeffL2 '

(6.8)

where v, is the maximum tangential wind of the vortex and L is the horizontal vortex
scale. For v,,q, = 5 ms™ ', L =200 km, U = 0.5 ms— ', and 7, = 20.0 x107% m~", the beta
Rossby number is approximately 0.6. The vortex will therefore tend to disperse in this
limit. The dispersion of the vortex can be prevented by incorporating sloping boundaries
to offset the effective beta of the environmental flow (Smith et al. 2000), or it can be
controlled by using a balanced system which allows one to change the deformation radius
of the vortex without changing the environmental PV gradient (which we want to remain
small for a wide range of 7). The inclusion of vertical shear in the linear AB system is
briefly discussed below.

In the limit of small 77 and weak vertical shear, Fs can be further simplified:

dq mmnz
Fs =~ —Ug cos \ cOS < o ) . (6.9)

This forcing represents the radial advection of azimuthal mean vorticity by the environ-

mental flow. Expressing cos A as (¢”* + e¢7")/2, the PV equation for (m,n) = (1,1) is

0 =\ . i dq - _ Udg
<§ + ZQ) q11(7’,t) — ;Ewll(r,t) = —55 (610)

The ¢;,—1 PV perturbation is given by the complex conjugate of ¢; ;. The RHS forcing
is easily incorporated into the linear EQB semi-spectral model (6.10). Using this linear
model, we expect to be able to approximately reproduce the boundary between co-rotation
(or alignment) and the irreversible shearing apart of the vortex determined by Smith et al.
(2000), who used a two-layer nonlinear QG model. Qualitatively we know that the vortex
will tend to shear apart when it is initially in the co-rotation regime, and will resist the
effects of shear in the vortex alignment regime. The linear model can be used to quantify
the value of y; at which alignment takes place as a function of the shear magnitude, 7U/H,
or, equivalently, determine the shear threshold above which the vortex is unable to hold

together.
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Extension to the linear equivalent barotropic AB system yields a model for rapidly
rotating vortices. The two-layer nonlinear analogue model of Smith et al. (2000) for
rapidly rotating, distributed vortices involved an ad-hoc coupling parameter. The “cou-
pling parameter” in our case is known, and is simply v?(r) = (7/NH)?(5¢). Consequently,
our model can be applied in a more straightforward manner to a physical scenario like
the alignment of a TC. It remains to be seen how well the linear AB model reproduces
the boundary between co-rotation (or alignment) and irreversible separation of upper and
lower vortex centers for the stronger vortices (Ro ~ 5-10) described by Smith et al. (2000).

In Chapter 5 we alluded to the possibility that a tilted vortex could realign itself
through the secondary circulation required to maintain thermal wind balance. The sec-
ondary circulation itself is not responsible for the alignment, for it is merely the response
of the balanced vortex to changes in the geostrophic (QG system) or gradient (AB system)
winds. Through enhanced low-level convergence and, as a consequence of coupling with
the boundary layer, enhanced convection, the secondary circulation can excite asymmet-
ric low-level PV generation. If the magnitude of the low-level asymmetric convergence is
much larger than the low-level axisymmetric convergence, the axisymmetrization of this
PV will strengthen the mean vortex. The dynamics of vortex interaction with vertical

shear and supporting observations from Hurricane Olivia (1994) are presented below.
6.2.2 TC Secondary Circulation Response to Vertical Shear

Raymond and Jiang (1990) proposed a mechanism by which the PV anomaly associ-
ated with a midlatitude mesoscale convective system interacts with environmental vertical
shear to produce enhanced low-level lifting and cumulus convection, thus prolonging the
life of the mesoscale convective system. In their conceptual model they assumed that the
distortion of the PV anomaly by the vertical shear was negligible. Upward motion then
arose downshear as the ambient flow followed the distorted isentropes of the PV anomaly,
and the vortex flow followed the tilted ambient isentropes. They estimated that vertical
displacements in excess of 500 m could occur over a 24 h period, large enough to release

conditional instability. In a subsequent study Raymond (1992) considered the additional
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effect of distorting the vortex isentropes through tilting by ambient shear. In his sim-
ulations he found that the vortex flow on the distorted isentropes of the tilted vortex
produced an important contribution to the vertical motion, with maximum values in the
downshear-right quadrant.

The relation between vertical shear and convective asymmetry in hurricanes has been
noted observationally (Willoughby et al. 1984; MHG; Franklin et al. 1993; Reasor et al.
2000; Black et al. 2000) and explored recently using idealized and operational hurricane
numerical models (Jones 1995; DeMaria 1996; Bender 1997; Frank and Ritchie 1999).
Jones (1995) simulated the evolution of an initially barotropic hurricane-strength vortex
in unidirectional vertical shear. The early stages of the simulation produced upward
motion downshear via the vortex flow on ambient isentropes and the upward motion of
isentropic surfaces as the tilting vortex tried to maintain thermal wind balance. The
coupling of upper- and lower-level PV anomalies lead to changes in the direction of vortex
tilt with respect to the ambient vertical shear vector. As the tilt became more substantial,
the pattern of vertical motion was governed increasingly by the vortex flow on distorted
isentropes. The maximum upward motion then occurred to the right of the local tilt
vector.

Insight into the relative contributions of vertical shear and vortex tilt to the vertical
motion pattern may be obtained by first considering the dynamics in a QG framework.
We begin by defining an initially circular barotropic vortex in pseudo-height coordinates
tilted linearly with height in the zonal direction. In Cartesian coordinates the tilted vortex

is described as follows:

—2RVUpmazy
U= 6.11
R?2 + (x — az)? +y?’ (6.11)
v 2RVmar(x — a2)

- R? + (x — a2)? + y2’

where U and V are the zonal and meridional components of the wind, respectively, R the
RMW, ¥4, the maximum tangential wind, and « the constant change in vortex center
displacement with height. A vertically-sheared zonal environmental wind, U,, is then
added to this vortex wind field, and the total wind field is transformed into a cylindrical

coordinate system (7, A, z) whose origin is the vortex center on the lowest surface, z = 0.
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The vertical velocity field required to maintain thermal wind balance is obtained
by solving the well-known Q-vector form of the omega equation written in cylindrical

coordinates (Hoskins et al. 1978):

32
N2V2y + f28—;;’ —92v.Q, (6.12)

where IV is the Brunt Vaisélla frequency, V the horizontal gradient operator, and Q is

the horizontal Q vector

a- (/[ [ () (G )) o

where v and v are the geostrophic radial and tangential winds, respectively. We first
substitute the expression for the winds into (6.13) and then compute the horizontal diver-
gence. A new coordinate system (7', )\, z) is defined with the origin at the center of the
displaced vortex at each height (see Appendix A for details). Defining a nondimensional

radius ' = 7’/ R, the expression for the Q-vector divergence becomes simply

vV.Q= % {(aRo) (2 ?)sin X — % (882‘3) (1+7?) cos /\’] (6.14)

where Ro = vpa./fR is the Rossby number. The first term on the right-hand side
represents the forcing due to vortex flow on distorted isentropes, while the second term
represents the effects of vortex flow on ambient isentropes. Note that in the transformed
coordinate system the Q-vector divergence projects only onto wavenumber 1. Since w is
proportional to —V - Q, it follows that the maximum upward motion due to vortex flow
on distorted isentropes occurs to the right of the tilt vector, whereas the upward motion
along ambient isentropes occurs downshear, as expected. The radius of maximum Q-vector
divergence and, hence, vertical motion tends to occur around 0.5R for this particular
vortex profile. If solid-body rotation is used instead inside the RMW, the maximum
upward motion moves closer to the RMW.

Although (6.14) is strictly valid for Ro < 1, it can be used to describe the qualitative
features of the vertical motion field at near unity Rossby number. As an example of
its applicability, we consider the vortex discussed by Trier et al. (1998) in their non-

hydrostatic primitive equation (PE) simulation of the interaction of a mesoscale vortex
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with environmental vertical shear. Since they initialized their model with a baroclinic
vortex different from the barotropic vortex described by (6.11), we focus primarily on
qualitative agreement. At 2.1 km height, R = 30 km and Ro ~ 1.5. The low-level
westerly environmental shear is approximately 2 x 1072 s~!. If the PV anomaly at each
height is simply advected by the mean flow, then a ~ 3 after 0.5 h and « ~ 40 after 6 h.
We find that at 0.5 h the vertical motion downshear near ' = 0.5 is approximately three
times larger than that to the right of the tilt vector. This is consistent with the simulation
of Trier et al. which produced upward motion primarily downshear at this time (see Fig.
6.7a). At 6 h, when the vortex tilt is more substantial, we estimate that the upward motion
to the right of the tilt vector is about four times greater than the downshear component.
This is again consistent with their simulated vertical motion (see Fig. 6.7b).

Using the actual initial vortex and environmental flow parameters of Trier et al. in a
standard QG omega-equation solver produces a vertical velocity pattern in good agreement
with their simulated results at 0.5 and 6 h (see Fig. 6.8). The magnitude of the QG vertical
velocity, however, is a factor of 2-3 less than the PE values. Employing a balance theory
more appropriate for rapidly rotating vortices would reduce this discrepancy. An equation
similar to (6.12) was derived by Shapiro and Montgomery (1993) for the asymmetric
balance (AB) system valid for hurricane-strength swirling flows. The AB omega equation,

assuming a barotropic mean vortex, is given by

N2 9 [ ouw _9*w'  NZ2oZw
S T b = ‘A 6.15
r Or [T or ] +e 022 + r2 O\2 Vap - A, (6.15)
where
&0 <8¢'> oQ 9 <8¢'> ) <8¢'> ,0(7€)
A={> () == (22) = (== 6.16
{raz ox) " ara:\ox) ez \ar )" Tor (6.16)

is the three-dimensional generalization of the horizontal Q-vector from QG theory. This
AB generalization of the QG omega equation may allow one to obtain an expression similar
to (6.14). A more quantitative comparison with PE simulations and actual observations

will be investigated in future work.
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Figure 6.7: Vertical velocity at 2 km height resulting from the interaction of the vortex
and vertical shear described by Trier et al. (1998). The results at (a) 0.5 hr and (b) 6 hr
are shown. Dark shading denotes values from -1 to -3 cm s~! and light shading values
from 1 to 3 cm s~!. From Trier et al. (1998), used with permission.



135

0.5 hours
"Oo ‘ T T T T ‘
50 —
= -
N L ]
O Co o n
| v"v i
‘oo
L TS ]
—-50 | |
—50 0 50 100
X (km)
6 hours
"Oo T T T T
50 2
’g L i
=
N L ]
o — —
—-50 | |
50 100 150 200

Figure 6.8: Vertical velocity derived from the omega-equation at 2 km height resulting
from the interaction of the vortex and vertical shear described by Trier et al. (1998). The
results at (a) 0.5 hr and (b) 6 hr agree with the PE simulations of Trier et al. The grid
is shifted to the east to account for the eastward translation and increased vertical tilt of
the vortex with time. Contour interval is 0.2 cm s~ with dashed contours representing
downward motion.
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6.3 Observations of TC Vortex Alignment

The observations of Hurricane Olivia on 25 September 1994 provide a unique look
at the role of vertical shear in producing structural changes to the inner-core wind field.
The seven consecutive wind composites capture for the first time the asymmetric response
of a hurricane to dramatic changes in vertical shear over a relatively short time period.
Figure 6.9 shows hodographs of area-averaged storm-relative wind (V. — V) during the
observation period. Figure 6.10 shows the best estimate of inner-core vortex tilt derived
from the simplex algorithm. Initially the maximum local vertical shear is weak west-
northwesterly, with values on the order of 3-5 m s~! over the 0.75 km to 10.5 km depth.
Consistent with the weak shear, the vortex is nearly vertically aligned. Over the next
2.5 h the maximum shear increases to 15 m s~ ! over the 0.75 km to 10.5 km depth
and is westerly. A west to east tilt of the vortex with height evolves, with a maximum
displacement from low to middle levels of about 3 km. Inspection of the flow field from
6 km to 10.5 km height, where the simplex algorithm for finding the vortex center is less
reliable, indicates that the inner-core does not tilt more than 5 km (not shown).

According to the adiabatic mechanism for vertical velocity production, the preferred
location for enhanced convection due to vertical shear effects should be downshear-right in
the east to southeast quadrant of the storm. Olivia was moving to the north-northeast at
about 5 m s~! during this time, so enhanced asymmetric boundary layer convergence and,
hence, convection might also be expected in the north-northeast quadrant (Shapiro 1983).
Figure 6.11 shows an azimuth-height cross-section of vertical velocity in Olivia’s inner
core at 14 km radius. The upward velocity is generally maximum downshear during legs 1
and 2, and consistent with the weak vertical shear during this time the values are smaller
than observed during latter legs. The front to back convective asymmetry discussed by
Shapiro (1983) is not apparent during the small shear/tilt period. It may exist at low
levels unresolved in the present analysis.

As the vertical shear and vortex tilt increase, the maximum upward velocity increases
from 1-2 m s~! to 6-10 m s~! and the pattern of convection becomes more complicated.

A “double maximum” in upward motion develops on the downshear side of the vortex



137

o o
‘(/) ‘(/)
£ £
£ £
> >
o o
[2) [2)
£ £
£ £
> >
o o
‘(/) ‘(/)
S S
> >
o
‘(/)
£
£
>

Figure 6.9: Hodographs of the area-averaged storm-relative wind (V. — V) from 0.75 km
to 10.5 km height for each flight leg. The vertical distance between points is 0.75 km.
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Figure 6.10: Departures of the simplex-algorithm center (o) from the flight-level center
(4+) as a function of height from 0.75 km to 6 km for each flight leg.
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with one maximum downshear-left and the other downshear-right. The downshear-left
maximum tends to be the stronger of the two. The storm motion during the period from
leg 1 to leg 7 is relatively steady and the direction of motion changes gradually by only 10
degrees, so it is unlikely that the dramatic changes in vertical motion could be attributed
to the asymmetric boundary layer convergence described by Shapiro (1983).

The observed trend of increased upward motion downshear and downshear-right with
increased vertical shear and vortex tilt is consistent with the adiabatic mechanisms dis-
cussed in Section 6.2. Frank and Ritchie (1999) found, however, that in their numerical
simulations of hurricanes in unidirectional vertical shear the downshear cold potential
temperature anomaly produced via adiabatic mechanisms was eradicated in regions where
layers were lifted to saturation. The contribution to upward vertical motion from vortex
flow on the distorted isentropes of the tilted vortex was then eliminated. The emergence
of a downshear-left convective asymmetry was hypothesized to result from low-level con-
vergence through the downward projection of the downshear-displaced upper-level vortex
PV at the surface. Olivia’s tilt with height, while generally from west to east, shows an
anticyclonic curvature consistent with the anticyclonic rotation of the shear vector with
height. The surface projection of Olivia’s tilted PV at different upper levels could force
more broadly distributed mesoscale convection on the downshear side of the vortex, as
observed. Although the relative roles of the mechanisms described above are unclear in
this case, the involvement of vertical shear in producing the convective asymmetry is very
likely.

If a tilted vortex supports a long-lasting quasi-mode, a persistent region of asymmetric
convection and low-level positive PV generation is expected. In the initial stages of tropical
cyclogenesis this may be especially important as it provides a means of producing pulses
of PV near the vortex core over an extended period of time. The pulsing of PV followed
by its axisymmetrization are an integral part of the TC genesis mechanism of ME9S.
That the asymmetric convection is tied to the vortex core results in a more efficient
axisymmetrization and mean flow intensification mechanism (ME9S8).

Understanding the influence of vortex-scale dynamics on the distribution of convection

in the hurricane inner core should also aid in the prediction of the gross precipitation
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structure of a hurricane as it enters or is embedded in different environmental flows. A clear
relationship exists between the mesoscale asymmetry in convection believed to be forced
by the vertical shear of the environmental winds (Fig. 6.11) and the asymmetric pattern
of reflectivity (Fig. 2.2). The largest values of reflectivity occur immediately downwind of
the regions of enhanced convection, consistent with hydrometeors being carried up by the
updrafts of the convective cells and simultaneously swept downwind by the much stronger

primary tangential circulation.



Chapter 7

CONCLUSIONS

The axisymmetric conceptual model of the TC life-cycle (e.g., Ooyama 1969) has
added tremendously to our basic understanding of TC intensity change. The axisym-
metric view continues to provide new insight into TC evolution (e.g., Montgomery et al.
2000). In spite of the contributions of symmetric models to fundamental understanding,
they have not demonstrated the capacity to accurately predict TC intensity change in
all cases. The effects of asymmetric environmental influences like synoptic-scale troughs
and vertical shear are generally not parametrized in these models and can have significant
impacts on TC evolution. In cases where environmental asymmetries are not observed to
play a large role in the evolution of the TC, symmetric ocean-atmosphere models have
shown modest success in predicting gradual changes in TC intensity over open ocean. A
notable example is the axisymmetric model of Emanuel (1995). Emanuel (1999) predicted
the temporal evolution of maximum tangential wind for several observed hurricanes with
this model using as input the initial observed maximum tangential wind, the ocean struc-
ture along the observed track, and the degree of saturation required to obtain the initial
observed intensification rate. Asymmetric redistribution of vorticity, which is central to
this dissertation, was simply parametrized as an enhanced radial momentum diffusion
(Emanuel 1989). Emanuel (1989) states that some radial momentum diffusion is neces-
sary to maintain a realistic eye and to obtain realistic vortex amplification rates at early
times, but the actual magnitude of the diffusion is not crucial. Based on the examples
shown, taken at face value, the model demonstrates skill in predicting the basic trends in
intensity. The ocean is, after all, the primary energy source for the hurricane, so the ocean

make-up should be reflected in the intensity evolution of the vortex. Therefore, for the
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purpose of intensity prediction, do we really need to resolve asymmetric dynamical pro-
cesses, or is it sufficient to simply parameterize their effect through enhanced momentum
diffusion?

A closer look at the examples chosen by Emanuel (1999), which are likely the best pos-
sible cases (although a couple failures attributed to vertical shear and nuances of the ocean
structure were presented), shows that the more rapid fluctuations in intensity (aside from
the initial intensification over open ocean and spin-down over land) are generally not cap-
tured by his model. The model sometimes produces fluctuations in maximum tangential
wind qualitatively consistent with the observations, but in other instances the fluctuations
are temporally offset from the observed fluctuations by a day or two, creating the illusion
that the changes in intensity are related. Given that the simulated vortex evolution is,
according to Emanuel (1999), “quite sensitive to the initial state,” the results must be ap-
proached with caution. The axisymmetric simulations do not provide convincing evidence
that one need only represent the symmetric ocean-atmosphere interaction to capture all
(non-environmental related) intensity fluctuations. Internal asymmetric dynamical mech-
anisms may be responsible for some of the observed fluctuations. Furthermore, to obtain
the correct amplitude of the fluctuations, the asymmetric mechanisms will likely need to
be represented explicitly.

From an operational standpoint, why should we care about accurately resolving these
fluctuations if the basic trends are captured? The answer is quite simple: These fluc-
tuations in tangential wind can, in some cases, mean the difference between a 45 ms™*
and 60 ms~! hurricane at landfall, which in practical terms translates into the difference
between minor structural damage and potentially extensive damage. Additionally, the
maximum tangential wind can appear as a localized anomaly generated internally, as in
the case of eyewall mesovortices produced through the barotropic instability of the vor-
tex flow (S99). The peak tangential wind associated with the anomaly superposed on
the background mean flow may be substantially larger than that produced through an
axisymmetric simulation using the same vortex profile.

The above discussion pertains to the intensity change of already well-developed

storms. Can the genesis of a TC be captured using an axisymmetric model? Rotunno and
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Emanuel (1987), using an axisymmetric model, demonstrated that finite-amplitude incipi-
ent vortices whose strength lies above a threshold can develop into mature cyclones. Bister
and Emanuel (1997) through a combined observational and axisymmetric model study of
the genesis of Hurricane Guillermo (1991) proposed that following the formation of a mid-
level MCV, lower-tropospheric evaporation of rain moistens the low levels and generates
a downdraft. This downdraft advects the mid-level vorticity downward. Enhancement
of surfaces fluxes due to the increased low-level winds leads to enhanced convection and,
therefore, low-level vorticity. Through thermal wind balance, the strengthening of the
winds then leads to a warm-core vortex. Agreement between observations and the ax-
isymmetric simulation were demonstrated. Bracken (1999) performed a re-analysis of the
Guillermo observations using the entire data set and found at low (1-3 km) and middle
(5-7 km) levels a more asymmetric evolution of the vorticity associated with pre-Guillermo
than described by Bister and Emanuel, with the vortex centers at low and middle lev-
els often offset horizontally. Obviously one could not simulate the asymmetric vortex
interaction suggested by these observations with an axisymmetric model.

The focus of this dissertation was on the role of asymmetric dynamical processes
internal to the TC vortex in promoting structure and intensity change, specifically mecha-
nisms that cause redistribution of vorticity. Changes in the PV field, through invertibility,
yield changes in the wind structure of the vortex. The internal dynamics was considered
in two stages: We first explored the horizontal redistribution of vorticity using wind fields
derived from dual-Doppler measurements within Hurricane Olivia (1994). Some of the
two-dimensional ideas presented were then applied to the problem of three-dimensional
vorticity redistribution in the context of vortex vertical alignment and vortex merger

within incipient tropical vortices.

7.1 Horizontal vorticity redistribution

For completeness, we first considered the symmetric weakening of Hurricane Olivia.
We did not speculate as to the primary cause of the weakening, but it likely involved

both increases in the environmental vertical shear and reductions in the SSTs as Olivia
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moved northward. The magnitude of the observed near-linear decrease in tangential winds
with time in the vicinity of the RMW agreed with the axisymmetric vortex spin-down
predictions of Eliassen and Lystad (1977) despite the observation of inflow up to 3.5 km
height and the presence of environmental vertical shear. Comparison of the observed
mean tangential wind tendency and estimated tendency based on the symmetric radial
and vertical advection of tangential momentum showed qualitative agreement over the 3.5
hr observation period, with a negative tendency in the vicinity of the RMW and positive
tendency radially outside the RMW. It was not readily apparent that the observed spin-
up of tangential winds inside the eye could be accounted for by purely axisymmetric
phenomena. We therefore hypothesized that asymmetric mechanisms might be playing an
important role in Olivia’s symmetric evolution.

The vorticity asymmetry in Olivia’s inner core was dominated by an azimuthal
wavenumber 2 feature below 3 km height and a wavenumber 1 feature above 3 km, both
maximum near the RMW. During leg 1 the wavenumber 2 asymmetry extended from
low to middle levels of the storm and appeared to decay through leg 2. An increase in
the wavenumber 1 asymmetry at middle levels around leg 3 coincided with the increase
in vertical shear. Tilting of horizontal vorticity by enhanced convection on the east side
of Olivia, as suggested by Gamache et al. (1997), is a possible mechanism for the pro-
duction of the wavenumber 1 asymmetry, but a consistent vorticity budget could not be
performed with this data and, thus, no definitive conclusions could be drawn. Following
leg 3 a low-level wavenumber 2 asymmetry re-emerged and persisted through the end of
the observation period.

Lower fuselage reflectivity composites at low levels during leg 5 depicted an ellip-
tical eye rotation. The rotation period was consistent with Kelvin’s predictions for a
wavenumber 2 vorticity asymmetry propagating on the discontinuity of a Rankine vortex
(Olivia’s mean vorticity gradient outside 10 km radius was indeed sharp). The major axis
of the reflectivity ellipse was found to be aligned with the axis of positive vorticity of the
wavenumber 2 vorticity asymmetry observed during leg 5. Since this asymmetry likely had

its structure and azimuthal phase speed modified by convection and axisymmetrization,
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we did not observe general agreement between the phase evolution from leg to leg and
Kelvin’s simple dispersion relation, except between legs 5 and 6.

The possibility that the low-level wavenumber 2 asymmetry formed as a result of
internal dynamical mechanisms was considered in light of recent theoretical and numerical
work by S99 exploring the two-dimensional barotropic instability of hurricane-like vorticity
profiles. Olivia’s inner-core vorticity profile during leg 1 was found to take the form of a
vorticity ring and was most unstable to wavenumber 2 perturbations. The profile during
later legs took on a more monotonic structure with increased values at the vortex center
and reduced values in the vicinity of the ring peak. This evolution of the symmetric
vorticity is consistent with the numerically-simulated breakdown of a vorticity ring through
barotropic instability described by S99 and our own simulations using Olivia-like profiles.
The wavenumber 2 vorticity asymmetry found in Olivia’s eyewall region is an expected
by-product of the vorticity ring breakdown.

Part of the vorticity mixing hypothesized to occur in the hurricane near-core region is
the expulsion of high vorticity from the eyewall in the form of linear and nonlinear vortex
Rossby waves (MK; S99). The perturbation vorticity at 3 km height showed trailing
spiral bands of vorticity with radial wavelengths of 5-10 km outside of the regions of high
vorticity associated with the wavenumber 2 vorticity asymmetry. These features may be
symmetrizing vortex Rossby waves. A secondary bump in symmetric vorticity outside
the RMW was hypothesized to result from the interaction of outward-propagating vortex
Rossby waves with the mean vortex flow. The estimated stagnation radius for vortex
Rossby waves excited in the eyewall was consistent with the location of the vorticity
bump. Spiral bands of enhanced reflectivity were observed in the vicinity of the vorticity
bands, suggesting a coupling of the vorticity bands to the boundary layer through a forced
asymmetric transverse circulation. The possible connection between these vorticity and
reflectivity features is of great interest and is a topic of current study using full-physics

numerical model output.
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7.2 Three-dimensional vorticity redistribution

The conditions under which a vertically-tilted vortex aligns have been documented in
previous studies (e.g., Polvani 1991). The cause for alignment (or non-alignment) offered
in these studies is based on a nonlinear view of the dynamics: Given the basic geometry of
the initial vortex (e.g., a two-layer vortex consisting of circular patches of PV horizontally
offset from one another) and the Rossby deformation radius, a vortex configuration can be
derived which is a stationary solution of the nonlinear equations of motion formulated in a
rotating coordinate system. The nearness of the initial vortex to one of these co-rotating
vortex states (i.e., V-states) determines whether or not alignment will occur. A vortex
in a parameter regime (defined by the tilt and deformation radius) far removed from a
V-state is said to align through nonlinear filamentation and wave breaking. In the context
of the laboratory and numerical simulations that have motivated this interpretation where
a random distribution of vorticity evolves into horizontally-coherent vortices, which then
align from great horizontal distances to form vertically-coherent vortices, this is a natural
and useful approach to the problem. The question we have addressed here is whether
the geometric interpretation of three-dimensional vortex alignment is the most insightful
one once the vortex cores at upper and lower levels begin to overlap. We demonstrated
that in this limit a new, physically-based understanding of vortex alignment supplants
the geometric interpretation. The dynamics is accurately characterized as linear, thus
reducing the parameter space that one must consider in order to predict the subsequent
vortex evolution.

The evolution of an initially-tilted PV column for which the nonlinear advective PV
tendency is small compared to the linear radial advective tendency (i.e., Rg << 1) is cap-
tured by linear vortex Rossby wave processes. In this situation the vortex is meaningfully
decomposed into azimuthal-mean and perturbation components. The conceptual picture
of vortex alignment is then as follows: The perturbation PV tendency at upper(lower)
levels is ascribed to the azimuthal advection of perturbation PV by the upper(lower)-level
mean flow and the radial advection of mean PV by the perturbation wind. The perturba-
tion wind at upper(lower) levels is the sum of the flow associated with the upper(lower)-

level PV anomaly and, according to the vertical penetration depth, the lower(upper)-level
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PV anomaly. For continuously-distributed PV this problem has not yet allowed analyt-
ical solution despite its linear nature. Numerical vortex simulations based on the linear
equivalent-barotropic QG system, and validated with a nonlinear three-dimensional QG
model, show a dependence on the internal Rossby deformation radius consistent with pre-
vious studies. The physical explanation for the tilted vortex evolution, however, departs
from these studies.

In the non-divergent limit (i.e., infinite internal deformation radius) the stationary
pseudo-mode is recovered. For large but finite internal deformation radii the upper and
lower PV anomalies slowly co-rotate. As the deformation radius is decreased, the co-
rotation frequency increases. An azimuthally-propagating quasi-mode with the vertical
structure of the first internal baroclinic mode and wavenumber one azimuthal structure
is found to be responsible for the co-rotation and inhibits vortex alignment. The quasi-
mode, defined as a superposition of singular neutral modes sharply peaked in the phase
speed spectrum, decays slowly in the presence of differential rotation. A transition region
centered on the horizontal vortex scale separates this regime from the alignment regime
at smaller internal deformation radii. The transition is accounted for by the spectral
broadening of the quasi-mode. In the alignment regime the decay rate of the quasi-mode
is so large that the initial perturbation is essentially projected onto the (non-quasi-modal)
continuous spectrum of vortex Rossby waves whose integrated perturbation energy decays
algebraically to zero in the limit of long times. Alignment is defined here as when the
intercentroid separation distance between upper- and lower-level PV anomalies is zero.
We believe this to be a more accurate definition than used by Polvani (1991) who defined
alignment as a net decrease in the intercentroid separation distance over one circulation
period. In the single-interface CD model, Rossby edge waves persist where alignment
is observed for continuously-distributed vortices. Sheared linear vortex Rossby waves
promote the irreversible redistribution of PV necessary for complete alignment.

We argued that linear theory captures the essence of co-rotation even as Rz ap-
proaches unity due to the robustness of the quasi-mode. In this regime nonlinear advec-

tion simply tries to counteract the sheared vortex Rossby wave dispersion. As the internal
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deformation radius is decreased within the alignment regime (vortex Burger number order
unity or less), Rj for the baroclinic portion of the asymmetry decreases rapidly. Thus,
linear theory will capture the vortex alignment process for a wider range of initial tilts
the smaller the internal deformation radius. The largest tilt considered here was when the
RMW of the upper-level vortex overlapped the vortex center at lower levels. Rz was less
than 0.2 for this tilted configuration for an internal deformation radius near 50 km. Thus,
it is possible that alignment can still be approximately described with linear dynamics
even for vortices with barely overlapping upper- and lower-level PV centers. The determi-
nation of the precise boundary in parameter space which delineates complete breakdown
of the linear approximation remains for future work.

These ideas are believed to have practical application to the problem of tropical cy-
clogenesis. One of the basic questions in TC research is how a weak vortex with nearby
convection resists the effects of external shear and strengthens. The dynamics of the asym-
metric TC genesis mechanism of ME98 was further clarified by explicitly demonstrating
that the merger and alignment of convectively-generated low-level positive PV within the
RMW of a pre-existing vortex can be captured by linear vortex Rossby wave processes.
The attendant strengthening of the low-level mean vortex was also captured by wave-mean
dynamics.

In typical tropical conditions this process is frustrated by vertical shear. Smith et al.
(2000) found that a tilted vortex will either break apart under the influence of vertical shear
or co-rotate. Co-rotation did not occur in their two-layer model with distributed vortices
when twice the product of coupling constant (ranging between 0 and 1) and maximum
mean tangential wind was less than the difference between upper and lower level “envi-
ronmental” zonal flow. Depending upon the value of the internal deformation radius, the
linear alignment mechanism discussed here suggests that the tilting of a vertically-aligned
vortex by shear will either project perturbation energy onto the wavenumber one quasi-
mode or entirely onto sheared vortex Rossby waves. In the latter case axisymmetrization
of the perturbation PV through the interaction of vortex Rossby waves with the mean

flow will resist the tilting by shear. In this regard, vertical shear acts as a sheared vortex
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Rossby wave generator. This interpretation of the interaction of a vortex with vertical
shear is another way of viewing the vortex tilt evolution described by Jones (1995) for
Rs < 1. Jones correctly noted that the asymmetric transverse circulation associated with
a tilted vortex is not fundamentally responsible for countering the effects of vertical shear,
as suggested by Wang et al. (1993). The transverse circulation is simply a requirement
of a balanced vortex whose flow is evolving in time. Jones’ conclusion that “the rotary
behaviour of the vortex provides a mechanism which opposes the destructive action of
the vertical shear” is consistent with the interpretation provided here, but does not fully
elucidate the underlying dynamics. The vortex tilt evolutions shown by Jones may very
well be captured by linear vortex Rossby wave theory at early times. As the upper- and
lower- level PV centers become substantially removed from each other in the horizontal,
the linear theory will break down.

The asymmetric transverse circulation of a tilted vortex can effect vortex tilt in-
directly by forcing asymmetric convection and low-level asymmetric PV generation. The
basic dynamics of this convective enhancement mechanism was illustrated using data from
Hurricane Olivia. The increase in westerly local vertical shear of Olivia’s environment from
3-5m s~ to 15 m s~! over the lowest 10 km depth during the 3.5 h observation period was
accompanied by an increase in the west to east tilt of the storm center with height and
a dramatic increase in convection on the east side of the vortex. A double maximum in
the convection was found with largest upward motion downshear-left (~ 8-12 m s~') and
weaker upward motion downshear-right (~ 4-6 m s~ !). These observations are consistent
with recent numerical simulations of hurricane-like vortices in vertical shear (Jones 1995;
DeMaria 1996; Bender 1997; Frank and Ritchie 1999).

For barotropic vortices tilted by vertical shear with small Rossby numbers we derived
an expression for the Q-vector convergence, illustrating the relative contributions to verti-
cal motion from vortex motion on ambient isentropes and vortex motion on the isentropes
of the tilted vortex. This formula was verified to produce qualitatively correct results for
Rossby numbers near unity through a comparison with PE simulations performed by Trier
et al. (1998). Future work will extend these results to mesoscale convective vortices and

hurricane-strength vortices by utilizing the AB generalization of the QG omega equation.



151

In addition to adding vertical shear to the linear problem, the next step is to extend
the QG results to more rapidly rotating flows. The vertical penetration depth will not only
become a function of radius, but will also increase over the QG value. This was clearly
demonstrated by Shapiro and Montgomery (1993) in the context of the AB formulation
for hurricane-like flows, where the local penetration depth is proportional to the square
root, of the product of the modified Coriolis parameter and absolute vorticity of the asso-
ciated vortex flow. Preliminary simulations in which the linearized equivalent barotropic
AB model is initialized with our tilted benchmark vortex agree with the corresponding
QG simulations. Further work is required, however, to understand the effect of variable
penetration depth on the evolution of the tilted vortex. It is possible that an altogether
new quasi-mode in quasi-gradient balance exists at higher swirl speeds. Its characteristics
and relevance to hurricane-like flows (e.g., track wobbles) would be of great interest. This
will be the subject of future investigation.

As an immediate application of the present study, work is under way to use output
from cloud-resolving numerical model simulations (e.g., MM5 or RAMS) of TC genesis
to examine the asymmetric distribution of vorticity and its evolution in time. The ideas
presented here regarding linear vortex alignment will be tested in a situation where a
blow-up of convection is observed inside the RMW of a pre-existing vortex. Is there
positive vorticity generation at low levels and does it move closer to the vortex core in
time? Is R less than unity? Based on the relative magnitudes of the internal deformation
radius and horizontal vortex scale, is alignment or co-rotation favored? It is important
to determine if the dry, idealized model predictions (and perhaps ultimately closed-form
solutions) have relevance even in convective situations where large vertical momentum
transports are allowed to occur and the dynamics is not so tightly constrained to the slow
manifold.

Plans are to extend this work ultimately to the analysis of observational TC genesis
data sets, like Guillermo (1991). Very few of these type of data sets exist, and none have
been analyzed with the asymmetric mechanisms presented here and in other theoretical

studies (e.g., ME98) in mind. So from an observational standpoint, how a TC initially
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forms is still an open question. Asymmetric theories for TC genesis do provide a viable
alternative to symmetric finite amplitude instability theories (Emanuel 1989), and we hope

to demonstrate the usefulness of these ideas in the near future.



Appendix A
Q-VECTOR DIAGNOSTIC

In cylindrical coordinates (r, \, z) the geostrophic radial and tangential winds are

—2RUpaz0z SIN A

v R2 + (rcos A — az)? + (rsin )

5 + Ue(2) cos A, (A.1)

2RVpmae(r — az cos \)
v =
R2 + (rcos A — az)? + (rsin\)

5 — Ue(2)sin \.

Substituting (u,v) into Eq. (6.13), we obtain the radial and azimuthal components of the
Q-vector. Taking the horizontal divergence of Q in cylindrical coordinates and defining

nondimensional parameters, b = r/R and a = az/R, yields
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This expression for V - Q is defined in a cylindrical coordinate system whose origin is the
vortex center on the lowest surface, z = 0. Thus, as the tilt (i.e., az) becomes large,
harmonics other than wavenumber one will attain significance in the expression for V- Q
in this coordinate system. If we instead transform to a coordinate system (r/, )\, z) in

which the origin at each level is the vortex center at that level, i.e., let
r'sin \ = rsin A (A.3)

! !
—r cosS A = az — rcos A,

then the simpler and more concise expression for V- Q given in Eq. (6.14) is obtained

which projects only onto wavenumber one.



Appendix B

SIMULATING VORTEX ALIGNMENT: PV PATCHES VERSUS
CONTINUOUS PROFILES

Closed-form EQB solutions to the linear tilted vortex problem can be obtained for

mean vortices whose radial structure is that of a vortex patch, i.e.,

{(r) = { Cmas 027 <0 (B.1)
Solutions to Eqs. (4.13)—(4.15) are sought of the form:

Do (73 8) = Vs (r,1) + Do (7, 1), (B.2)

an(ra t) = (jcs(ra t) + (jew(ra t)a

where ‘cs’ denotes the continuous spectrum and ‘ew’ the edge wave component. The solu-
tion method follows Smith and Montgomery (1995) and its generalization to the shallow
water system (courtesy Prof. M. Montgomery, personal communication).

The continuous spectrum solution is given by

dulrt) = [ Gp)inlo)e g, (B.3)
where
_ Ly (Y p) Kn (Ymr) p>r
G(T’ p) T { In(’YmT)I(n(’YmP)a p<r (BA)

is the Green’s function and ¢g is the initial PV perturbation. I,, and K, are the modified
Bessel functions.

The edge wave solution is found by solving the modified Bessel equation on both sides
of the basic state discontinuity. In both regions the mean vorticity gradient is identically

zero. It follows that

&ew(rvt) = Cn(t)éew(T)a (B'5)
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where

R R Lz

The dynamic condition requires pressure continuity at » = a. From this condition

C,(t) can be determined, completing the solution:

Conaw [ dppGla,p)i0(p) inc
Cn(t) — _’n’(maw / 144 (av p)gO(p) efant T (B?)
a 0 Onp — nQ
¢ > dppG q ’
{CO + nCma:r/ pp (aap)go(p) } e—zant’ (B8)
a 0 on — nfd
where C is a constant of integration and

On = anaac[]-/z - In(’yma)l(n(fyma)] (BQ)

is the edge wave rotation frequency.

This solution is intended to mimic the single-interface CD solution in the limit of in-
finitesimal vertical tilt. There are two points worth making regarding the linear solution.
First, note that o, is nonzero for all n > 0 and v; > 0. Therefore, as t — 00, oscil-
latory edge wave solutions exist for all wavenumbers. For continuous vortex monopoles,
wavenumbers greater than one symmetrize within a couple 7. (see Fig. 5.7). Second, note

that as y1a — 0o, (Abramowitz and Stegun 1972)

™
2am1

Ky ~ emam (B.10)

and

1
Ii o~ —— M B.11
! 27ra’yle ' ( )

so o1 approaches (,,,,/2 and wavenumber one propagates around the vortex indefinitely.
This is consistent with the CD simulations of Polvani (1991) where co-rotation was found
in this parameter regime. Continuous vortex monopoles, however, do not exhibit this
behavior.

As vp increases, the Green’s function involved in the inversion of perturbation PV for
streamfunction decays rapidly away from its source point. The convolution of perturbation

PV and Green’s function, which defines the streamfunction, will yield smaller values the
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larger 71 is (see Fig. 5.17). The radial advection of mean vorticity by the perturbation
radial wind can then be neglected compared to the azimuthal advection of perturbation
PV by the mean tangential wind (which does not depend on 1) in the limit vy — oo.

The resulting linear PV tendency equation is

(% + znﬁ) Gmn (1) = 0. (B.12)

Thus, the perturbation PV is materially conserved following the mean tangential winds

and will take on a spiral pattern around the vortex in time since
qmn(ra t) = (jmn(ra O)e_ith- (B13)

The streamfunction is given by 1@05 above, and decays algebraically in the limit of long
times (Carr and Williams 1989; Smith and Montgomery 1995). Therefore, continuous

vortices always align in the small tilt, large v; limit.



Appendix C
NONDIVERGENT BAROTROPIC EIGENSOLVER

We begin with the linearized vertical vorticity equation for two-dimensional barotropic
nondivergent flow

/ 2,10 ! 7~
0 g0 (Lo ov 1o 1ewdl )

(E—i_ ﬁ> ;87’(7“8r)+ﬁ8)\2 r O\ dr

where 1’ is the perturbation streamfunction. Given the azimuthal-mean tangential wind

and vorticity profiles, solutions to (C.1) of the form
V(r, A1) = (r)el D (C.2)

are sought, where n is the azimuthal wavenumber, 1@ the eigen-streamfunction, and v the
eigen-frequency. We require zﬂ(r) vanish as » — 0 and r — oo. A standard eigenvalue
solver is used to perform the numerical calculations following Gent and McWilliams (1986).
Independence of the solutions under changes to domain size and radial grid-spacing have

been verified.
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