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ABSTRACT OF DISSERTATIONHORIZONTAL VORTICITY REDISTRIBUTION AND VORTEX ALIGNMENT INDEVELOPING AND MATURE TROPICAL CYCLONESThe three-dimensional redistribution of vorticity within a vortex is examined herein the context of tropical cyclone (TC) structure and intensity change. Aspects of thehorizontal vorticity mixing dynamics are �rst presented in a novel analysis of high temporalresolution wind �elds derived from airborne dual-Doppler observations of Hurricane Olivia(1994). Seven consecutive composites of Olivia's wind �eld with 30-min time resolutiondepict a weakening storm undergoing substantial structural changes.The problem of vortex alignment (and the attendant three-dimensional redistribu-tion of vorticity) is then re-examined in an e�ort to further understand the underlyingdynamics of TC-like vortices tilted by vertical shear. The study is motivated in partby the analysis of Hurricane Olivia. Olivia's asymmetric evolution in the presence ofincreasing environmental vertical shear is consistent with that predicted by existing \vor-tex in shear" theories. These theories, however, are based on a nonlinear interpretationof unforced vortex alignment originally developed to explain the emergence of vertically-coherent vortex structures in geostrophic turbulence. For small to moderate vortex tilts, asimpler and more insightful linear model for unforced vortex alignment is presented. Thismodel provides the basis for a deeper understanding of the dynamics of rapidly-rotating,vertically-sheared vortices.The linear model is formally valid as long as the tilted vortex can be meaningfullyrepresented through a wave, mean-ow decomposition. This is typically true if the vortexcores at upper and lower levels overlap. The validity of the linear model is tested foriii



a range of vortex tilts using a quasi-geostrophic model in both its complete and linear,equivalent-barotropic forms.The vertical alignment dynamics in the aforementioned small to moderate tilt regimeis accurately captured by linear vortex Rossby wave processes. For internal Rossby defor-mation radii larger than the horizontal scale of the tilted vortex, an azimuthal wavenumberone near-discrete vortex Rossby wave, or quasi-mode, exists. The quasi-mode is charac-terized by its steady cyclonic propagation, long lifetime, and resistance to di�erentialrotation, behaving much like a discrete vortex Rossby wave. The quasi-mode traps dis-turbance energy causing the vortex to precess and thus prevents alignment. For internaldeformation radii smaller than the horizontal vortex scale, the quasi-mode disappears intothe continuous spectrum of vortex Rossby waves which promote complete alignment byirreversibly (but linearly) redistributing potential vorticity (PV).The linear alignment theory is extended to stronger vortices in the Asymmetric Bal-ance system with results similar to those for geostrophic vortices. In addition to providingnew insight into the asymptotic dynamics of vortex merger in three dimensions, theseresults also are believed to have relevance to the problem of tropical cyclogenesis. Cy-clogenesis initiated through the merger of low-level convectively-generated positive PVwithin a weak incipient vortex is captured by quasi-linear dynamics. A potential dynam-ical barrier to TC development in which the quasi-mode frustrates vertical alignment canbe identi�ed using the linear alignment theory in this case.PAUL D. REASORDepartment of Atmospheric ScienceColorado State UniversityFort Collins, Colorado 80523Summer, 2000
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LIST OF FIGURES1.1 Olivia dual-Doppler derived wind magnitude (m s�1) at 1.5 km height averagedover the observation period. Shown are the symmetric, wavenumber one,wavenumber two, wavenumber three, and wavenumber four components.The \no-scatter" region of the eye (i.e., within approximately 8 km radius)is blocked out here and in subsequent plots. : : : : : : : : : : : : : : : : : : 72.1 Composite of lower fuselage reectivity from Hurricane Olivia at 2028 UTC,25 September 1994. Contour interval is 10 dBZ. (1) The precipitation-freeeye. (2) The convective eyewall. (3) The stratiform spiral rainband region. : 172.2 Composites of Olivia's inner-core reectivity near 5 km height derived from theTA radars for each ight leg. See Table 2.1 for the compositing times asso-ciated with each leg. Contour interval is 5 dBZ. In this and all subsequenthorizontal contour plots, geographical north is located at the top of theplot. Note regions of attenuation radially outside the reectivity maximumin the northern quadrant of the storm. : : : : : : : : : : : : : : : : : : : : : 222.3 Point-by-point comparison between aircraft wind measurements at 3 km heightduring the period 2027{2355 UTC and the Doppler-derived wind estimatesnearest in space. The (a) zonal and (b) meridional components of the wind(m s�1) are shown separately. Interpolated data within Olivia's eye areincluded in the comparison. : : : : : : : : : : : : : : : : : : : : : : : : : : : 253.1 Radius-height structure of the symmetric tangential winds during (a) leg 1 and(b) leg 7. Contour interval is 5 m s�1. : : : : : : : : : : : : : : : : : : : : : 303.2 Radius-height structure of the symmetric transverse ow (u,w) for each ightleg. Wind vectors of the same length, pointing horizontally or vertically,represent the same speed. Maximum wind vector is 6 m s�1. : : : : : : : : 313.3 A comparison between the observed and budget tendencies of symmetric tan-gential wind for the transition from leg 1 to 7. Only the symmetric radialvorticity ux and vertical advection terms of Equation 3.1 are used in thebudget tendency calculation. The average of the leg 1 and leg 7 wind �eldsare used in the budget calculation. Contour intervals for the observed andbudget tendencies are 0:2 � 10�3 m s�2 and 2 � 10�3 m s�2, respectively.Negative values are depicted by the dashed curves. : : : : : : : : : : : : : : 323.4 As in Fig. 3.2, but averaged over the period 2027{2355 UTC. Maximum windvector is 2.5 m s�1. The solid line denotes the time-average location of theRMW as a function of height. : : : : : : : : : : : : : : : : : : : : : : : : : : 34
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3.5 Symmetric vorticity (s�1) pro�les at 3 km height (a) derived from the dual-Doppler analysis (legs 1-7) and (b) computed from aircraft wind measure-ments averaged over the �rst three legs (1-3) and last three legs (5-7). Forthe latter pro�le, only leg 7 data is used inside 6 km, resulting in a somewhatnoisier vorticity distribution. : : : : : : : : : : : : : : : : : : : : : : : : : : 363.6 Radius-height structure of the azimuthal variance of vorticity averaged over theperiod 2027{2355 UTC. Also shown are individual wavenumber contribu-tions to the azimuthal variance (i.e., wavenumber components of vorticitysquared and azimuthally averaged). Contour interval is 0:2 � 10�6 s�2. : : : 393.7 Perturbation vorticity, � 0, at 3 km height for each ight leg. Contour intervalis 0:4� 10�3 s�1. Negative values are depicted by the dashed curves. : : : : 403.8 Azimuth-height cross-section of perturbation vorticity at 12 km radius fromthe storm center for each ight leg. North is located at 90� and west islocated at 180�. Contour interval is 0:5 � 10�3 s�1. Negative values aredepicted by the dashed curves. The heavy, solid vertical line denotes thedirection of storm motion. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 423.9 Azimuthal wavenumber 2 component of vorticity vertically averaged over thelowest 3 km for each ight leg. Contour interval is 0:4�10�3 s�1. Negativevalues are depicted by the dashed curves. : : : : : : : : : : : : : : : : : : : 433.10 Olivia inner-core LF reectivity composites at 3 km height. Period spanned is2244-2251 UTC at 1 min time intervals. Contour interval is 10 dBZ. : : : : 453.11 Initial pro�les of symmetric vorticity (s�1) used in the nondivergent, barotropicnumerical simulations. Shown are Case A (solid), Case B (short dash), CaseC (long dash), Case D (dash dot), and Case D0 (dash dot dot dot). : : : : : 503.12 Numerical simulation of the wavenumber 2 component of vorticity for (a) CaseA and (b) Case B. Contour interval is 0:4 � 10�3 s�1. Initial condition isfollowed by snapshots of the evolution every 10 min. Negative values aredepicted by the dashed curves. Also shown are numerical simulations of thetotal (mean plus perturbation) vorticity for (c) Case C and (d) Case D0.Contour interval is 2 � 10�3 s�1. The initial condition derived from (3.6)is followed by snapshots of the evolution every 2 h, except for the last plotin the sequence which depicts the well-mixed state at 10 h. : : : : : : : : : 523.13 see Fig. 3.12 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 543.14 Symmetric tangential wind change (ms�1) over the �rst four hours of the CaseC simulation. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 553.15 Symmetric tangential wind change (ms�1) over the 3.5 h observation period at3 km height (a) derived from the dual-Doppler analysis and (b) computedfrom aircraft wind measurements. : : : : : : : : : : : : : : : : : : : : : : : 565.1 The azimuthal-mean vortex (solid) used in all simulations unless stated other-wise in the text. The vortices depicted by the dashed curves are describedin Section 5.1.4. The (a) tangential wind is in units of ms�1 and the (b) PVis in units of 10�5 s�1. The (c) Rossby number is de�ned as 
=f , where 
is the azimuthal-mean angular velocity. : : : : : : : : : : : : : : : : : : : : 71
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5.2 Evolution of vortex PV (from left to right) at t = 0, 1.5�e, 2.5�e, and 4�e forthe benchmark run with � = 0:3 and 1 = 3:14�10�6 m�1. Only the inner300 km x 300 km is shown to emphasize the vortex tilt. The vertical depthis 10 km. Results from (a) the QG3D model with PV isosurface 8:0� 10�5s�1 and (b) the nonlinear EQB model with PV isosurface 8:5�10�5 s�1 areshown. The di�erent initial conditions are described in the text. Contourinterval is 2:0 � 10�5 s�1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 745.3 see Fig. 5.2. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 755.4 Schematic illustration of the linear vortex alignment mechanism. A PV columnbound by rigid lids at z = 0 and H is tilted from west to east with height.For small tilts this con�guration is decomposed into an azimuthal-meanbarotropic vortex (with tangential wind and PV, v and q, respectively) andan azimuthal wavenumber one asymmetry with vertical structure of the �rstinternal baroclinic mode. The tendency in perturbation PV at upper(lower)levels is attributed to azimuthal advection of the perturbation PV by vand radial advection of q by the perturbation wind associated with theupper(lower)-level PV anomaly and, through vertical penetration (denotedby the coupling coe�cient �), the lower(upper)-level PV anomaly. : : : : : 785.5 Evolution of total vortex PV (shaded) and wavenumber one component of PV(contour interval 0:5� 10�5 s�1 with negative values dashed) at z = 0 overa 5�e period for the benchmark run (see Fig. 5.2). From left to right areshown the results from the linear EQB, non-linear EQB, and QG3D models,respectively. Aside from the PV correction in the QG3D model, the initialconditions are identical. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 805.6 Radius-time plot of the wavenumber one PV amplitude at z = 0 over a 5�eperiod for the benchmark run. The dashed lines denote the crest of thewave packets as they propagate radially outward in time. The quasi-discretevortex Rossby wave persists near 130 km radius. Contour interval is 1:0�10�6 s�1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 815.7 QG equivalent barotropic volume-integrated energy contained in wavenumberone from the nonlinear (dashed) and linear (solid) EQB benchmark runsas a function of time. Also shown is the linear energy evolution for initialconditions with the pseudo-mode radial structure, but azimuthal structureof wavenumbers two and three. The energy is normalized by its initial valuein all cases. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 825.8 Evolution of the EQB PV intercentroid separation between z = 0 and H over5�e for the benchmark run. (a) Trajectory of the PV centroid at upper(solid) and lower (dashed) levels. The heavy lines show the nonlinear evo-lution, while the �ne lines show the linear evolution. (b) Timeseries of inter-centroid separation distance from the linear (solid) and nonlinear (dashed)models. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 845.9 As in Fig. 5.8 but for � = 0:1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 855.10 As in Fig. 5.5 but for � � 0:5. See text for details on the initial conditions. : : 875.11 As in Fig. 5.6 but for � � 0:5. The radially propagating sheared vortex Rossbywaves mask the quasi-discrete wavenumber one structure at early times. : : 885.12 As in Fig. 5.8 but for � � 0:5. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 89xi



5.13 Evolution of vortex PV (from left to right) at t = 0, 1.5�e, 2.5�e, and 4�e for� = 0:3 and 1 = 20:0 � 10�6 m�1. Only the inner 600 km x 600 km isshown to emphasize the vortex tilt. Results from (a) the nonlinear EQBmodel with PV isosurface 5:0 � 10�5 s�1 and (b) the linear EQB modelwith PV isosurface 5:0 � 10�5 s�1 are shown. The contours shown are(0:1; 1; 3; 5) � 10�5 s�1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 915.14 see Fig. 5.13. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 925.15 As in Fig. 5.5 but for 1 = 20:0 � 10�6 m�1. : : : : : : : : : : : : : : : : : : : : 935.16 Dependence of vortex beta Rossby number at z = 0 on tilt (�) and 1. Forconsistency only (m;n) = (1; 1) is used to de�ne the perturbation. Thesimulation for � � 0:5 does contain a small barotropic wavenumber twocomponent which will elevate R� slightly for all 1. : : : : : : : : : : : : : : 955.17 Comparison of the initial perturbation PV (heavy) and streamfunction (light)for the benchmark run. Negative values are dashed. (a) 1 = 2:5�10�6 m�1(b) 1 = 20:0�10�6 m�1. The perturbation PV and streamfunction isolinesbecome more parallel with increasing 1. Note also that the perturbationstreamfunction amplitude decreases with increasing 1. PV contour intervalis 0:5 � 10�5 s�1. Streamfunction contour interval is 5 � 104 m2s�1 in (a)and 1� 104 m2s�1 in (b). : : : : : : : : : : : : : : : : : : : : : : : : : : : : 965.18 PV intercentroid separation between z = 0 and H after 5�e as a function of1 for � = 0:1. The diamonds represent linear EQB simulations and thesquares nonlinear EQB simulations. : : : : : : : : : : : : : : : : : : : : : : : 975.19 As in Fig. 5.18 but for � = 0:3. : : : : : : : : : : : : : : : : : : : : : : : : : : : 1005.20 Instantaneous wavenumber one asymmetry rotation rate (!) at z = 0 for smallvalues of 1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1015.21 PV eigenvector solutions to Eq. 5.9 for the benchmark mean vortex and(m;n) = (1; 1). Eigenfrequencies centered on the numerically-simulatedrotation frequency are shown as well as 
 � ! for the central frequency.The units of ! are 10�6 s�1. : : : : : : : : : : : : : : : : : : : : : : : : : : : 1045.22 Expansion coe�cient Ak as a function of eigenfrequency !k for values of 1 inthe quasi-mode and transition regimes. The wave one asymmetry given byEq. 5.3 and eigenvectors shown in Fig. 5.21 were used to obtain Ak. : : : : 1065.23 As in Fig. 5.19 but for mean vortices smaller and larger than the benchmarkvortex. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1075.24 Evolution of vortex PV (from left to right) at t = 0, 0.5�e, 1.5�e, and 2.5�e forthe case of a barotropic mean vortex perturbed with an isolated baroclinicanomaly. Only the inner 600 km � 600 km is shown. The vertical depth is10 km. The contour interval is 2:0� 10�5 s�1. (a) QG3D model (b) linearEQB model. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1125.25 see Fig. 5.24. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1135.26 As in Fig. 5.5 but for the isolated anomaly experiment. See text for details onthe initial conditions. Asymmetry contour interval is 0:3� 10�5 s�1. : : : : 1145.27 Forward Lagrangian trajectories of parcels originating within the isolatedanomaly at z = 0 computed using winds simulated by the linear EQBmodel over 2.5�e. Note that high PV is transported in towards the vortexcentroid. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 115xii



5.28 Change in azimuthal-mean tangential velocity at z = 0 over 2.5�e as a functionof radius for the isolated anomaly experiment. Shown are results from theQG3D and EQB models illustrating the quasi-linear nature of the low-levelintensi�cation of the mean ow by vortex Rossby waves. : : : : : : : : : : : 1166.1 Benchmark vortex (a) Local Rossby number squared for azimuthal wavenumberone (dashed) and standard Rossby number squared (solid), and (b) inverseinternal Rossby deformation radius for vertical wavenumber one (units 10�6m�1). : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1216.2 Linear equivalent barotropic AB simulation of the wavenumber one componentof pseudo-PV (contour interval 1 � 10�9 s�3 with negative values dashed)at z = 0 over a 5�e period for the benchmark run (compare with Fig. 5.5). : 1226.3 As in Fig. 6.2, but for a larger value of f = 4:0 � 10�4 s�1. Contour interval2� 10�9 s�3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1236.4 As in Fig. 6.2, but for a smaller value of N = 2:5� 10�3 s�1. Contour interval0:05 � 10�9 s�3. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1246.5 As in Fig. 6.1, but for a stronger vortex with maximum tangential wind of 10ms�1. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1256.6 As in Fig. 6.2, but for a vortex with maximum mean tangential wind of 10ms�1. Note that the time period considered has been reduced due to theshorter circulation period. Contour interval 1� 10�9 s�3. : : : : : : : : : : 1266.7 Vertical velocity at 2 km height resulting from the interaction of the vortexand vertical shear described by Trier et al. (1998). The results at (a) 0.5hr and (b) 6 hr are shown. Dark shading denotes values from -1 to -3 cms�1 and light shading values from 1 to 3 cm s�1. From Trier et al. (1998),used with permission. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1346.8 Vertical velocity derived from the omega-equation at 2 km height resultingfrom the interaction of the vortex and vertical shear described by Trieret al. (1998). The results at (a) 0.5 hr and (b) 6 hr agree with the PEsimulations of Trier et al. The grid is shifted to the east to account forthe eastward translation and increased vertical tilt of the vortex with time.Contour interval is 0.2 cm s�1 with dashed contours representing downwardmotion. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1356.9 Hodographs of the area-averaged storm-relative wind (Ve �Vs) from 0.75 kmto 10.5 km height for each ight leg. The vertical distance between pointsis 0.75 km. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1376.10 Departures of the simplex-algorithm center (�) from the ight-level center (+)as a function of height from 0.75 km to 6 km for each ight leg. : : : : : : : 1386.11 Azimuth-height cross-section of vertical velocity at 14 km radius from the stormcenter for each ight leg. North is located at 90� and West is located at180�. Contour interval is 2 m s�1. Negative values are depicted by thedashed curves. The heavy, solid vertical line denotes the direction of stormmotion. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 139
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Chapter 1INTRODUCTIONDespite decades of research on the dynamics and thermodynamics of tropical cy-clones (TCs), prediction of intensity remains an operational challenge (DeMaria and Ka-plan 1997). Although previous studies have identi�ed the primary mechanisms for TCintensity change, including atmosphere-ocean interaction (Ooyama 1969; Rotunno andEmanuel 1987; Emanuel 1999), forcing by the large-scale atmospheric ow (Molinari etal. 1995; Montgomery and Farrell 1993), and the internal vortex dynamics (Montgomeryand Kallenbach 1997; Montgomery and Enagonio 1998; Schubert et al. 1999; M�oller andMontgomery 1999, 2000), no one inuence is generally regarded as the determining factorin most situations. A case in point is the rapid intensi�cation of Hurricane Opal (1995)as it approached the Florida panhandle on 4 October 1995. During a 12-hr period priorto the eye making landfall, Opal's maximum tangential winds increased by roughly 20{25ms�1 (NHC Best Track). The dramatic strengthening of Opal has been attributed to boththe presence of a warm-core oceanic eddy (Shay et al. 2000) and the favorable interactionof the storm with a nearby upper-tropospheric trough (Bosart et al. 2000). Thus, in somesituations intensity change may result from a combination of mechanisms.It is well known that the import of latent heat energy into the cyclone core is necessaryfor sustaining convection and strengthening a TC (Ooyama 1969). But can the uctuationsin intensity, which are sometimes dramatic, be explained simply through axisymmetric,thermodynamic arguments? Emanuel (1999) suggested that intensity change in mostcases (including Opal) is controlled to zeroth order by the response of the axisymmetricTC to variations in the thermodynamic structure of the ocean. In many of the caseshe presented where environmental vertical shear was not a factor, the long-time trends



2in intensity were captured by his axisymmetric atmosphere-ocean model. The results donot con�rm, however, that axisymmetric thermodynamics is solely responsible for themore rapid changes in intensity (i.e., uctuations > 20 ms�1 per day) observed over openocean, suggesting that environmental and internal asymmetric mechanisms are also likelycontributing.The uncertainty in intensity change prediction applies not only to mature storms,but also to incipient tropical disturbances. The large-scale environment is an importantfactor in TC genesis, as has been documented in climatological studies (e.g., Gray 1968;Zehr 1998). But why do so few storms form even under the best synoptic and oceanicconditions? On average 100 tropical disturbances are observed in the Atlantic basin duringhurricane season, yet only about 10-15 develop into tropical storms (Frank 1975).Bister and Emanuel (1997) proposed an axisymmetric model for TC genesis based onobservations of TC Guillermo (1991) and supporting axisymmetric numerical simulations.A re-analysis of the Guillermo Doppler wind data by Bracken (1999), however, suggestsa more prominent role played by asymmetries during the initial stages of genesis. Mont-gomery and Enagonio (1998, hereafter ME98) demonstrated that TC genesis can occurasymmetrically through the merger of convectively-generated low-level positive potentialvorticity (PV) within an incipient vortex. Might the presence of convective blow-ups nearthe incipient vortex core be an additional condition for genesis? Once again, the role ofinternal (asymmetric) vortex dynamics in intensity change must be evaluated.In the absence of in-situ and radar measurements within and in the vicinity of aTC, just quantifying intensity is a challenge. Determining the relative importance ofvarious phenomena in producing intensity change is therefore a di�cult task. Remotemeasurements from satellite are relied upon in such a situation. Satellite remote sensingcan provide some information on the sea-surface temperatures (SSTs) (which may notnecessarily be representative of the thermodynamic makeup of the ocean immediatelybelow the surface) and the large-scale thermodynamic structure of the TC (Velden andBrueske 1999). Additionally, it can provide valuable information on the synoptic ow inwhich the TC is embedded.



3Presently, satellite remote sensing is incapable of providing detailed mappings of thethree-dimensional ow structure of a TC, which are needed to quantify the dynamical roleof asymmetric external forcings and internal vortex dynamics. Airborne techniques forsampling a TC wind �eld have improved since the early days of aircraft measurementsalong the ight track, where composites over many storms had to be performed justto resolve the symmetric structure. Airborne Doppler radar was �rst used in the early1980's (Marks and Houze 1984) and now permits the three-dimensional, low-azimuthalwavenumber TC core structure to be resolved for a single storm over an extended periodof time. Despite the limited spatial coverage of the aircraft data, the ight-level winds stillcan be quite useful when used in conjunction with a sound dynamical theory, as exempli�edin a recent study of vorticity mixing in the hurricane core by Kossin and Eastin (2000).The aircraft data also provide an important means of validating the Doppler-derived wind�elds. But whereas the aircraft measurements can only suggest vortex-scale phenomena,the Doppler-derived wind �elds can provide a complete picture of the low-wavenumbervortex core evolution, allowing the symmetric and (aliased) asymmetric structure to beclearly de�ned and distinguished (except in the hurricane eye). Consequently, asymmetricaspects of TC dynamics can now be studied observationally in conjunction with theory,as was done for decades in the study of axisymmetric mechanisms, thus bringing a greaterbalance to the study of intensity change.In the work described below the role of internal asymmetric vortex dynamics in in-tensity change is examined from the perspective of newly-developed theoretical insightsand a novel analysis of the evolving three-dimensional wind �eld of an observed TC. Therole of horizontal vorticity redistribution in e�ecting structure and intensity change inthe TC core, as discussed in recent numerical and theoretical studies (e.g., Montgomeryand Kallenbach 1997, hereafter MK; ME98; Schubert et al. 1999, hereafter S99; M�ollerand Montgomery 1999, 2000; Kossin et al. 2000), is �rst addressed utilizing dual-Dopplerradar observations of Hurricane Olivia (1994). The vorticity redistribution ideas are alsoapplied to the problem of vortex vertical alignment. A new linear conceptual model forquasi-geostrophic (QG) vortex alignment is developed for vortices exhibiting small initial



4tilts, with application to the problem of TC genesis. The QG results are then extendedto higher Rossby number vortex ows as a �rst step in understanding the basic dynamicsof arbitrarily strong vortices embedded in vertical shear. An observational strategy forexploring the dynamics of a TC in vertical shear is presented, again using wind data fromHurricane Olivia.1.1 TC Vorticity DynamicsA vorticity asymmetry placed on a continuous vortex monopole will tend to be shearedto �ner radial scales by the di�erential rotation of the (azimuthal) mean tangential ow.This process was illustrated by Melander et al. (1987) in a nonlinear 2D nondivergentmodel initialized with an elliptical patch of vorticity. Filaments of vorticity were thrownoutwards as the core of the vortex became circular. The reduction of the aspect ratio ofthe vortex patch in this way is referred to as `axisymmetrization'. Guinn and Schubert(1993) related the formation of spiral bands in hurricanes to the �lamentation of PVoften observed in vortex axisymmetrization experiments. The spiral bands were shown toproject minimally onto the fast inertia-gravity wave component and were argued to formas a result of PV wave breaking. Using a two-dimensional nondivergent model and shallowwater Asymmetric Balance (AB) model (Shapiro and Montgomery 1993), MK, buildingupon the spiral band work of Guinn and Schubert, showed that when the aspect ratio of thevorticity ellipse is close to unity, the axisymmetrization of vorticity can be explained usinglinear dynamics. MK further demonstrated that the outward moving �laments of vorticityare actually radially propagating vortex Rossby waves which owe their existence to theradial gradient of azimuthal-mean vortex vorticity. A local vortex Rossby wave mechanicsdeveloped by MK provides standard wave quantities like phase and group velocity as wellas the stagnation radii for these radially and azimuthally propagating waves.The fact that the vortex Rossby waves are con�ned to the vortex and therefore mustinteract with it as they are sheared to �ner radial scales was utilized by MK in an appli-cation to hurricanes. They proposed a mechanism by which vorticity perturbations (e.g.,convectively or environmentally induced) to the symmetric hurricane vortex disperse as



5vortex Rossby waves, propagate radially outward, and then interact with the mean vor-tex. The radially-inward momentum ux associated with the sheared vortex Rossby wavesleads to an acceleration of the mean tangential ow inside the stagnation radius and adeceleration radially outside this radius. A vortex can undergo substantial structure andintensity changes through this mechanism.ME98 validated the predictions of MK for small, but �nite-amplitude vorticity dis-turbances in a barotropic nondivergent model and then applied the theory to the problemof tropical cyclogenesis at order one wave amplitudes in a three-dimensional QG model.They demonstrated how three-dimensional axisymmetrization of convectively-generatedPV anomalies near a weak mid-level parent vortex can lead to the spin-up of a surfacecyclonic circulation beneath the pre-existing mid-level vortex. The development of awarm-core vortex was found to be a natural by-product of axisymmetrization.A subsequent study by M�oller and Montgomery (1999) extended ME98 to largerRossby numbers through an investigation of the axisymmetrization of small, but �niteamplitude and large amplitude disturbances in the nonlinear AB shallow water model.The spin-up of the mean tangential winds agreed with the quasi-linear predictions of MKas well as the predictions of a primitive equation model. M�oller and Montgomery (2000)next examined vortex axisymmetrization in the context of a three-dimensional AB model.To avoid changes in the vortex center that result from a \single-cluster" PV perturbation(e.g., from a single, mesoscale blow-up of convection) M�oller and Montgomery (2000)focused primarily on double-cluster perturbations to the mean vortex. Through successivedouble-cluster pulses, a vortex of tropical storm strength was intensi�ed to hurricanestrength. This asymmetric mode of intensi�cation, which occurred largely through wave-mean interactions for the perturbation amplitudes considered, is an alternative to theconventional symmetric mode of intensi�cation (Ooyama 1969).As Fig. 1.1 shows for Hurricane Olivia (1994), the symmetric component of windmagnitude in the inner-core region in the lower to middle troposphere can be an order ofmagnitude greater than the higher wavenumber contributions (see also Fig. 1 of Shapiroand Montgomery 1993). Thus, in the absence of strong ow instability, linear theory and



6its wave-mean predictions should give useful qualitative insight into the vorticity dynamicsof the near-core region and internally-generated intensity change.The nonlinear vorticity dynamics of the hurricane core region has also received atten-tion in the work of S99. They proposed that during periods in which convective forcingis weakened or suppressed altogether the breakdown of the PV ring encircling the hurri-cane eye via barotropic instability will promote vorticity mixing in the eye region, therebyinuencing the eye dynamics and thermodynamics. As part of the breakdown process, eye-wall mesovortices were observed to form before the ultimate reconsolidation into a vortexmonopole. In real hurricanes these secondary vortices may have local wind speeds whichexceed that of the symmetric circulation, increasing locally the destructive potential ofthe hurricane (Black and Marks 1991; Hasler et al. 1997).1.2 Airborne Doppler Radar Observation of TCsWhile the vorticity dynamics of the hurricane's near-core region has been the subjectof recent numerical and theoretical studies, it has yet to be explored in great observationaldetail. The lack of observational focus on the vorticity dynamics may be, in part, aconsequence of the complications that convection provides to the idealized dynamicaltheories described above, but is also likely a result of inadequate observations of thehurricane near-core evolution. Aside from the chance encounter of a landfalling hurricanewith a ground-based radar, the only way to get a three-dimensional look at the wind �eld(both vortex scale and mesoscale) of the hurricane core is to y through the storm with aradar-equipped plane.The use of airborne Doppler radar to study air motions in convective storms was�rst proposed by Lhermitte (1971). In pushing for the implementation of airborne radar,Lhermitte emphasized the freedom that an airborne platform a�ords by allowing thescientist to go to the phenomenon of interest. One of the �rst questions that had to beaddressed was what kind of radar to use. Balancing concerns over attenuation, radar size,and beam width, the 3.2 cm wavelength X-band radar was chosen. Lhermitte envisionedthe airborne radar pointing vertically up or down in a non-scanning mode (i.e., vertical
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Figure 1.1: Olivia dual-Doppler derived wind magnitude (m s�1) at 1.5 km height averagedover the observation period. Shown are the symmetric, wavenumber one, wavenumber two,wavenumber three, and wavenumber four components. The \no-scatter" region of the eye(i.e., within approximately 8 km radius) is blocked out here and in subsequent plots.



8incidence) as the plane traversed the convective storm. Vertical cross-sections through thestorm could then be obtained over a timescale short enough to consider the measurementsstationary.In 1976 the National Oceanographic and Atmospheric Administration (NOAA)equipped two WP-3D aircraft with tail X-band radars. Doppler measurements were madepossible once the Doppler receivers were installed during the period 1980{1981. The radarsnot only could make vertical incidence measurements, but could also scan in the verticalplane perpendicular to the ight track, thus providing the possibility of horizontal windmeasurements. The �rst successful test of the Doppler system was made by Jorgensen etal. (1983) in a comparison of airborne and ground-based Doppler winds. The accuracyof the airborne Doppler radial winds was found to be � 1 ms�1, con�rming Lhermitte's(1971) predictions.The �rst airborne Doppler radar study of TC wind structure was reported by Marksand Houze (1984) for Hurricane Debby (1982). A pseudo dual-Doppler approach wasemployed in which a single plane ies near-orthogonal legs through the storm and sta-tionarity of the ow is assumed. From the two radar views a horizontal wind vector canbe constructed, most accurately in the horizontal plane of the radar. The wind �eldssuggested the presence of small-scale eddies embedded in the primary circulation, as wellas an apparent mesocyclone and its attendant low-level vorticity. They speculated thatadvection of the mesocyclone vorticity into the storm core by the radial inow might in-uence storm development. Marks and Houze (1987) extended this work to a more fullydeveloped storm, Hurricane Alicia (1983). The �rst observational con�rmation of the ra-dial outow layer at upper levels was made. Additionally, they included an analysis of thevertical winds along the ight track. This was the �rst study to capture the inner-coresecondary circulation in a single storm.A more complete three-dimensional mapping of the hurricane wind �eld, including thevertical wind, was performed by Marks et al. (1992, hereafter MHG) for Hurricane Nor-bert (1984). Only a single wind composite spanning roughly 2 h was made, so informationon the time evolution of the three-dimensional wind �eld was unavailable. Nevertheless,



9with an average time separation of about 7.5 min between measurement of orthogonalcomponents of the horizontal wind, details of the mesoscale structure of the eyewall couldbe provided in each individual quadrant of the storm. At 3 km height and above theyobserved a cyclonic and anticyclonic vortex couplet in the ow �eld with maximum am-plitude at the radius of maximum tangential wind (RMW). Individual changes in and theinteraction between the mean horizontal ow and this vortex couplet were discussed aspossible mechanisms for intensity change.1.3 Descriptive Outline of DissertationThe subject of this dissertation is the asymmetric vorticity dynamics of the tropicalcyclone from genesis to lysis. We begin by addressing the problem of horizontal vorticityredistribution in the TC core. According to the theoretical arguments and numericalsimulations discussed above, symmetrizing bands of vorticity and discrete vorticity featuresin the eyewall should be present as part of this ongoing redistribution of vorticity. Wetherefore ask:� Can asymmetric vorticity redistribution be demonstrated observationallyusing wind �elds derived from airborne dual-Doppler radar measurementswithin the TC core?A review of radar meteorology in the TC setting is provided in Chapter 2 for those unfa-miliar with the basic ideas behind radar remote sensing. This includes a brief discussion ofTC microphysics and standard airborne dual-Doppler techniques. Also discussed are thedata used and the wind analysis methodology. The evolution of symmetric and asymmetriccomponents of storm vorticity are presented in Chapter 3 in the context of the dynam-ical theories discussed in Section 1.1. This is the �rst study to analyze Doppler-derivedasymmetric vorticity within the hurricane core with these ideas in mind. Complimentingthe observational analyses are barotropic numerical simulations which suggest that theobserved vorticity evolution is intimately related to the barotropic stability of the meanvortex.



10With regards TC genesis, both the horizontal redistribution of vorticity and verticalalignment of vorticity are necessary for development. Previous work has viewed the verticalalignment of a geostrophic vortex as a fundamentally nonlinear process. In light of recentwork on vortex merger summarized in Section 1.1 we hypothesize:� The evolution of a vortex exhibiting small initial tilt can be understood usinglinear vortex Rossby wave theory.Chapter 4 presents the numerical models used to test this hypothesis. In Chapter 5 wedemonstrate that the co-rotation of upper- and lower-level PV anomalies associated withan initially-tilted vortex is explained by the presence of a near-discrete vortex Rossbywave, or more precisely a long-lived quasi-mode of the geostrophic vortex. Completealignment occurs through the irreversible redistribution of PV by sheared linear vortexRossby waves. In Chapter 6 we extend the QG results to include �nite Rossby numbere�ects and demonstrate how external shear can be included in the linear problem to moreaccurately represent tropical conditions. An analysis of dual-Doppler observations of ahurricane interacting with increasing vertical shear shows consistency with recent dynam-ical arguments regarding the transverse circulation of a vortex in shear. The asymmetricPV generation excited by the coupling of this transverse circulation with the boundarylayer may impact the alignment dynamics. We propose that:� The dual-Doppler wind analysis procedure outlined here, in conjunctionwith the new insights into vortex alignment, can be used towards the goal ofunderstanding and predicting tropical cyclogenesis.In Chapter 7 the major conclusions of this dissertation are summarized.



Chapter 2AIRBORNE RADAR OBSERVATIONS: HURRICANE OLIVIA (1994)2.1 TC Radar Meteorology2.1.1 Radar BasicsThe basic idea behind radar remote sensing is as follows: A pulse of electromagnetic(EM) energy is emitted from the radar antenna and propagates through the atmosphereuntil a scattering object, or target, is encountered. Part of the initial pulse energy isbackscattered in the direction of the radar receiver, which measures the power of thereturned signal and notes the time it took for the pulse to reach the target and return.The power scattered by the target will depend on its shape, size, and intrinsic properties(e.g., phase in the case of water targets) as well as the wavelength of the incident radiation.Since EM waves travel at the speed of light, c, the travel time is easily converted into arange, r, from the radar. Assuming isotropic scatterers, the power, Pr, returned from asingle target is given by Pr = Pt � Ae4�r2 ; (2:1)where Pt is the power intercepted by the target and Ae is the e�ective cross-sectional areaof the radar. Since the EM energy is initially focused into a beam by a parabolic dish, thetransmitted power is given by the original value Pout multiplied by the radar antenna gain,G. Meteorological targets do not in general radiate isotropically. An e�ective target areacan be de�ned, however, which backscatters energy as an isotropic source, but returns thesame backscattered power at the radar as the actual target. This e�ective area is called



12the back-scattering cross-section, �i. The power backscattered by the target is then givenby Pt = PoutG � �i4�r2 : (2:2)The e�ective cross-sectional area of the antenna is (Battan 1973)Ae = G�24� ; (2:3)where � is the wavelength of the emitted EM radiation. From a practical standpoint this isa very important relation. To minimize attenuation, longer wavelength radars are desired.But the e�ective area of the antenna goes like the square of the wavelength. Therefore, forairborne platforms, where bulk must be minimized, only wavelengths around 3{5 cm canbe used. The unfortunate consequence is that in heavily precipitating regions the radarrange may only be 30{40 km. This turns out to be a real restriction in TC ights whereone would like to obtain the vortex structure over as large a domain as possible.Combining equations (2.1){(2.3) and considering the power returned by a pulse vol-ume (which will contain a number of targets),V = ��r�2 �2 c�2 (for a circular beam), (2:4)where � is the beamwidth and � is the pulse duration (typically � 1 �s), yields the so-calledradar equation, P r = APoutG2�2�2� � �r2 ; (2:5)where A = c=512�2 and � is the back-scattering cross-section per unit volume, commonlyreferred to as the radar reectivity (cm2m�3). The returned power has been averaged overseveral samples of the pulse volume.For Rayleigh scattering conditions (i.e., when the radar wavelength is much greaterthan the target diameter) the backscattering cross-section is known. Given a homogeneousdistribution of spherical targets, the radar reectivity is expressed as� = �5�4 jKj2Xvol D6i ; (2:6)



13where jKj is a dielectric factor and Di is the diameter of the ith target in the unit volume(denoted by vol). The reectivity factor, Z (mm6m�3), is de�ned asZ =Xvol D6i : (2:7)Note that the reectivity factor involves an inherent ambiguity since it depends on bothtarget size and the distribution of targets. Many small targets can give the same reectivityas a few big targets. This is especially important to keep in mind when trying to relateparticle fall speed or rain rate to the reectivity factor.For a 3-cm wavelength radar the Rayleigh approximation is valid for particle diametersless than approximately 2 mm. For larger drop sizes, scattering from higher order electricand magnetic dipoles must be included in the expression for the backscattering cross-section. A more general expression for the backscattering cross-section which includesthese e�ects is given by Mie theory (see Battan 1973 for discussion). In tropical cyclonesthe particle concentration tends to peak near 1 mm, so Eq. (2.6) is only marginally valid(although it will give qualitatively correct results). To account for the departures fromRayleigh scattering conditions, Z is replaced by an e�ective reectivity factor, Ze.Rewriting the radar equation (2.5) in terms of the e�ective reectivity factor yieldsP r = A0PoutG2�2� � jKj2Ze�2r2 : (2:8)where A0 is a constant proportional to A which also takes into account the fact that thepower is not uniform across the beam width. Given the power, range, radar parameters,and target properties, one can solve for Ze. Typically Ze is converted into dBZ,dBZ = 10 log10 Ze: (2:9)This quantity will henceforth be referred to as the reectivity.In the above discussion we have alluded to certain choices that must be made indeciding which type of radar to use and how to use it. In designing a �eld experimentseveral factors, in fact, must be weighed. We briey discuss a few of the more importantones in the context of TCs.



14Given radar size limitations, the 3-cm X-Band radar is typically used on airborneplatforms (e.g., NOAA WP-3D tail radars, NCAR Electra ELDORA radar). The physicaldimensions of the radar antenna (i.e., dish diameter, D) and the wavelength determinethe beamwidth. For a circular paraboloidal antenna, the beamwidth is given by (e.g., seeFowles (1989) for a discussion of the di�raction pattern of a circular aperture)� = 1:27�D : (2:10)In the case of the WP-3D tail radars (which usually scan perpendicular to the ighttrack) the horizontal and vertical beamwidths are 1.35� and 1.9�, respectively. Becauseuncorrelated samples are desired at each (radar) azimuthal viewing angle, the beamwidthsets a maximum azimuthal resolution. Large beamwidths can lead to insu�cient �llingof the pulse volume at large range. For example, at 50 km range a vertical beamwidthof 2� results in a 1.5{2 km pulse volume depth, a fraction of which may contain targets(especially near echo top).The need for good resolution along the ight track necessitates a rapid scan rate inthe azimuth. But this must be weighed against the need for many independent looks atthe same pulse volume for the best sampling statistics. The resolution along the beam(i.e., range gate spacing) is set by the pulse length and is typically about 150 m for a 1 �spulse.The pulse repetition frequency (PRF) sets the maximum unambiguous rangermax = c2 � PRF (2:11)which is how far a pulse can go out in range and get back to the radar in time for thenext pulse to be sent out. More importantly for TC applications, the PRF also sets themaximum unambiguous velocity vmax = � � PRF4 (2:12)which is the maximum velocity that can be sampled along a radial without aliasing. It isbased on the maximum frequency that the radar can detect, i.e., the Nyquist frequencyfmax = PRF2 : (2:13)



15Combining (2.13) with the Doppler shift frequency, f = 2v=�, yields (2.12). Velocitiesmeasured beyond vmax are \folded". As an example, the PRF of the WP-3D tail radar is1600 Hz, resulting in vmax � 13 ms�1. A measured velocity of 20 ms�1 will be recorded as-6 ms�1. Unfolding the velocity can be a time consuming process, especially in cases wheremultiple folds occur and in regions of strong shear. The unfolding process is facilitated inthe case of airborne Doppler radar since in-situ aircraft measurements at the radar canbe used as a �rst guess in the unfolding of the data. An automated routine based on themethod of Bargen and Brown (1980) is generally able to unfold much of the wind data.2.1.2 TC MicrophysicsThe hurricane is comprised of a generally precipitation-free eye surrounded by a con-vective eyewall, outside of which are found stratiform rainbands (with embedded convec-tive cells) spiraling around the storm (see Fig. 2.1). Using reectivity data from the tailradar of the NOAA WP-3D aircraft when it was pointing vertically, Jorgensen (1984)documented the radius-height structure of hurricane precipitation in each of these regionsfor multiple storms. His results are summarized below.Within the eyewall of a mature storm reectivity is typically greater than 40 dBZwith local maxima of 50{55 dBZ. Because of sloping updrafts in the eyewall (Shapiro andWilloughby 1982; Jorgensen 1984; Marks and Houze 1987) hydrometeors fall out at radiioutside of the convective updraft at low levels, leading to a mismatch between the locationof maximum low-level vertical velocity and reectivity. Black et al. (2000) have recentlydocumented the azimuthal structure and evolution of convection in the eyewall. Theyobserved convective cells initiated at low levels in the eyewall grow as they are advectedby the tangential ow of the vortex. The reectivity maxima occur downwind of the regionof cell initiation as hydrometeors fall out of the mature convective cells. As the cells moveabove the 0�C isotherm, falling precipitation induces low-level downdrafts. Above 6 kmheight ice particles are swept around the storm and radially outward in the upper-leveloutow layer.The rainbands are characterized by reectivities of about 30{35 dBZ and isolatedcells of 40 dBZ. They lie within a larger region of stratiform precipitation with reectivity



16less than 30 dBZ. The stratiform regions show a clear bright band in reectivity below the0�C isotherm (� 5 km height). The bright band results from the coating of ice particleswith water as they fall below the melting level. The radar basically sees large liquidhydrometeors. Since Z / D6, elevated reectivity (the bright band) is observed. As the icelattice collapses and the drops become less concentrated in space, the reectivity decreasesbelow the bright band. Although the heaviest rain rates are in the convective eyewall, thestratiform precipitation region covers a much greater area. According to Marks (1985), 50to 60 percent of inner-core rainfall can be accounted for by the stratiform precipitation.For purpose of estimating particle fall speeds (VT ) and rain rates (R) using reectivitydata, it is important to understand how particle size and concentration contribute to Zin the TC setting. Equation (2.7) can be written in terms of the particle concentration,Z =Xi N(Di)D6i ; (2:14)where N has units of number of particles per m3. The rain rate (mm h�1) is given byR = �6 Xi N(Di)D3i VT (Di): (2:15)Using a PMS Optical Array Spectrometer Probe mounted on the WP-3D aircraft, Jor-gensen and Willis (1982) obtained particle size and distribution measurements in a hurri-cane. From these measurements, and estimates of VT , both Z and R were computed usingEqs. (2.14) and (2.15), respectively.Typical drop-size distributions in a hurricane, which is comprised of both convectiveand stratiform regions, compare well with measurements made in general tropical con-vective systems. Drop-size distributions in tropical cloud cores compiled by Cunning andSax (1977) during the GATE experiment show that the particle concentration peaks forDi < 1 mm. Drop sizes greater than 4 mm are rare except near cloud base in the convec-tive regions. The Z-R relationship derived by Jorgensen and Willis (1982), applicable toboth the convective and stratiform regions of a hurricane below the 0�C isotherm, isZ = 300R1:35: (2:16)
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Figure 2.1: Composite of lower fuselage reectivity from Hurricane Olivia at 2028 UTC,25 September 1994. Contour interval is 10 dBZ. (1) The precipitation-free eye. (2) Theconvective eyewall. (3) The stratiform spiral rainband region.



182.1.3 TC Dual-Doppler MethodsVelocity is measured using Doppler radar by computing the phase shift between theemitted and returned EM pulses �� = 4�r� : (2:17)The Doppler velocity is then obtained from the time rate of change of the phase, i.e.,v = �4� d�dt : (2:18)Since it is actually a pulse volume that is measured, a distribution of velocities is returnedfrom which a mean radial velocity can be computed. The distribution can actually bequite broad in turbulent situations or regions with large shear. Such regions are identi�edby large spectral width.Constructing a three-dimensional wind �eld from raw airborne Doppler data is inlarge part a scienti�c endeavor, but also admittedly involves a fair amount of artistry.Unlike ground-based dual-Doppler observations, the geometry of the airborne platformsis constantly changing. Aircraft translation, drift, pitch, and roll must all be taken intoaccount in converting from radar-relative to earth-relative winds (Lee et al. 1994). Nav-igation errors resulting from uncertainties in the inertial navigation system have, for themost part, been eliminated with the advent of GPS tracking.For the purpose of this discussion, we will focus on dual-Doppler observing methodsbased on track-normal scanning of the tail radar (i.e., the tail radar scans in a planeperpendicular to the aircraft ight track). The FAST scanning method in which thetail radar alternately scans fore and aft of the normal to the ight track is discussedby Gamache et al. (1995) in the hurricane context and will not be discussed here. In asingle plane mission through a hurricane, pseudo dual-Doppler observations are obtainedby ying consecutive near-orthogonal legs into and out of the storm core. In this way twoindependent views of the horizontal winds are made in an individual quadrant. Of course,for azimuthal elevation angles of the radar near zero this is an accurate statement. Whenthe beam is pointing so as to project onto the vertical, the wind vector that one constructsno longer lies in the horizontal plane, and in fact is no longer simply a measurement of



19air motion. The hydrometeor fall speeds must be removed. To remove the fall speedsone needs to know how large the particles are. Reectivity is a strong measure of particlesize, but it also depends on concentration. Nevertheless, standard empirically-based Z-VTrelations are used above and below the 0�C isotherm (Marks and Houze 1987):VT = ( 2:6Z0:107; altitudes < 5:1 km0:817Z0:063; altitudes > 7:5 km: (2:19)The larger exponent for the fall velocity below 5 km reects observations of rain at thoselevels. Above 5-6 km ice is commonly observed which has a much smaller fall velocity,as reected in the reduced exponent. Both of these relations, which are based on surfaceobservations, are applied at higher vertical levels by multiplying by a density correction,[�0=�(z)]0:45, where �0 is the surface density.There are numerous ways of deriving a three-dimensional wind �eld using iterative(Marks et al. 1992) or variational techniques (Gamache 1998) with di�erent vertical bound-ary conditions. In the iterative method the two Doppler measurements of velocity at apoint (v(1)r and v(2)r ) are expressed in terms of the Cartesian velocity components (Jor-gensen et al. 1983),v(1)r = u sin�(1) sin �(1) + v cos �(1) sin �(1) + (w + VT ) cos �(1) (2:20)v(2)r = u sin�(2) sin �(2) + v cos �(2) sin �(2) + (w + VT ) cos �(2);where �(i) are the antenna pointing angles for each radar relative to north and �(i) are theelevation angles from the vertical. In order to solve this system of equations, an initialguess for W = w + VT must be made. One typically uses W = 0 as a �rst guess, but canuse W = VT given by Eq. (2.19) as a more accurate estimate. After solving for u and v,an estimate of w can be attempted by vertically integrating the mass continuity equation.The new estimate of w is then substituted back into (2.20) and new u and v are computed.This procedure is repeated until some convergence criterion is met. If the two Dopplervelocity measurements were made far apart in time such that horizontal derivatives of thecomposited wind �eld cannot be trusted, it makes little sense to try and converge on asolution. The �rst guess for the horizontal wind �eld is probably the best one can hope



20for. Only if the wind �eld is approximately stationary during the compositing periodshould the iterative scheme be employed. Beams at elevation angles greater than 45� (andtherefore minimal projection onto the horizontal winds) should not be included in theanalysis since they tend to make the iterative scheme unstable.Obtaining w is not a trivial matter. Boundary conditions on w must be assumed foreach vertical column. Since airborne radar is generally unable to resolve the boundarylayer when ying at 3{4 km height due to sea clutter, setting w equal to zero at thelowest resolved level is bound to result in large errors in the upward integration, especiallyin a hurricane where boundary layer convergence is known to be large. Furthermore thedensity weighting of the convergence will only accentuate low-level errors. Thus, downwardintegration of the continuity equation using w = 0 at echo top is the preferred method.Errors will still arise even if the reectivity top can be de�ned, since w does not necessarilyhave to be zero there.The wind �elds used in this study were created through a re�nement to the above tech-nique. A variational method outlined by Gamache (1998), and in the spirit of the MUS-CAT technique of Bousquet and Chong (1998), was employed in which the dual-Dopplerequations and continuity equation are solved simultaneously. According to Gamache(1998) this solution method should be more stable than the iterative method for Dopplerradials with high incidence angle (i.e., large elevation angles from the horizontal). Asopposed to the iterative method which accumulates errors in the downward integration ofthe continuity equation, the variational scheme attempts to distribute the errors in a morenatural way by e�ectively integrating the continuity equation along the path perpendicularto the planes containing the two Doppler velocity vectors (i.e., the characteristic).Following Gamache (1998), the cost function is given byf = �(1)j(1) + �(2)j(2) + �(3)j(3) + �(4)j(4); (2:21)



21wherej(1) =Xijkl(v(1)r;l � uijk sin�(1)l sin �(1)l � vijk cos�(1)l sin �(1)l � (wijk + V (1)T;l ) cos �(1)l )2; (2:22)j(2) =Xijkl(v(2)r;l � uijk sin�(2)l sin �(2)l � vijk cos�(2)l sin �(2)l � (wijk + V (2)T;l ) cos �(2)l )2; (2:23)j(3) =Xijk [r � (�kVijk)]2; (2:24)and j(4) =Xijk [(r2uijk)2 + (r2vijk)2 + (r2wijk)2]: (2:25)The i, j, and k indices denote x, y, and z locations, respectively, and the l index accountsfor multiple views from the same radar at a given location. The � factors are the weightsfor each of the cost functionals. The �rst two functionals are the Doppler radar equations,the third is the continuity equation, and the fourth is the Laplacian �ltering. The costfunction is minimized with respect to u, v, and w, ultimately yielding the three-dimensionalwind �eld.2.2 Data2.2.1 Hurricane Olivia on 25 September 1994Eastern Paci�c storm Olivia strengthened into a hurricane near 115�W and 15�Non 24 September 1994. According to Pasch and May�eld (1996), Olivia continued tostrengthen on 24 September, reaching a minimum surface pressure of 949 mb by the endof the day. SSTs were approximately 28�C (Gamache et al. 1997). Peak intensity wasobserved around 1200 UTC on 25 September with sustained tangential wind speeds ofapproximately 67 m s�1. Following this time Olivia fell under the inuence of a mid- toupper-tropospheric cyclone west of southern California, resulting in a 4-5 m s�1 northwardstorm motion. Late on 25 September two NOAA Aircraft Operations Center (AOC) WP-3D research aircraft ew through Hurricane Olivia. The eyewall reectivity was found tobe axisymmetric at the beginning of the observation period, and to evolve into a highlyasymmetric distribution over the following 4 h (Fig. 2.2). As Olivia continued to movenorth-northeast under increasing southwesterly vertical shear and somewhat cooler SSTs(� 27�C), the winds gradually weakened to tropical storm strength late on 26 September.
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Figure 2.2: Composites of Olivia's inner-core reectivity near 5 km height derived fromthe TA radars for each ight leg. See Table 2.1 for the compositing times associated witheach leg. Contour interval is 5 dBZ. In this and all subsequent horizontal contour plots,geographical north is located at the top of the plot. Note regions of attenuation radiallyoutside the reectivity maximum in the northern quadrant of the storm.



23Composite N42RF (3 km) N43RF (4 km)Leg time (UTC) ight track ight track1 2027-2039 N to S ENE to W2 2100-2113 SE to NW SSW to NNE3 2132-2143 W to E N to S4 2204-2217 NE to SW SSE to NW5 2244-2253 S to N WSW to ENE6 2310-2330 NW to SE NNE to SSW7 2343-2355 E to W S to NTable 2.1: Dual-Doppler composite times for the seven ight legs through Hurricane Oliviaon 25 September 1994, and the NOAA WP-3D aircraft (N42RF at 3-km altitude, N43RFat 4-km altitude) ight tracks through the inner core.2.2.2 Radar Observation of Hurricane OliviaThe two WP{3D aircraft equipped with Doppler radar ew simultaneous, near-orthogonal ight tracks through the inner core of Hurricane Olivia on 25 September 1994.Seven consecutive ight legs through the eye were made during the period 2027{2355 UTC(see Table 2.1 for details). Dual-Doppler coverage was available out to a radius of 60{70km from the storm center.Horizontal scans of radar reectivity obtained from the lower fuselage (LF) C-band(5.5 cm wavelength) radar antenna of the lower aircraft are used in Chapter 3 to look atthe �ne-timescale evolution of Olivia's inner core. Throughout the rest of this dissertationthree-dimensional composites of reectivity from the tail (TA) X-band (3.2 cm wavelength)radar antenna, which scans perpendicular to the aircraft ground track, are used to showthe reectivity evolution over the 3.5 h observation period. Further details of the TAand LF radars are provided by Jorgensen (1984). The method of TA radar reectivitycompositing is discussed by Marks and Houze (1984).The use of two TA radar platforms allows for a true dual-Doppler sampling techniqueto be employed. The upper and lower aircraft y orthogonal legs through the hurricaneinner core, providing near-simultaneous measurements of orthogonal components of thehorizontal wind over a period of 10{15 min. In the two quadrants of the storm wherethe TA radar beams intersect, the average time separation between measurement of the



24horizontal wind components is 2.7 min. In the other two quadrants of the storm anaverage time separation of 6 min exists. The time between three-dimensional samplingsof the inner-core wind �eld is roughly 20 min. Seven consecutive wind composites wereconstructed for the 3.5 h observation period.The domain of the TA wind and reectivity composites extends 30 km from the stormcenter in the horizontal and from 0.75 km to 6 km in the vertical. Data above 6 km heightare available, but not used (except in the calculation of area-averaged horizontal winddiscussed in Chapter 6). The �ltering of the dual-Doppler data used in this study is notuniform in space. This is in large part a consequence of the di�erence in tangential andradial velocity found in a hurricane. Between Doppler wind measurements at a point inspace, features in the wind �eld are advected much greater distances in the azimuth thanin the radial. During the average time separation between measurements in the eyewall(� 3 min) parcels are advected 5{10 km in the azimuth (20{40� at 15 km radius) and 1{2km in radius. Thus, we will focus on wavenumbers 0, 1, and 2 in the azimuth and scales� 4 km in radius.2.2.3 Data QualityThe winds derived from the true dual-Doppler sampling of Olivia are compared to thein-situ aircraft wind measurements made along the ight tracks at 3 km height. Flight-level wind measurements were smoothed with a 2-km Bartlett �lter to match the Doppleranalysis resolution (courtesy of Matthew Eastin, personal communication). Figure 2.3shows the ight-level estimate of the wind at a point along the ight track versus theDoppler-derived estimate nearest that point in space. All ight-level points within thedual-Doppler domain are considered, and all seven ight legs are utilized. Good agreementexists for the horizontal components of the wind (Figs. 2.3a and 2.3b). The slopes of thelinear best �ts to the U and V winds are 0.98 and 1.01, respectively. The correlationcoe�cient for the U-�t is 0.98, while for the V-�t is 0.99. These �ndings are consistentwith those found by MHG for pseudo dual-Doppler measurements in Hurricane Norbert(1984).
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Figure 2.3: Point-by-point comparison between aircraft wind measurements at 3 km heightduring the period 2027{2355 UTC and the Doppler-derived wind estimates nearest inspace. The (a) zonal and (b) meridional components of the wind (m s�1) are shownseparately. Interpolated data within Olivia's eye are included in the comparison.



26The agreement between aircraft and Doppler-derived vertical velocities is not expectedto be as good as found for the horizontal winds. As noted by MHG, the inherent spatialaveraging involved in the computation of Doppler-derived vertical velocity from horizontalwind divergence alters the magnitude and location of the vertical velocity maxima. MHGdid �nd however that the distributions of vertical velocity for the Doppler and in-situobservations in Hurricane Norbert were quantitatively similar.2.3 Wind DecompositionBased on the results of Fig. 1.1 and other observations of the hurricane near core (e.g.,MHG; Franklin et al. 1993) we may regard the hurricane inner-core horizontal winds asa superposition of an axisymmetric tangential ow plus weaker azimuthal perturbations,with weak radial ow above the inow layer and below the upper{tropospheric outowlayer. In order to focus on the symmetric and asymmetric components of the vortexwinds separately, and to obtain insight into the dynamics governing the evolution of thesecomponents of the total ow, an azimuthal Fourier decomposition of the wind �eld isperformed. The storm{relative winds (Vr) are �rst obtained by subtracting the stormmotion from the total (earth-relative) winds (Vtotal):Vr = Vtotal �Vs; (2:26)where Vs is the time-dependent, spatially-constant storm motion vector (see Willoughbyand Chelmow 1982). The initial wind analysis at each level is centered on the ight-levelvortex center at roughly 3 km height. Following MHG, we instead choose to center thevortex at each height at the origin of a common cylindrical coordinate system, thus min-imizing the asymmetry due to vortex center mislocation. In studying vortex alignmentone would not necessarily want to make this transformation. A coordinate system basedon the vortex centroid would be more useful. But because of the general lack of scatter-ers within the eye, the Doppler-derived wind �eld within roughly 8 km from the stormcenter cannot be obtained. By centering the vortex at each level we reduce the chanceof incorporating interpolated wind data within the eye into our Fourier decomposition of



27the wind. A simplex algorithm is used to �nd the center that maximizes the symmet-ric component of the tangential winds within an annulus centered on the RMW (Neldarand Mead 1965). Using the newly de�ned center at each level, Vr is decomposed intoazimuthal mean and perturbation wind components. The perturbation wind �eld is thenFourier decomposed in azimuth in order to focus on the structure and evolution of thelow-wavenumber components.The asymmetric component of Vr will contain, in addition to internally-generatedvortex asymmetries, the environmental ow and asymmetries resulting from the interac-tion of the hurricane with its environment (e.g., upper-level PV anomalies, beta-gyres,etc.). Consequently, it is not a straightforward task to simply separate Vr into environ-mental and hurricane components. Nevertheless, it proves useful and convenient to de�nean estimate of the environmental vertical shear:@Ve@z (z) = 1�r2max Z 2�0 Z rmax0 @Vtotal@z (r; �; z)rdrd�; (2:27)where rmax = 28 km. This quantity will henceforth be referred to as the local verticalshear. The wind vector Ve is the area-averaged total wind at each level, which shouldcontain information on the environmental ow as discussed by MHG for Hurricane Norbert(1984).



Chapter 3OBSERVATIONS OF VORTICITY MIXING IN THE TC CORE3.1 Symmetric Vortex Evolution3.1.1 Tangential Wind BudgetFigure 3.1 shows the symmetric structure of Hurricane Olivia's primary circulationat the beginning (Fig. 3.1a) and end (Fig. 3.1b) of the observation period. In the vicinityof the RMW (� 12 to 16 km) the tangential winds decrease by 5-10 m s�1 just abovethe boundary layer and by a more substantial 10-20 m s�1 around 6 km height. A near-linear decrease in tangential winds with time is observed near the RMW. The f -planecontributions to the observed tendency in symmetric tangential wind in the inner core are:@v@t = ��f + ��u�w@v@z �  u0� 0 + w0@v0@z !+ F ; (3:1)where u is the radial velocity, v the tangential velocity, w the vertical velocity, f the Coriolisparameter, and � the vertical vorticity. The bar denotes an azimuthal average and theprime a departure therefrom. The �rst two terms are the radial ux of mean vorticityby the mean radial wind and the vertical advection of mean tangential momentum bythe mean vertical wind, respectively. The next two terms are the eddy counterparts ofthe �rst two terms, and the last term represents frictional and unresolved e�ects. Thesymmetric transverse circulation involved in the �rst two terms is shown in Fig. 3.2.Over the observation period the symmetric transverse ow is highly variable. Althoughsome of the structure may be accounted for by errors in the three-dimensional variationalscheme (recall the discussion in Chapter 2 regarding the di�culty in computing verticalvelocity), one cannot rule out the possibility that the features are physical. Mechanisms



29likely involved in the evolution of the secondary circulation include frictional and diabaticforcing, precipitation loading, inertia-gravity wave propagation, and asymmetric vorticitydynamics. It should be noted that the period of pure inertial oscillations in the inner coreranges from 10 to 40 minutes, which is less than or equal to the time resolution of thedata. Thus, the presence of inertia-gravity waves may preclude quantitative, and perhapsqualitative, comparison between observed and budget tendencies from one wind compositeto the next.The role of vorticity asymmetry in producing mean ow change is considered inSection 3.2. Here, we focus on purely symmetric phenomena. A comparison of the left-hand side of (3.1) and the sum of the �rst two terms on the right-hand side is shown inFig. 3.3 for the ow evolution from leg 1 to 7. Although the observed tangential windtendency is an order of magnitude less than the budget tendency, qualitative agreementbetween the two is found. Both depict a negative tendency in the vicinity of the RMWand a positive tendency outside this radius.Insight into the observed weakening trend in the primary circulation may be obtainedusing axisymmetric vortex spin-down ideas. For an axisymmetric hurricane in approximategradient and hydrostatic balance the theoretical predictions of Eliassen and Lystad (1977,hereafter EL) are appropriate. EL predicted the decrease in tangential winds with timefor a vortex with di�erential rotation under the inuence of a quadratic drag law for thesurface stress in a neutrally-strati�ed atmosphere. Figure 1.1 shows the wind asymmetryto be an order of magnitude smaller than the symmetric wind in the case of Olivia, butmeasurements of the strati�cation are unavailable. Neutral buoyancy in the near core-region (excluding the eye) is supported by Emanuel (1986). As long as these assumptionshold approximately true, EL's theory appears to be useful as a zeroth-order descriptionof hurricane spin-down.The basic dynamics of vortex spin-down are relatively simple. The departure of theow from exact cyclostrophic balance in the vortex boundary layer due to the presenceof frictional drag drives a radial inow. This radial inow transports angular momentuminto the inner core, compensating for the frictional losses of angular momentum into
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Figure 3.1: Radius-height structure of the symmetric tangential winds during (a) leg 1and (b) leg 7. Contour interval is 5 m s�1.
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Figure 3.2: Radius-height structure of the symmetric transverse ow (u,w) for each ightleg. Wind vectors of the same length, pointing horizontally or vertically, represent thesame speed. Maximum wind vector is 6 m s�1.
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Figure 3.3: A comparison between the observed and budget tendencies of symmetrictangential wind for the transition from leg 1 to 7. Only the symmetric radial vorticity uxand vertical advection terms of Equation 3.1 are used in the budget tendency calculation.The average of the leg 1 and leg 7 wind �elds are used in the budget calculation. Contourintervals for the observed and budget tendencies are 0:2�10�3 m s�2 and 2�10�3 m s�2,respectively. Negative values are depicted by the dashed curves.



33the ocean. In the absence of diabatic forcing and the attendant radial inow above theboundary layer, the free atmosphere radial ow will be outward at all levels (Willoughby1979). By conservation of angular momentum the tangential winds above the boundarylayer must decrease, and the vortex spins down.The time average of Olivia's symmetric transverse ow over the 3.5 h observationperiod is shown in Fig. 3.4. Although inow is still observed up to 3.5 km height, the owabove this level is outward at all radii. This prevalence of radial outow was also observedby MHG for weakening Hurricane Norbert.The rate at which the spin-down occurs was determined heuristically by EL for weakvortices (maximum tangential winds � 10 m s�1). They used a �rst-order K theory toparametrize the eddy stresses in the mixed layer and a quadratic drag law for the surfacestress. A state of near-cyclostrophic balance was assumed to exist throughout the uid inan absolute coordinate system. The free-atmosphere tangential wind, v(r; t) is given by1jvj = 1jv0j + CD�2tH � h ; (3:2)where jv0(r)j is the initial tangential wind, CD the assumed constant drag coe�cient, � theratio of the boundary layer to free atmosphere tangential wind, i.e., the reduction factor, Hthe total depth of the uid, and h the boundary layer depth. Snell and Montgomery (1999)and Montgomery et al. (2000) investigated the validity of (3.2) for hurricane-strengthvortices (maximum tangential winds � 33 m s�1) using an axisymmetric Navier-Stokesmodel which includes the non-cyclostrophic terms neglected by EL. They found thatthe model-derived half-life times of the stronger vortices showed good agreement withthe predictions of EL. We therefore use (3.2) to predict the time-evolution of Olivia'stangential winds above the boundary layer (� 3 km height) at 12 km radius from thevortex center and compare with the observations. Using the drag coe�cient of Deacon(Roll 1965) for 49 m s�1 winds in the boundary layer (CD � 3� 10�3), H = 15 km, h = 1km, � = 0:8, and jv0j = 61 m s�1, we estimate a tangential wind of 58 m s�1 duringleg 4 and 55 m s�1 during leg 7. The observed tangential winds during legs 4 and 7 areapproximately 54 m s�1 and 51 m s�1, respectively. Thus, in spite of the simpli�cations
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Figure 3.4: As in Fig. 3.2, but averaged over the period 2027{2355 UTC. Maximum windvector is 2.5 m s�1. The solid line denotes the time-average location of the RMW as afunction of height.



35made in deriving (3.2) and the greater complexity of Olivia's environment (e.g., verticalshear), the magnitude of the observed spin-down of the tangential winds is consistent withthe axisymmetric predictions of EL.3.1.2 Symmetric Vorticity EvolutionThe evolution of Olivia's symmetric vorticity derived from the dual-Doppler windsat 3 km height is shown in Fig. 3.5a. Consistent with the vortex weakening discussed inthe previous section is a decrease in the radial vorticity gradient near the RMW, mostpronounced between legs 3 and 5. One explanation for this gradient reduction is the sym-metric divergence(convergence) of absolute vorticity inside(outside) � 12 km radius. Suchchanges to the symmetric vorticity pro�le can also occur through asymmetric mechanisms.The vortex spin-down ideas may only be a partial explanation for the observed symmetricevolution. For example, the interaction of convectively-forced vortex Rossby waves withthe mean ow will lead to changes in the mean vorticity pro�le (MK; ME98; M�oller andMontgomery 1999, 2000). Nonlinear mixing of vorticity through the barotropic instabilitymechanism discussed by S99 will also erode sharp radial gradients of symmetric vorticity.The details of the internal asymmetric mechanisms are dependent upon the symmet-ric structure of the vortex. Consider a vortex with monotonically decreasing vorticitywith radius. This ow satis�es Rayleigh's su�cient condition for exponential stability,prohibiting the mixing mechanism of S99. Vorticity redistribution through vortex Rossbywaves can still occur. The Rossby wave phase and group velocities, and the location ofwave-mean interaction for such a stable vortex will depend on both the symmetric shearand vorticity pro�les. In the case where a reversal in the sign of the vorticity gradient ispresent and exponential instability is possible, the mean vorticity structure will determinewhich azimuthal wavenumbers are unstable and their growth rates. Thus, in consider-ing the asymmetric dynamics of Olivia's inner core, it proves useful to �rst examine thesymmetric vorticity structure.The lack of scatterers within the eye prohibits us from obtaining the complete sym-metric vorticity pro�le in Olivia's inner core using dual-Doppler data alone. If the aircraftwind measurements at 3 km height are averaged over a su�cient number of ight legs
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Figure 3.5: Symmetric vorticity (s�1) pro�les at 3 km height (a) derived from thedual-Doppler analysis (legs 1-7) and (b) computed from aircraft wind measurements av-eraged over the �rst three legs (1-3) and last three legs (5-7). For the latter pro�le, onlyleg 7 data is used inside 6 km, resulting in a somewhat noisier vorticity distribution.



37through the storm, a proxy for the azimuthal-mean vorticity within the eye can be com-puted (Fig. 3.5b). Averaging the six radials through Olivia during legs 1 through 3, we�nd that the radial pro�le of vorticity takes the form of a ring, with maximum valuesaround 9.5 km radius. A similar analysis for legs 5 through 7 shows a weaker vorticitygradient near the RMW as depicted in Fig. 3.5a. Also observed is a broader region ofmaximum vorticity inside 10 km with values reduced from earlier legs. The lack of ight-level data inside 6 km radius during legs 5 and 6 precludes an accurate extension of the\symmetric" pro�le to the vortex center. The vorticity pro�le derived solely from leg 7data does show a small depression of the vorticity down to about 8 � 10�3 s�1. Thisevolution of the symmetric vorticity resembles that presented in S99 for a hurricane-likevorticity ring perturbed by a broad-band vorticity asymmetry. They predicted that someof the high vorticity of the ring is ultimately mixed into the center of the hurricane vortex,forming a monotonic symmetric vorticity pro�le. High vorticity is also ejected outward,qualitatively in accordance with what is expected from simple vortex Rossby wave theory.We will revisit these observations and ideas in Section 3.2 when considering the source ofOlivia's vorticity asymmetry.Kossin and Eastin (2000) have performed a more comprehensive study of the evolutionof symmetric vorticity derived from ight-level data for a number of di�erent storms.They con�rmed that during hurricane intensi�cation the vorticity pro�le tends to be ring-like. For most cases when the storm is steady or weakening the vorticity pro�le becomesmore monotonic, consistent with the barotropic instability mechanism of S99 and theobservations presented here.3.2 Asymmetric Vorticity Structure and EvolutionFigure 3.6 shows the azimuthal variance of vorticity averaged over the 3.5 h observa-tion period. Above 3 km height most of the variance is explained by wavenumber 1. Weshould note that the magnitude and, to some extent, the structure of wavenumber 1 invorticity is sensitive to the vortex center de�nition at each level. Wavenumber 2, whichaccounts for most of the variance below 3 km height, is fairly robust under changes to the



38vortex center identi�cation. Higher wavenumbers show a smaller contribution to the totalvariance, but this may be in part a consequence of the aliasing that occurs during the sam-pling of the inner core. Ideally, one would like actual snapshots of the wind �eld at eachlevel. The TA radar, however, scans perpendicular to the ight track, requiring planes toy through the inner core in order to obtain a horizontal wind composite. Parcels of airmoving with the tangential winds at the RMW will go through about 90 degrees duringthe time it takes to composite the inner 15 km of the storm. Therefore, some of the energycontained in the higher wavenumbers will be projected onto lower wavenumbers. Whilewavenumbers 1 and 2 will be modi�ed by aliasing, simple dynamical ideas to be discussedbelow do support their observed dominance.Examination of the perturbation vorticity, � 0, at 3 km height in Fig. 3.7 shows spi-ral bands of vorticity with radial wavelengths on the order of 5-10 km located radiallyoutside the regions of high vorticity associated with the above-mentioned wavenumber 2asymmetry. They are persistently located near 20 km radius during the �rst three legsand then slightly outside this radius during the �nal legs. The maximum vorticity ofthe bands ranges from 0.5-1�10�3 s�1. The bands may be symmetrizing vortex Rossbywaves, predicted by MK to occur in the hurricane near-core region. If so, this is the �rstobservational evidence of such features in the hurricane wind �eld. One source for thebands may be the symmetrization of the large wavenumber 2 vorticity perturbation near12 km radius.We also note the persistent bands of elevated reectivity in the vicinity of the vor-ticity bands (see Fig. 2.2). Enhanced convection could be triggered by the asymmetrictransverse circulation generated in response to momentum ux convergences associatedwith the vorticity bands. Inner-core spiral bands of reectivity over open ocean have alsobeen observed by Gall et al. (1998) using ground-based radar. They speculated that thefeatures were similar to boundary layer rolls (Fung 1978), but had insu�cient data tomake de�nitive statements about their origin. As discussed in Chapter 1, understandingthe role of vortex Rossby waves in tropical cyclone structure and intensity change is animportant motivation for this work. The possibility that this data may lend itself to theresolution of �ne-scale spiral vortex Rossby waves is encouraging.
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Figure 3.6: Radius-height structure of the azimuthal variance of vorticity averaged overthe period 2027{2355 UTC. Also shown are individual wavenumber contributions to theazimuthal variance (i.e., wavenumber components of vorticity squared and azimuthallyaveraged). Contour interval is 0:2 � 10�6 s�2.



40

Figure 3.7: Perturbation vorticity, � 0, at 3 km height for each ight leg. Contour intervalis 0:4 � 10�3 s�1. Negative values are depicted by the dashed curves.



41The azimuthal structure of perturbation vorticity at 12 km radius is shown in Fig.3.8. Maximum values of positive vorticity are approximately 3-4�10�3 s�1. During legs 1and 2, when the symmetric vortex from low to mid levels is nearly barotropic, the vorticityasymmetry tilts little in the azimuth with height. A clear azimuthal wavenumber 2 patternexists at all heights within the domain during leg 1 and only below 3 km during leg 2.As the vertical shear, vortex tilt, and baroclinicity of the symmetric vortex increase, theazimuthal tilt becomes more pronounced. It is also observed following leg 2 that thevorticity in the northern quadrant above 3 km height is persistently large and appears tojoin with an equally large perturbation just above, and extending down into, the boundarylayer of Olivia. During legs 4 through 7 a second positive vorticity asymmetry is observedin the southern quadrant of the storm, although it appears to extend up from low levels anddoes not reach much above 4 km height. This accounts for the dominance of wavenumber2 at low levels and the transition to wavenumber 1 at middle levels observed in Fig. 3.6.The evolution of the wavenumber 2 component of vorticity at low levels is shown inFig. 3.9. Since the phase and radial location of the wavenumber 2 asymmetry are nearlyconstant with height below 3 km, we have vertically averaged the vorticity at low levels toprovide a bulk estimate of the amplitude. Approximately 20 min separates the end of onecomposite and the beginning of the next. A parcel of air being advected by the tangentialwinds at the RMW will make almost an entire orbit around the storm during this timeperiod. The wavenumber 2 vorticity asymmetry may not move with the advective speed,making time continuity di�cult to discern simply by looking at consecutive composites.Following Kuo et al. (1999) we use high temporal resolution radar reectivity compos-ites to provide an indication of the \instantaneous" tangential speed of this wavenumber2 feature. In their study of Typhoon Herb (1996) using reectivity from a WSR-88DDoppler radar, Kuo et al. found an approximately elliptical eye rotating cyclonically witha period of 144 min. They hypothesized that the eye rotation observed in the reectiv-ity might be the manifestation of a propagating wavenumber 2 vortex-Rossby edge wave.According to the linear wave theory of Kelvin (Lamb 1932), the azimuthal phase speed ofa vortex-Rossby edge wave propagating on the vorticity discontinuity of a Rankine vortex
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Figure 3.8: Azimuth-height cross-section of perturbation vorticity at 12 km radius fromthe storm center for each ight leg. North is located at 90� and west is located at 180�.Contour interval is 0:5 � 10�3 s�1. Negative values are depicted by the dashed curves.The heavy, solid vertical line denotes the direction of storm motion.
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Figure 3.9: Azimuthal wavenumber 2 component of vorticity vertically averaged over thelowest 3 km for each ight leg. Contour interval is 0:4 � 10�3 s�1. Negative values aredepicted by the dashed curves.



44is given by cp = vmax(1� 1n); (3:3)where vmax is the maximum tangential wind speed and n the azimuthal wavenumber.Thus, for wavenumber 2 the propagation speed is one half vmax. Relating the observedelliptical eye rotation period in the reectivity �eld to the propagation period for a vortexRossby edge wave, Kuo et al. found that (3.3) was approximately valid. It should also benoted that the nonlinear Kirchho� solution for elliptical eye rotation (Lamb, 1932) agreeswell with the above linear solution as long as the ratio of minor to major axis is close tounity. Figure 3.10 shows the LF reectivity evolution of Hurricane Olivia's inner core at3 km height during the period spanned by leg 5. As in the case of Typhoon Herb, theeye appears elliptical and rotates cyclonically in time. The ratio of minor to major axisis approximately 0.7. Over the 7 minute period the eye rotates through about 50 degrees.The eye rotation period is then estimated to be 50 minutes. From the wind analysis duringthis time the RMW and maximum tangential wind speed at 3 km height are 14 km and 57m s�1, respectively. The circulation period for a parcel being advected around the vortexat the RMW is then 25 minutes, or one half the eye rotation period, as predicted by (3.3).Supplementing the reectivity with the wind �eld data allows this hypothesis linkingthe rotation of the reectivity ellipse to the rotation of the associated vorticity asymmetryto be examined further. The orientation of the reectivity ellipse observed in Fig. 3.10 isconsistent with the phase of the wavenumber 2 component of vorticity shown in Fig. 3.9for leg 5, i.e., the positive vorticity asymmetry lies along the major axis. An attempt toextend this interpretation to other times by comparing the observed phase evolution tothat predicted by (3.3) was met with limited success. Only between legs 5 and 6 did thephase of wavenumber 2 evolve in a manner consistent with a vortex-Rossby edge wave.In addition to aliasing issues, discrepancies between observations and the linear theorydescribed by (3.3) may be attributed to physical complications heretofore neglected.The basic state vorticity shown in Fig. 3.5 is not Rankine. Although the radial gradi-ent of mean vorticity outside the RMW is quite steep, discrepancies between Kelvin's edgewave solution and the wave solution on a continuous vorticity pro�le are expected. In the
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Figure 3.10: Olivia inner-core LF reectivity composites at 3 km height. Period spannedis 2244-2251 UTC at 1 min time intervals. Contour interval is 10 dBZ.



46inviscid limit the vorticity waves described by (3.3) propagate inde�nitely around the vor-tex as discrete normal modes which never axisymmetrize. When the gradient of vorticity isno longer con�ned to a single radius (but the pro�le remains monotonic), axisymmetriza-tion of the initial vorticity asymmetry is expected for all azimuthal wavenumbers in thelinear problem (Sutyrin 1989; Carr and Williams 1989; Smith and Montgomery 1995;MK). The axisymmetrization mechanism also e�ects the phase propagation such that asthe central radial wavenumber increases due to the shearing by the basic state ow, theazimuthal phase speed of the Rossby waves approaches the local tangential wind speed(MK).The inuence of cumulus convection on the Rossby wave propagation must inevitablybe considered. The extension of the two-dimensional barotropic local dispersion relationfor vortex Rossby waves derived by MK to a stably strati�ed barotropic circular vortex ingradient balance is given by (M�oller and Montgomery 2000)! = n�
0 + nR ��0�q0 �q00(r)[k2 + n2=R2 + (��0 ��0m2)=N2] ; (3:4)where n, k, and m are the azimuthal, radial, and vertical wavenumbers, respectively, Rthe reference radius (see MK), �q00 the radial derivative of the barotropic basic state PV,��0 the absolute vorticity, ��0 the inertia parameter, and �
0 the angular velocity. In regionsof convection the static stability, and thus N2, will be reduced from that in the non-convective regions, so the phase propagation of the waves will be modi�ed. Accordingto (3.4), the decrease in Rossby deformation radius in the convective regions will reducethe retrograde propagation of vortex Rossby waves. The precise dependence of vortexRossby wave propagation on static stability could be explored with a high spatio-temporalresolution data set generated by a full-physics numerical model.We conclude that over the time interval de�ned by leg 5 (and perhaps leg 6) thewavenumber 2 asymmetry in vorticity propagates in a manner consistent with a vortexRossby wave packet of near-discrete structure. Although symmetrization and convectionwill modify its propagation speed, the greatest obstacle to extending this interpretationto other observation times is the 30-min time resolution of the dual-Doppler wind data.



47The hypothesized propagation period of the vorticity asymmetry is approximately 50 min.Thus, to shed further light on the propagation characteristics, snapshots of the wind �eldwould be required about every 10 min. Insight into the source of the wavenumber 2vorticity asymmetry may still be obtained by examining the observations in the contextof recent numerical and theoretical studies of vortex dynamics.3.3 Sources of Vorticity Asymmetry3.3.1 Convective and Environmental SourcesAsymmetric convection in the eyewall is expected to produce asymmetries in PV.The gradient of the diabatic heating rate associated with convection projected onto theabsolute vorticity vector tends to be positive at low levels and negative at high levels.Thus, according to the PV equation, a positive(negative) anomaly will tend to be producedat low(high) levels (Haynes and McIntyre 1987). Convection in the eyewall will projectonto a number of azimuthal wavenumbers, but it is not apparent from observations ofOlivia's vertical velocity and reectivity structures that wavenumber 2 is being preferred.Nevertheless, convective asymmetries will play an important role in the internal vorticitydynamics to be discussed below by providing broad-band vorticity perturbations to thesymmetric vortex.The interaction of Hurricane Olivia with the large-scale deformation �eld could haveexcited the near-core wavenumber 2 asymmetry in vorticity (e.g., Glatz and Smith 1996).Another facet of the vortex-environment interaction is the vertical shearing of the hurri-cane. The downward projection of the upper-level PV of the tilted vortex on the low-levelvortex PV results in vorticity asymmetry at low levels. Wavenumber 1 will dominate theasymmetry in the case of unidirectional shear. Higher wavenumbers may become increas-ingly important if the direction of vortex tilt varies with height. As will be discussed inChapter 6, this vertical shear mechanism could be activated following leg 3, when thelocal vertical shear increases, but seems an unlikely candidate for the production of thewavenumber 2 asymmetry observed during leg 1. At that time the vortex shows little tiltwith height.



48The enhanced convection on the east side of Olivia argued in Chapter 6 to be triggeredby increased vertical shear following leg 2 is generally anked radially inward by strongdowndrafts. Gamache et al. (1997) suggested that perturbation vorticity may be producedin such regions via the tilting of radial vorticity �laments by the radially-sheared verticalwinds (e.g., in the front right quadrant of Fig. 3.7 during leg 5). The positive vorticity inthe front quadrant of Olivia following leg 2 near 12 km radius could have resulted fromsuch a mechanism, leading to the persistent wavenumber 1 in vorticity above 3 km height.One could alternatively make the argument that pre-existing vertical vorticity associatedwith the vorticity asymmetry in the southern quadrant during leg 2 was vertically andazimuthally advected. Stretching of this vorticity in the region of strong updrafts in theeastern quadrant could have then resulted in the mid-level vorticity asymmetry observedduring leg 3. Both mechanisms, while plausible, mainly shed light on the origin of thewavenumber 1 vorticity asymmetry observed above 3 km height.3.3.2 Internal Dynamics: An Analogue ModelWe now consider the possibility that the production of the dominant wavenumber 2asymmetry in vorticity at low levels is directly tied to the inner-core symmetric vortexpro�le of Olivia. To elucidate the dynamical mechanisms we utilize the nondivergentbarotropic vorticity equation, @�@t + u@�@r + vr @�@� = 0; (3:5)in a series of four numerical experiments. A semispectral model was used to performthe simulations. A discussion of the pertinent model details is provided in Chapter 4 inthe more general equivalent barotropic context. The nondivergent model is recovered bysetting the baroclinic terms to zero. The radial grid spacing used here is 0.5 km and thenumber of radial points is 200. The azimuthal truncation is 16 modes.Figure 3.11 shows the initial vorticity pro�les used in each of the four cases. Thepro�les are based on Olivia's observed symmetric vorticity shown in Fig. 3.5 with somemodi�cations. Although the aircraft measurements suggest a ring pro�le of vorticity,we �rst consider the case where the vorticity inside the eye is well-mixed as in a modi�ed



49Rankine vortex (Cases A and B). We then examine the asymmetric dynamics of an elevatedvorticity ring (Cases C and D) as discussed in S99. In Cases A-C the pro�le of dual-Dopplerderived tangential wind outside 18 km radius was replaced by an r�0:4 �t to the ight-level observations. In Case D we consider the e�ect of the \bump" in symmetric vorticityobserved near 25 km radius during legs 1 and 2 on the asymmetric evolution of the ow.All of the above vortices were perturbed with an initial pulse of cyclonic vorticity centeredat 12 km radius and radially aligned:� 0 = � 0maxe�(r0=rd)2 ; (3:6)where � 0max = 0:1��RMW , rd = 5 km, and r0 is the radius from the asymmetry center.Cases A and B demonstrate the dependence of the asymmetric vorticity evolution onthe slope of the mean vorticity gradient in the vicinity of the RMW. Solid-body rotationis assumed inside the RMW in both cases, but the larger radial vorticity gradient of CaseA reects the observations of leg 1 and the weaker gradient of Case B the observations ofleg 4. In cases A and B the vortex is exponentially stable for all azimuthal wavenumbers(Gent and McWilliams 1986). The linear dynamics is then governed exclusively by thecontinuous spectrum of sheared vortex-Rossby wave disturbances (Smith and Montgomery1995; MK). The linear evolution of the vorticity perturbation (3.6) appears similar inboth cases, taking the form of vortex-Rossby wave trailing spirals (not shown). This is incontrast to the observations in Fig. 3.7 which, for many of the ight legs, show a moremodal (i.e., non-changing) structure to the vorticity asymmetry. When the pro�les forCases A and B are instead perturbed with a pure wavenumber 2 asymmetry, a noticeabledistinction between the initial linear evolutions is evident. The steeper pro�le supportsvortex Rossby waves which initially look modal in structure like the waves predicted byKelvin's solution (Figure 3.12a). The estimated propagation period for the wave (� 35min) is consistent with (3.3). The pro�le with the radially broader transition region fromhigh to low vorticity supports more tightly wound vortex Rossby waves (Figure 3.12b).Although the anticyclonic horizontal shear is less in this case, the Rossby elasticity isalso less. The net result is a greater tendency for sheared, trailing spiral disturbances. In
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Figure 3.11: Initial pro�les of symmetric vorticity (s�1) used in the nondivergent,barotropic numerical simulations. Shown are Case A (solid), Case B (short dash), Case C(long dash), Case D (dash dot), and Case D0 (dash dot dot dot).



51both cases the wavenumber 2 vorticity asymmetry ultimately decays as axisymmetrizationproceeds. This distinction in wave structures for Cases A and B is not readily apparent inthe observations shown in Fig. 3.9. We also note that these pro�les, while they may allowazimuthal propagation of wavenumber 2, do not prefer the emergence of wavenumber 2over other wavenumbers.The next two pro�les (C and D) highlight the potential importance of barotropicinstability in the generation of asymmetric vorticity in the near-core region, and morespeci�cally a mechanism preferring the emergence of wavenumber 2. (Algebraic instabili-ties associated with wavenumber 1 may also be playing a role in the asymmetric evolutionof Olivia (Smith and Rosenbluth 1990; Nolan and Montgomery 2000)). Both pro�les C andD satisfy Rayleigh's necessary condition for barotropic instability (Gent and McWilliams1986). To determine whether the pro�les indeed support linearly unstable modes, we per-formed an inviscid, nondivergent eigenanalysis of the continuous problem (see AppendixC). Nonlinear simulations in which the mean pro�les were perturbed by (3.6) have beencarried out and are summarized in order to convey the e�ects of nonlinearities on theasymmetric vorticity evolution.The ring pro�le of Case C is exponentially unstable for wavenumbers 2 through 4,with wavenumber 2 being the most unstable. All other wavenumbers are exponentiallystable. The e-folding time for the unstable wavenumber 2 eigenmode is 45 min. Changesin the width of the vorticity ring or the ratio of the maximum vorticity to the vorticity atthe vortex center will alter the growth rate (S99). Keeping in mind that Olivia's actualvorticity pro�le may depart from the observations shown in Fig. 3.5, this value of thee-folding time is therefore considered a reasonable estimate of the actual growth rate.The nonlinear simulation in which the Case C pro�le is perturbed by (3.6) shows theemergence of the unstable wavenumber 2 modal structure in the vicinity of the RMW aftera few e-folding times (Figure 3.12c). Elevated vorticity from the ring mixes into the vortexcenter after 4-5 hours, resulting in a vortex pro�le with maximum symmetric vorticity atthe center. The change in mean tangential wind over the �rst 4 hours of the simulationis shown in Fig. 3.14. As predicted by Stoke's theorem, the transport of vorticity into
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Figure 3.12: Numerical simulation of the wavenumber 2 component of vorticity for (a)Case A and (b) Case B. Contour interval is 0:4�10�3 s�1. Initial condition is followed bysnapshots of the evolution every 10 min. Negative values are depicted by the dashed curves.Also shown are numerical simulations of the total (mean plus perturbation) vorticity for(c) Case C and (d) Case D0. Contour interval is 2�10�3 s�1. The initial condition derivedfrom (3.6) is followed by snapshots of the evolution every 2 h, except for the last plot inthe sequence which depicts the well-mixed state at 10 h.



53the vortex center results in an increase in the mean tangential wind inside the RMW ofapproximately 7 ms�1 and a decrease at the RMW of roughly 3 ms�1.The transition of Olivia's symmetric vorticity from a well-de�ned ring to a near-monotonic pro�le, or at least a broader ring, resembles this simulated evolution. Figure3.15 shows the change in mean tangential wind over the 3.5 hour observation period.Consistent with the Case C evolution, the mean tangential wind decreases in the vicinityof the RMW and increases inside the eye. It is plausible that the weakening of symmetriceyewall convection in Olivia inferred from Fig. 2.2 reduced the symmetric PV generationin the eyewall. In the absence of su�cient PV generation to maintain the ring, barotropicinstability then set in to stabilize the vortex pro�le. The wavenumber 2 asymmetry atlow levels of Olivia, according to Case C, could then be interpreted simply as a by-product of the vorticity mixing process. The magnitude of the spin-down (� 10 ms�1)and the presence of an acceleration outside the RMW are inconsistent with the barotropicinstability mixing mechanism and are most likely the result of the axisymmetric spin-downmechanism discussed in Section 3.1.1.The dual-Doppler observations in Fig. 3.5a indicate a possible secondary vorticityring around 25 km radius during legs 1 and 2. This bump is incorporated into the pro�leof Case D. Before examining its e�ect on the inner-core dynamics, we consider �rst thequestion of why this bump in vorticity might exist where it does in the �rst place. Theprimary ring of vorticity is believed to form through frictional convergence and vortex-tubestretching in association with strong cumulus convection in the eyewall (e.g., M�oller andSmith 1994). One explanation for the secondary bump in vorticity is that vortex Rossbywaves excited in the eyewall prior to leg 1 propagated radially outward, stagnating outsidethe RMW. The nondivergent, barotropic simulations of MK suggest that the subsequentwave-mean interaction produces a decrease in mean relative vorticity in the vicinity ofthe stagnation radius and an increase in mean relative vorticity radially outward of thestagnation radius. The radial distance between the center of the initial wave packet andthe stagnation radius, derived from (3.4), is given by�r = ��0�q00�q0R�
00 1[k20 + n2=R2 + (��0 ��0m2)=N2] ; (3:7)
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Figure 3.13: see Fig. 3.12
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Figure 3.14: Symmetric tangential wind change (ms�1) over the �rst four hours of theCase C simulation.
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Figure 3.15: Symmetric tangential wind change (ms�1) over the 3.5 h observation periodat 3 km height (a) derived from the dual-Doppler analysis and (b) computed from aircraftwind measurements.



57where k0 is the initial radial wavenumber. Using Olivia's vortex pro�le at R = 12 kmduring leg 1, we estimate ��0 � 1� 10�2 s�1, ��0 � 7� 10�3 s�1, �q0 = N2��0 � 7� 10�7 s�3,R�
00 � �3 � 10�3 s�1, and �q00 � �3 � 10�10 m�1s�3. Assuming an initial central radialwavenumber of 1/5 km�1 (inverse horizontal eyewall scale), a vertical wavenumber of 1/5km�1 (approximate inverse depth of the vorticity bands), and N2 � 1 � 10�4 s�2, thestagnation radius for wavenumber 1 is found to be approximately 20 km from the RMW.In the convective regions the static stability N2 will likely be less than the value used inthe above calculation (Emanuel et al. 1987; Montgomery and Farrell 1992). Reduced staticstability and the presence of symmetric radial inow will reduce the value of �r. Thus,the estimated stagnation radius is consistent with the separation between eyewall andsecondary bump, providing possible evidence for a vortex-Rossby wave induced change inthe symmetric vortex.The impact of the vorticity bump on the asymmetric vorticity evolution may be impor-tant, causing deviations from the evolution described for Case C. Laboratory experimentsinvolving two-dimensional perturbations to two-dimensional vortices with monotonicallyincreasing vorticity from the RMW to the vortex center and a bump in vorticity outsidethe RMW (i.e., an associated secondary tangential wind maximum) have been found toproduce tripolar vortex structures dominated by wavenumber 2, with a central ellipticalregion of high vorticity and satellite regions of anticyclonic vorticity along the minor axisof the ellipse (e.g., Legras et al. 1988; Polvani and Carton 1990; Kloosterziel and van Heijst1991). If the vorticity pro�le satis�es Rayleigh's necessary condition for barotropic insta-bility, one often �nds that such stable tripolar vortex structures emerge. Montgomery andEnagonio (1998) were evidently the �rst to reveal a tripolar vortex in three-dimensionalvortex ow in the published literature. When a two-cluster convective anomaly was usedto perturb an initially barotropic vortex, a tripole-like structure emerged at the upperlevels of their QG model. In the context of 2D nondivergent dynamics Kossin et al. (2000)demonstrated that tripolar vortices can also emerge from hurricane-like vortex pro�leswith a symmetric secondary vorticity maximum radially outside the maximum at thevortex center.



58Experiments using the modi�ed Rankine pro�le of Case A with the secondary bumpof vorticity of Case D did not produce a stable tripolar vortex. A barotropic stabilityanalysis of a piecewise-uniform approximation to this pro�le showed that wavenumber 2is in fact marginally stable (James Kossin, personal communication). A stable tripolarvortex was observed to emerge, however, upon increasing the vorticity of the bump by 35percent. The question then arises of whether a stable tripolar vortex can emerge whenthe vorticity is depressed in the central region of the vortex, as might be expected in thelower- to mid-tropospheric portion of a hurricane (see Fig. 3.5b).The vorticity pro�le for Case D0 is similar to that of case D, but with the secondarybump in vorticity elevated by 35 percent. A continuous nondivergent eigenanalysis of thispro�le found, in addition to the mode described in case C, a second unstable mode forwavenumber 2. Upon examining the vorticity map plot of this eigenmode, the mode isidenti�ed with the phase-locking of vortex Rossby waves propagating on the outer edgeof the primary ring and the inner edge of the outer bump (not shown). Its e-folding timeis 85 min, or approximately twice that of the mode associated with the primary vorticityring. According to linear dynamics, then, the unstable mode observed in Case C shouldemerge �rst and tend to dominate the solution. Whether this remains true once wave-waveinteractions become signi�cant has important implications for the excitation of tripolarvortex structures in the lower-tropospheric region of hurricanes that are weakly forced.The nonlinear simulation in which the Case D0 pro�le is perturbed by (3.6) showsessentially the same evolution of total vorticity as was observed in Case C (Fig. 3.12d). Atripolar vortex structure is not observed to emerge at long times. As long as the growthrate of the unstable mode associated with the primary ring is signi�cantly larger thanthat of the bump, we �nd that tripolar structures do not materialize. Thus, based on thesimple nonlinear initial-value experiments presented here, the most plausible (barotropic)internal mechanism for producing Olivia's wavenumber 2 asymmetry in vorticity at lowlevels during the observation period is the barotropic instability of the primary ring ofvorticity.The role of vorticity redistribution in TC development is next considered in the three-dimensional context. Redistribution of vorticity by vortex Rossby waves is found to play



59a key role in the vertical alignment (or non-alignment) of vortices exhibiting small initialtilts and in the merger of convectively-generated PV within an incipient vortex. Thelatter is believed to be especially relevant to the problem of tropical cyclogenesis as �rstdemonstrated by ME98. We further show that a dynamical barrier to TC developmentcan be elucidated using linear vortex Rossby wave thinking.



Chapter 4NUMERICAL MODEL DESCRIPTIONS4.1 Three-Dimensional QG ModelMotivated by the geostrophic nature of large-scale ows in the middle-latitude atmo-sphere and ocean, the QG system has been used extensively in the study of vortex mergerand alignment (McWilliams 1989; Polvani 1991; Viera 1995; Dritschel and Juarez 1996;Sutyrin et al. 1998). Its utility as a benchmark model for testing basic dynamical theoriesalso has been exploited in recent studies of TCs (ME98; Smith et al. 2000). The PVconservation equation, invertibility relation, and thermodynamic equation in Boussinesqform on an f -plane are, respectively,@q@t + J ( ; q) = 0; (4:1)q = f0 +r2h + 1�0 @@z  �0f20N2 @ @z ! ; (4:2)@@t @ @z + J � ; @ @z �+N2w = 0; (4:3)where q is the PV,  the ow streamfunction (which equals the geopotential, �, divided byf0), �0 the density, f0 the constant Coriolis parameter, N2 the constant static stability, andw the vertical velocity. In Cartesian coordinates the Jacobian, J( ; q) = @ =@x � @q=@y�@ =@y � @q=@x. The details of the three-dimensional numerical model used to solve Eqs.(4.1){(4.3), henceforth referred to as QG3D, are described by ME98. One di�erence fromME98 is that in the non-dimensional numerical simulation of (4.1){(4.3) we will not requirethe horizontal scale, L, equal the Rossby deformation radius, LR = NH=f , where H is themodel depth. The thermal vorticity in the nondimensional invertibility relation (ME98,Eq. 5) is then multiplied by the vortex Burger number, (LR=L)2. Unless otherwise stated,no explicit di�usion is included in the model.



614.2 Equivalent Barotropic QG ModelA tilted PV column vertically bound by rigid lids can be decomposed into a barotropicmode and internal baroclinic modes. In general the interior ow results from both interiorPV and potential temperature anomalies on the vertical boundaries (Hoskins et al. 1985).Hurricane observations show that the potential temperature gradients on the boundariesare weak (e.g., Hawkins and Rubsam 1968). Consistent with these observations and recentnumerical studies of TCs (e.g., M�oller and Montgomery 2000), we make the simplifyingassumption of isothermal vertical boundaries at z = 0 and H. The streamfunction and PVcan then be expressed as the sum of the vertical modes: (r; �; z; t) = 1Xm=0  ̂m(r; �; t) cos�m�zH � (4:4)q(r; �; z; t) = 1Xm=0 q̂m(r; �; t) cos�m�zH � ;where m is the vertical wavenumber. Substitution of (4.4) into Eqs. (4.1){(4.3) yieldsan equivalent barotropic (EQB) system of nonlinear equations for the real-valued, time-dependent amplitudes,  ̂m and q̂m. The nonlinear equations truncated at m = 1 areshown below. Because of the natural circular geometry of the problem, the equations areevaluated in cylindrical coordinates. The semi-spectral model described by ME98 (see alsoMontgomery et al. 2000 for more detail), modi�ed to allow �nite LR, is used to perform thenumerical computations (see below). A 2000 km radius domain with radial grid spacing�r = 5 km and 8 mode azimuthal truncation was used. All nonlinear simulations wererun with a di�usion coe�cient � varying from 100 to 200 m2s�1 to keep the integrationstable at long times.4.2.1 Nonlinear Initial-Value ModelFor the tilted vortex (Section 5.1) and m = 1 isolated PV anomaly (Section 5.2)experiments, it is su�cient to simulate the vortex evolution using only the barotopicmode (m = 0) and �rst internal baroclinic mode (m = 1). Truncating (4.4) at m = 1 and



62then substituting into the PV equation (4.1) yields the following nonlinear PV tendencyequations for m = 0 and 1, respectively, @@t + 1r @ ̂0@r @@� � 1r @ ̂0@� @@r! q̂0(r; �; t)+ 12  1r @ ̂1@r @@� � 1r @ ̂1@� @@r! q̂1(r; �; t) = 0; (4:5)and @@t + 1r @ ̂0@r @@� � 1r @ ̂0@� @@r! q̂1(r; �; t) +  1r @ ̂1@r @@� � 1r @ ̂1@� @@r! q̂0(r; �; t) = 0: (4:6)This system of equations will tend to underestimate the magnitude of the azimuthal meanow change since them = 2 tendency associated with the self interaction of (m;n) = (1; n)is excluded.In Section 5.1, where the wave-mean interaction is not critical to understanding thevortex evolution, the above truncated system is solved. The (̂ )m are �rst expanded in atruncated azimuthal Fourier series following Appendix B of ME98: ̂m(r; �; t) = NXn=�N ~ mn(r; t)ein� (4:7)and q̂m(r; �; t) = NXn=�N ~qmn(r; t)ein�; (4:8)where n is the azimuthal wavenumber, N is the azimuthal mode truncation, and ~( )mnare the complex Fourier coe�cients. This semi-spectral formulation is advantageous forswirling ows where the mean ow dominates the asymmetric component of the ow. Sincethe radial and azimuthal resolutions are independent, one can reduce the number of degreesof freedom by choosing a minimum allowable azimuthal resolution. For simple experimentsinvolving axisymmetrization on stable vortex monopoles, one may only need to retain afew azimuthal wavenumbers to accurately capture the ow evolution. This dimensionalityreduction will reduce computational time (Montgomery et al., 2000). Substitution of (4.7)and (4.8) into the ux form of equations (4.5) and (4.6) yields, respectively,@ ~ 0n@t = r�20n ~F0n(r; t) (4:9)and @ ~ 1n@t = r�21n ~F1n(r; t); (4:10)



63where ~F0n(r; t) = 1r f Xjkj�Njn�kj�N [ik @@r ( ~ 0;k~q0;n�k)� in~q0;n�k@ ~ 0;k@r +12(ik @@r ( ~ 1;k~q1;n�k)� in~q1;n�k @ ~ 1;k@r )] +ind��dr ~ 0;n � ind � dr ~q0;ng+ �r20n~q0;n; (4.11)~F1n(r; t) = 1r f Xjkj�Njn�kj�N [ik @@r ( ~ 0;k~q1;n�k)� in~q1;n�k@ ~ 0;k@r +(ik @@r ( ~ 1;k~q0;n�k)� in~q0;n�k@ ~ 1;k@r )] +ind��dr ~ 1;n � ind � dr ~q1;ng+ �r20n~q1;n; (4.12)and r2mn = (1=r)@=@r + @2=@r2 � n2=r2 � 2m, where m = m�=LR is the inverse Rossbydeformation radius for internal mode m. � is the azimuthal-mean geostrophic relativevorticity and  is the azimuthal-mean streamfunction. The last term in both equations isthe explicit di�usion. Note that the linear terms involve only the barotropic componentof the azimuthal mean vortex, i.e., � (r; t) = ~ 00(r; t) and �q(r; t) = ~q00(r; t). The tendencyin the azimuthal mean quantities is transferred to the mean vortex after each time step,and then set to zero before the next time step. Consistent with the barotropic meanvortex constraint, we impose ~F10 = 0. In other words, we neglect the small nonlinearinteractions between the m = 1 asymmetries and the m = 0 asymmetries that projectonto the azimuthal mean vortex.In Section 5.2 where the mean ow change predicted by the QG3D and EQB modelsis compared, we wish to include the full e�ect of the self-interaction of (m;n) = (1; n),i.e., both the (0; 0) and (2; 0) contributions. The wave-mean terms which contribute tothe tendency in (0; 0) are in fact the same terms that contribute to the tendency in (2; 0).Thus, to account for the m = 2 tendency we simply double the wave-mean terms in the(0; 0) equation. This approximation is equivalent to assuming m = 0 in the inversion ofpotential vorticity for streamfunction, and will tend to overestimate the magnitude of themean-ow change. The inclusion of m = 2 in this way is consistent with the quasi-linearapproximation presented in Section 5.2.



644.2.2 Linear Initial-Value ModelAn advantage of the above semi-spectral formulation is that it allows easy implemen-tation of the linearized system of equations governing the evolution of perturbations to acircular vortex ow. Retaining only the linear terms in Eqs. (4.11) and (4.12) yields thefollowing inviscid linear equations for the Fourier coe�cients:� @@t + in
� ~qmn(r; t) � inr d�dr ~ mn(r; t) = 0; (4:13)1r @@r  r@ ~ mn@r !�  n2r2 + 2m! ~ mn = ~qmn; n � 1; (4:14)1r ddr  rd dr ! = �: (4:15)The vortex evolution simulated by the linear EQB model will be compared to that simu-lated by the nonlinear models in Chapter 5 to gain insight into the nature of the alignmentdynamics.For disturbances that are sheared by the di�erential rotation of the basic state ow,�ner and �ner radial scales will be produced placing a limit on how long the inviscid linearsimulations can be integrated. This time limit was shown by Smith and Montgomery(1995) to be tmax � ����� �n�rd
=dr ����� ; (4:16)where n is the azimuthal wavenumber, �r is the radial grid spacing, and 
 is theazimuthal-mean angular velocity. For n = 1, �r = 5 km, and the mean vortex to bedescribed in Section 5.1, tmax � 54 days. All inviscid integrations shown here are re-stricted to time intervals less than 54 days.Before the �rst timestep, the QG3D model subtracts the mass-weighted average of PVfrom the total �eld to ensure conservation of domain-integrated PV. This small correctionto the total PV adds a constant anticyclonic rotation to the domain. For comparison withthe EQB simulations the QG3D map plots are rotated cyclonically by the azimuthal angleconsistent with this constant rotation.



654.3 Equivalent Barotropic Asymmetric Balance (AB) ModelFinite Rossby number e�ects are not contained within the QG system. To con-sider more rapidly rotating vortices we could use Eliassen's (1951) balance formulationwhich views a vortex as proceeding from one (quasi) gradient balanced state to the next.Eliassen's formulation, however, is valid only for symmetric vortices. A more generalizedbalance theory is required to capture the non-axisymmetric processes of vortex merger andalignment. The Asymmetric Balance (AB) theory for rapidly rotating vortices (Shapiroand Montgomery 1993) has proven useful in the context of asymmetric TC dynamics (MK;M�oller and Jones 1998; M�oller and Montgomery 1999, 2000). AB theory is accurate fororder unity Rossby numbers and order unity asymmetric divergence, remains qualitativelyuseful at even higher Rossby numbers (M�oller and Montgomery 1999; Montgomery et al.1999), and has the desirable property of �ltering gravity and inertia waves (as in the QGformulation). As the Rossby number approaches zero, the AB system reduces to the QGsystem.The linear equivalent barotropic AB model is derived following the three-dimensionalderivation of Shapiro and Montgomery (1993). The radial and tangential momentum,thermodynamic, and continuity equations in hydrostatic, Boussinesq form on an f -plane,linearized about a barotropic mean vortex are, respectively,Dvu0Dt � �v0 = �@�0@r ; (4:17)Dvv0Dt + �u0 = �1r @�0@� ; (4:18)DvDt �@�0@z �+N2w0 = 0; (4:19)1r @@r (ru0) + 1r @v0@� + @w0@z = 0 (4:20)where DvDt = @@t + vr @@� (4:21)is the material derivative operator following the mean tangential wind, �0 is the pertur-bation geopotential, � = f +2v=r is the modi�ed Coriolis parameter, and � = f + � is the



66absolute vertical vorticity. The mean tangential wind is assumed in gradient balance withthe mean geopotential �eld, i.e., fv + v2r = @�@r : (4:22)Di�erentiating (4.17) and (4.18) with respect to DvDt and then cross-substituting (4.17)and (4.18) into these expressions to eliminate the �rst derivatives of u0 and v0 yieldsD2vu0Dt2 + ��u0 + DvDt �@�0@r � = ��r @�0@� (4:23)D2vv0Dt2 + ��v0 + 1r DvDt �@�0@� � = �@�0@r : (4:24)A naive scaling of the orbital \acceleration" D2v=Dt2 yields (Shapiro and Montgomery1993) D2vDt2 � n2 v2r2 : (4:25)A local Rossby number squared de�ned as the square of the ratio of the orbital accelerationto the inertial frequency is given by R2n = n2v2=r2�� : (4:26)For local Rossby number squared much less than unity the �rst term in Eqs. (4.23) and(4.24) can be neglected compared to the second term. Shapiro and Montgomery (1993)veri�ed this approximation using observations from Hurricane Gloria (1985). They ob-served R21 less than unity everywhere within the storm except just outside the RMWand within an isolated region at three times the RMW in the upper troposphere. M�ollerand Montgomery (1999) showed that the actual value of D2vu0=Dt2 can be much smallerthan the naive estimate n2(v2=r2)u0 for hurricane-like vortices. Therefore, the actual localRossby numbers within Gloria's core are likely much less than unity. For the weak vorticesconsidered in this dissertation, the AB predictions will be accurate.Solving for u0, v0, and w0, and then substituting into the continuity equation resultsin a predictive equation for the geopotential perturbation:1r @@r �� r�� DvDt �@�0@r �� 1� @�0@� �+ 1r @@� �� 1r�� DvDt �@�0@� �+ 1� @�0@r �+ � m�NH�2 Dv�0Dt = 0;(4:27)



67where we have used the fact that @2�0=@z2 = �m2�2�0=H2 for the equivalent barotropicsystem. Rearranging (4.27) yieldsDvDt "q�r @@r � rq� @�0@r �+ 1r2 @2�0@�2 � 2m(r)�0#� �q dqdr 1r @�0@� = 0; (4:28)where q = N2� and 2m(r) = (m�=NH)2(��). Note that this predictive equation isvirtually identical to (4.13) for the linear QG system, but with additional geometric factorsin front of the radial derivatives and non-constant m. Thus, the linear semi-spectralmodel used to time-integrate the QG EQB system is also used here with the appropriatemodi�cations (i.e., rede�ne q and m, and add the geometric factors).The quantity in brackets in Eq. (4.28) is not the perturbation PV. The perturbationpseudo-PV is given by q0� = N2k � r � u0� � N22m� �0; (4:29)where u0� is the generalization of the geostrophic wind and is writtenu0� = �� 1r� @�0@� ; 1� @�0@r � : (4:30)The perturbation pseudo-PV evolution equation can be obtained through a re-casting of(4.28) and is given by DvDtq0� + u0� dqdr = 0: (4:31)This equivalent barotropic AB system is used in Chapter 6 as a �rst step in thegeneralization of the QG vortex alignment �ndings presented in Chapter 5.



Chapter 5QG VORTEX ALIGNMENTA vertically-tilted vortex in the atmosphere either resists external forcings to align orsuccumbs to such inuences by irreversibly shearing apart. The question of how and underwhat circumstances vertical alignment occurs has been addressed in previous studies withthe large-scale atmospheric and oceanic circulations in mind (McWilliams 1989; Polvani1991; Viera 1995; Dritschel and Juarez 1996; Sutyrin et al. 1998). The conceptual pictureput forth for the evolution of an unforced tilted vortex is that PV at upper levels isadvected by the vertically-penetrating ow associated with the PV at lower levels, andvice versa. Described in this way, the mutual advection is assumed to be a nonlinearprocess. Accordingly, the initial vertical tilt is a crucial parameter in determining thesubsequent vortex evolution. Polvani (1991) showed that the evolution of a tilted vortexpatch in a two-layer QG model can be predicted on the basis of its nearness to a geometriccon�guration known as a stable V-state in which the PV rotates without deformation ofshape at a constant rate. Alignment tends to occur when the vortex is initially far froma V-state. The vortex in this case approaches a circular barotropic con�guration through�lamentation and axisymmetrization (e.g., Melander et al. 1987).Here a new and complimentary approach to understanding the vertical alignmentprocess for continuously-distributed vortices is developed utilizing the fact that for over-lapping upper- and lower-level PV centers, the vortex is meaningfully decomposed intoan azimuthal mean and departure therefrom (i.e., a wave, mean-ow partitioning). Weexplicitly simulate the linear interaction of perturbation and mean ow as well as the fullynonlinear vortex evolution to elucidate the alignment dynamics. Vortex Rossby wavesare shown to play a key role in the vertical alignment process, just as they do in the



69two-dimensional and quasi two-dimensional vortex axisymmetrization process describedby MK and later con�rmed by ME98, M�oller and Montgomery (1999, 2000) and Enagonioand Montgomery (2000). A simple conceptual picture of vortex alignment emerges forsmall vertical tilts based solely on linear dynamics. Of course linear dynamics can onlybe expected to capture alignment for a certain range of vortex tilts, but it will be shownthat this range can be surprisingly large. A physical explanation is provided for why lin-ear thinking can be applied to vortices exhibiting large initial tilts in certain parameterregimes.Recent dynamical studies of TCs have emphasized how such vortices resist the e�ectsof vertical shear and other external strains during all lifecycle stages (Jones 1995; Smithet al. 2000). Jones (1995) considered the evolution of a hurricane-like vortex embeddedin vertically-sheared ow. Her physical interpretation of the evolution from aligned totilted vortex largely follows that of Polvani (1991) and other similar studies. Smith et al.(2000) reduced the TC vortex alignment problem in vertical shear to a two-layer nonlinearanalogue model, solvable analytically. As an extension of Polvani (1991), they presenteda portrait of upper- and lower-level vortex trajectories as a function of shear magnitude,vortex strength, and coupling between layers. The qualitative results of the model wereveri�ed using a two-layer QG model, but it should be noted that their analogue modelbecomes singular as the initial upper- and lower-level PV separation goes to zero. Ourwork compliments these studies by taking a step back and exploring the unforced problemfor small to moderate initial tilts. According to our interpretation of the unforced vortexdynamics, the addition of vertical shear simply makes the problem a forced linear one aslong as departures from vertical alignment are not too great. The extension of the presentwork to the forced problem is addressed in Chapter 6.An axisymmetric view of TC genesis has been o�ered by Bister and Emanuel (1997)based on observations of TC Guillermo (1991) and supporting axisymmetric numericalsimulations. A re-analysis of the Guillermo Doppler wind data by Bracken (1999), however,suggests a more prominent role played by asymmetries during the initial stages of genesis.ME98 presented an asymmetric model for genesis in which a pre-existing vortex (e.g.,



70a mid-level mesoscale convective vortex (MCV) or closed circulation associated with aneasterly wave) aligns with nearby convectively-generated positive PV at low levels.An immediate application of the present work is towards further understanding thedynamics of the asymmetric TC genesis mechanism of ME98. This chapter is thereforeorganized as follows: The evolution of an initially-tilted vortex is examined in Section 5.1.In Section 5.2 we apply the linear alignment ideas to the problem of three-dimensionalmerger of an isolated anomaly with a pre-existing vortex. The simulations in the lattersection are presented in the context of TC dynamics. During the initial stages of TCgenesis convectively-generated positive PV at low levels moves into the core region ofthe pre-existing vortex. If the convection is initially close to the vortex core (i.e., withinthe RMW), the linear merger ideas will accurately describe this process. As the vortexbecomes more vertically coherent, the tilted vortex ideas of Section 5.1 then becomerelevant.5.1 Vortex alignment starting from a tilted vortex: Causes and conditions5.1.1 Initial ConditionsIn the experiments presented here the azimuthal-mean vortex will be assumedbarotropic. The initial symmetric PV takes the formq(r) = qmaxe�(�r)2 ; (5:1)where qmax is the maximum mean PV and � is the inverse decay length of the PV pro�le.The mean vortex for qmax = 9:0�10�5 s�1 and ��1 = 167 km, used by ME98, is depictedin Fig. 5.1. The maximumwind speed is 5 ms�1 and the RMW is 200 km. As demonstratedin Section 5.1.4, the fundamental �ndings of this work are independent of the precise formof the monotonic pro�le of PV. We will therefore present most of our �ndings with thisbasic state vortex.The initial PV asymmetry has the vertical structure of the �rst internal baroclinicmode (m = 1), unless otherwise stated, and is consistent with the assumption of isothermal
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Figure 5.1: The azimuthal-mean vortex (solid) used in all simulations unless stated other-wise in the text. The vortices depicted by the dashed curves are described in Section 5.1.4.The (a) tangential wind is in units of ms�1 and the (b) PV is in units of 10�5 s�1. The(c) Rossby number is de�ned as 
=f , where 
 is the azimuthal-mean angular velocity.



72vertical boundary conditions discussed in Chapter 4. For simplicity, the mean vortex isperturbed with a single azimuthal Fourier mode:q0(r; �; z; t) = Re�~q1n(r; t) cos (�zH )ein�� ; (5:2)where Re denotes the real part of the bracketed quantity. In the general case n can beany azimuthal wavenumber. Isolated anomalies composed of a superposition of azimuthalwavenumbers are considered in Section 5.2 in our investigation of the merger and alignmentof convectively-generated PV within a pre-existing vortex. The horizontal structure of thePV perturbation is that of the azimuthal wavenumber one pseudo-mode (Michalke andTimme 1967; Weber and Smith 1993; Smith and Montgomery 1995; MK). The pseudo-mode in two-dimensional ows represents a vortex displacement and has the radial PVstructure: ~q11(r) = ~�dqdr ; (5:3)where ~� is a constant conversion factor. We de�ne ~� = �qmax=(dq=dr)max, where(dq=dr)max is the maximum mean PV gradient and � is a non-dimensional amplitudefactor.For a given mean vortex with horizontal scale L (roughly the RMW) and verticalscale H the only two adjustable parameters are � and 1. For n = 1, variation of �changes the angle of inclination of the PV column from the vertical. Equations (5.1){(5.3)best represent a tilted vortex for values of � much less than unity. As � approaches unity,regions of negative PV arise and this initial condition is no longer suitable for studyingthe evolution of a tilted vortex. To better simulate large tilt in the EQB model higherazimuthal harmonics are included in expression (5.2) and a more accurate form for ~q11 isused.Before investigating the full � and 1 parameter space, we begin by de�ning a bench-mark case and comparing the vortex evolution simulated by the QG3D and EQB models.The benchmark simulation using � = 0:3 and 1 = 3:14 � 10�6 m�1 is shown in Fig.5.2 in terms of PV. Mid-latitude values of f = 10�4 s�1, H = 10 km, and N = 10�2s�1 are used to de�ne 1. To verify that (5.1){(5.3) is a valid approximation to a tilted



73vortex, the QG3D model is initialized with a linearly-tilted PV column having an angleof inclination from the vertical nearly identical to that of the EQB benchmark vortex.The vortex evolution simulated with the QG3D model (Fig. 5.2a) is replicated well by thenonlinear, truncated EQB model (Fig. 5.2b). The vortex wobbles about the stationarymid-level centroid with no obvious sign of alignment over the 4�e period (where �e denotesa circulation period, which is approximately 2.9 days for this vortex). As evident fromcomparison of the two simulations, the interaction between vertical modes is not crucialto understanding the vortex evolution for the small tilts considered here. Therefore in ourexploration of the alignment mechanism, the EQB model will be primarily used. All ofthe principle results to be shown, however, are still veri�ed with the QG3D model.The dependence of the alignment process on � is considered below. The initial hori-zontal distance between upper- and lower-level PV centroids (di) de�ned bydi = 224 RA xqdARA qdA !2 + RA yqdARA qdA !2351=2 ; (5:4)(where the integral over the domain area A can be evaluated at either the upper or lowerlevel due to the mirror symmetry of the simulations about the middle level), and the tiltangle (�) de�ned by tan � = di=H (5:5)are listed in Table 5.1 for each of the simulations. The mid-latitude value of 1 = 3:14 �10�6 m�1 is used in all simulations, except in Section 5.1.3 where the -dependence ofvortex alignment is explored.5.1.2 Linear Vortex-Rossby Wave DynamicsA useful diagnostic in the study of vortex merger and vortex axisymmetrization on avortex with monotonically-decreasing basic state vorticity is the vortex beta Rossby num-ber, R� (M�oller and Montgomery 2000; Enagonio and Montgomery 2000). Mathematicallyit is de�ned as the ratio of the nonlinear terms in the PV equation to the e�ective \beta"term involving the mean PV gradient of the basic state vortex. Whereas the vortex itselfis the perturbation in the problem of vortex motion on a �-plane (McWilliams and Flierl
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Figure 5.2: Evolution of vortex PV (from left to right) at t = 0, 1.5�e, 2.5�e, and 4�e forthe benchmark run with � = 0:3 and 1 = 3:14 � 10�6 m�1. Only the inner 300 km x300 km is shown to emphasize the vortex tilt. The vertical depth is 10 km. Results from(a) the QG3D model with PV isosurface 8:0� 10�5 s�1 and (b) the nonlinear EQB modelwith PV isosurface 8:5�10�5 s�1 are shown. The di�erent initial conditions are describedin the text. Contour interval is 2:0� 10�5 s�1.
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Figure 5.3: see Fig. 5.2.



761 � � di R�(x10�6 m�1) (degrees) (km)3.14 0.1 78 41 0.083.14 0.3 86 110 0.253.14 0.5 88 200 0.5020.0 0.3 86 110 0.08Table 5.1: Parameters used in the control simulations. For the benchmark basic statevortex the two parameters which de�ne each simulation are the inverse internal Rossbydeformation radius (1) and tilt amplitude (�). Useful parameters derived from these twoare the initial vortex angle of inclination from the vertical (�), upper- and lower-level PVintercentroid separation distance (di), and vortex beta Rossby number (R�). The latteris de�ned in Section 5.1.2.1979; Montgomery et al. 1999), here the perturbation is the departure from vertical align-ment. In studies of vortex motion the beta Rossby number is large compared to unity.The tilted vortices considered here are characterized by beta Rossby numbers less thanunity. In the non-divergent limit the vortex beta Rossby number scales asR� � V 0L02 d�dr ; (5:6)where V 0 is the perturbation velocity amplitude, L0 the perturbation horizontal scale,and d�=dr the radial vorticity gradient of the basic state vortex. It provides a measureof how important nonlinear advection is compared to the vortex Rossby wave restoringmechanism. For R� much less than unity perturbations on an everywhere monotonicmean vortex are expected to disperse as vortex Rossby waves. The wave-mean ideas ofMK usefully and accurately characterize the dynamics in this parameter regime.In previous work vortex alignment has been described in much the same way as vortexmerger in two dimensions: The ow induced by the upper-level PV anomaly advects thelower-level anomaly, and vice versa. Implied in this conceptual picture is that the dynamicsis fundamentally nonlinear, and therefore strongly dependent upon the initial horizontalseparation of the PV anomalies (i.e., magnitude of the vertical tilt). We agree that thisview is the correct one for upper- and lower-level anomalies initially separated by largedistances, as one might observe in geostrophic turbulence simulations (McWilliams 1989;McWilliams et al. 1999; Dritschel et al. 1999). But is it true for upper and lower-level



77anomalies separated by small distances, as one might observe in the case of an initiallyupright TC tilted by vertical shear? We propose that the asymptotic dynamics (i.e.,when the vortices are close enough together) of vortex merger and alignment in threedimensions is more accurately viewed as linear. This is not to say that nonlinear advectionis identically zero, but rather that its role in the evolution of vortices with small initialtilts is secondary to linear advection. The approach taken here is to begin with an alignedvortex and systematically increase the vertical tilt. With each progressive increase in theseparation between upper- and lower-level anomalies we ask the question: To what extentis the subsequent vortex evolution described by linear dynamics?A schematic illustration of what is meant by linear dynamics is shown in Fig. 5.4.The tilted PV column is decomposed into an azimuthal mean, q, which for simplicity isassumed barotropic, and a departure from that mean, q0. In the linear approximation, qat upper(lower) levels is radially advected by the perturbation wind �eld associated withthe upper(lower)-level PV anomaly and, depending upon the magnitude of the verticalpenetration depth of the vortex ow, fL=N , the lower(upper)-level PV anomaly. It is thisradial advection in conjunction with the azimuthal advection of q0 by the mean tangentialwind, v, that governs the evolution of the tilted vortex in the linear approximation. Ofcourse in the limit of large vertical tilt (and presumably large R�), q0 approaches themagnitude of q, and linear theory will no longer be valid. Our intent is to provide physicalinsight into the vortex alignment process at small vertical tilts and to then illustrate therange of applicability of the linear ideas.For the benchmark run with � = 0:3, R�, computed using the strict mathematicalde�nition stated above, is found to be approximately 0.25 in the vicinity of the PV per-turbation maximum. Figure 5.5 shows the total and wavenumber one PV at the surface(z = 0) from the linear and nonlinear EQB models. Although R� is not in�nitesimallysmall in this case, good agreement between the linear and nonlinear simulations is nev-ertheless observed. Both vortex simulations show radially-propagating, sheared vortexRossby waves superposed on a quasi-discrete PV feature. The radial vortex Rossby wavepropagation is illustrated in Fig. 5.6 for the linear simulation. Consistent with MK, the
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Figure 5.4: Schematic illustration of the linear vortex alignment mechanism. A PV columnbound by rigid lids at z = 0 and H is tilted from west to east with height. For small tilts thiscon�guration is decomposed into an azimuthal-mean barotropic vortex (with tangentialwind and PV, v and q, respectively) and an azimuthal wavenumber one asymmetry withvertical structure of the �rst internal baroclinic mode. The tendency in perturbation PVat upper(lower) levels is attributed to azimuthal advection of the perturbation PV by vand radial advection of q by the perturbation wind associated with the upper(lower)-levelPV anomaly and, through vertical penetration (denoted by the coupling coe�cient �), thelower(upper)-level PV anomaly.



79radial propagation speed of the wave packets decreases in time as the waves are sheared to�ner and �ner radial scales. The quasi-discrete wavenumber one PV asymmetry persistsover the 5�e period with only a 10-20% decrease in amplitude. Consistent with a quasi-discrete vortex Rossby wave it propagates cyclonically around the vortex at a speed lessthan the local mean tangential wind. Figure 5.5 also shows the PV evolution for the sameinitial vortex using the QG3D model. The azimuthal propagation and structure of thewavenumber one PV asymmetry are virtually identical in the two nonlinear simulations.Both nonlinear simulations also show less sheared vortex Rossby wave propagation thanthe linear simulation.Figure 5.7 shows the domain-integrated perturbation energy (kinetic and availablepotential) contained in wavenumber one. The linear solution indicates only a 30% decreasein energy over the 5�e period. Most of the initial asymmetry energy is trapped in the quasi-discrete vortex Rossby wave which slowly loses its energy through the outward propagatingsheared vortex Rossby waves. Due to wave-wave interactions the nonlinear solution showsa more modest decrease in wavenumber one energy of 5-10%. The use of the pseudo-modeto represent the initial horizontal structure of wavenumber one PV is fortuitous since itprojects strongly onto the quasi-discrete vortex Rossby wave. A general initial conditionwill tend to project more onto the sheared vortex Rossby waves, obscuring the quasi-discrete structure at early times. As demonstrated by Smith and Montgomery (1995, andreferences therein) and later extended by MK to account for the Rossby wave e�ects, theenergy contained in the sheared Rossby waves will ultimately diminish with time. Thus,the quasi-discrete wave structure will eventually emerge. It is interesting to note thathigher wavenumbers show a markedly di�erent behavior than wavenumber one with theenergy falling to near zero after only a 1-2�e period. We conclude that wavenumber one isunique within the parameter regime under consideration. The co-rotation resulting fromthe long-lived propagation of the wavenumber one asymmetry observed in the nonlinearsimulations is reproducible using linear dynamics alone, validating the conceptual modelillustrated in Fig. 5.4.To determine the range of � for which linear vortex Rossby wave theory captures theessence of the alignment process we compare the intercentroid distance, di, between upper-
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Figure 5.5: Evolution of total vortex PV (shaded) and wavenumber one component of PV(contour interval 0:5�10�5 s�1 with negative values dashed) at z = 0 over a 5�e period forthe benchmark run (see Fig. 5.2). From left to right are shown the results from the linearEQB, non-linear EQB, and QG3D models, respectively. Aside from the PV correction inthe QG3D model, the initial conditions are identical.
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Figure 5.6: Radius-time plot of the wavenumber one PV amplitude at z = 0 over a 5�eperiod for the benchmark run. The dashed lines denote the crest of the wave packets asthey propagate radially outward in time. The quasi-discrete vortex Rossby wave persistsnear 130 km radius. Contour interval is 1:0� 10�6 s�1.
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Figure 5.7: QG equivalent barotropic volume-integrated energy contained in wavenumberone from the nonlinear (dashed) and linear (solid) EQB benchmark runs as a function oftime. Also shown is the linear energy evolution for initial conditions with the pseudo-moderadial structure, but azimuthal structure of wavenumbers two and three. The energy isnormalized by its initial value in all cases.



83and lower-level PV centroids predicted by the linear and nonlinear EQB models. Figure5.8a shows the trajectories of the upper- and lower-level centroids for the benchmarkcase. In both simulations the centroid makes slightly more than one orbit at a radiusof approximately 60 km during the 5�e period. The discrepancy between the linear andnonlinear predictions of di increases to about 5 km during the period, as shown in Fig.5.8b. The nonlinear prediction shows a reduced rate of alignment, although we wouldargue that the linear dynamics is still capturing the essence of the co-rotation and slowalignment of upper- and lower-level PV anomalies.For an even smaller tilt amplitude of � = 0:1, little discrepancy between linear andnonlinear simulations is found. In this case R� � 0:08 which con�rms the negligible roleplayed by nonlinear advection. The quasi-discrete vortex Rossby wave has essentially thesame structure and propagation speed in both simulations (see Fig. 5.9).To simulate a vortex with more exaggerated tilt the EQB model is initialized withthe mean vortex given by (5.1), but displaced 100 km to the east of the polar coordinatesystem origin at z = 0, and tilted linearly with height to the west. An azimuthal andvertical wavenumber decomposition of this initial condition shows that only four modesneed be included in the EQB initialization: (m;n) = (0; 0); (1; 1); (2; 0); and (0; 2). Inkeeping with the assumption of a barotropic mean vortex, the n = 0 component of thevortex at z = 0 is used at all levels. For simplicity, the n = 1 and n = 2 components ofthe vortex at z = 0 are used to construct (1,1) and (0,2), respectively. For initial upper-and lower-level PV centers separated by 200 km, � � 0:5 and R� � 0:5.Figure 5.10 shows the evolution of total and wavenumber one PV from the linear andnonlinear EQB models. Also shown is the PV at the lowest level of the QG3D modelfor a vortex tilted linearly with height (without the above approximations). The twononlinear simulations basically agree, con�rming the utility of the truncated equivalentbarotropic approach even for relatively large vortex tilts. Even more remarkable is thesimilarity between linear and nonlinear simulations. Although there is considerably moreradial vortex Rossby wave dispersion in the linear simulation (see Fig. 5.11), the rotationfrequencies of the low-level vortex about the mid-level centroid are virtually the same (see
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Figure 5.8: Evolution of the EQB PV intercentroid separation between z = 0 and H over5�e for the benchmark run. (a) Trajectory of the PV centroid at upper (solid) and lower(dashed) levels. The heavy lines show the nonlinear evolution, while the �ne lines showthe linear evolution. (b) Timeseries of intercentroid separation distance from the linear(solid) and nonlinear (dashed) models.
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Figure 5.9: As in Fig. 5.8 but for � = 0:1.



86also Fig. 5.12). The details of the di evolution over 5�e and departure from that shown inFigs. 5.8 and 5.9 can be attributed to the greater projection of the initial PV asymmetryonto sheared vortex Rossby waves. But overall the linear dynamics still captures theessence of the tilted vortex evolution. Thus, while nonlinear e�ects increase in importancewith increasing R� and modify the vortex structure (i.e., counteract the sheared vortexRossby wave dispersion), the underlying quasi-discrete vortex Rossby wave persists indominating the solution.These results suggest a new interpretation for the co-rotation of vertically-separated,overlapping vortices for internal Rossby deformation radii greater than the horizontal scaleof the vortex. Polvani (1991) explained the presence of co-rotation geometrically as a con-sequence of the initial vortex con�guration being near a geostrophic PV equilibrium (i.e.,a stable V-state). Here the co-rotation of continuously-distributed vortices is attributed tothe cyclonic propagation of a quasi-discrete wavenumber one vortex Rossby wave. Analyt-ical solutions to the linear QG equivalent barotropic problem are currently unavailable forcontinuous PV distributions, but may present themselves for carefully constructed initialconditions. Such a solution would allow one, for example, to predict the linear co-rotationfrequency. For now we will continue to explore this linear interpretation of the alignmentprocess, considering the e�ect of varying 1.5.1.3 Dependence on Internal Deformation RadiusVarying 1 can be viewed in terms of changing the depth of the vortex, the staticstability, or the planetary vorticity. The dependence of vortex alignment on vortex depthhas been explored in recent studies motivated by observations from QG turbulence sim-ulations (McWilliams 1989; Viera 1994; Dritschel and Juarez 1996). The tilted vorticitycon�gurations in these studies attain equilibrium at certain vertical scales. Moist convec-tion will increase 1 by reducing the static stability (Emanuel et al. 1987; Montgomeryand Farrell 1992). As further discussed in Section 5.2, for more rapidly swirling ows,f in the expression for 1 is replaced by the geometrical mean of the modi�ed Coriolisparameter and absolute vorticity associated with the basic state circular vortex (Shapiro
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Figure 5.10: As in Fig. 5.5 but for � � 0:5. See text for details on the initial conditions.
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Figure 5.11: As in Fig. 5.6 but for � � 0:5. The radially propagating sheared vortexRossby waves mask the quasi-discrete wavenumber one structure at early times.
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Figure 5.12: As in Fig. 5.8 but for � � 0:5.



90and Montgomery 1993). We may anticipate the vortex evolution for more rapidly swirlingows by increasing f in the QG formulation.The dependence of vertical alignment on internal deformation radius and horizon-tal vortex scale is known from QG contour dynamics (CD) model simulations (Polvani1991; Dritschel and Juarez 1996). For horizontal vortex scales greater than the internaldeformation radius the vertically-tilted vortex tends towards alignment, while for smallervortex scales alignment is inhibited and co-rotation is observed. The linear interpretationof the alignment mechanism can help explain why this is so.In the benchmark simulation (see Fig. 5.2) we found that alignment was inhibited andthe vortex precessed about its mid-level centroid with a small increase in the discrepancybetween linear and nonlinear simulations with time out to several �e. Figure 5.13 shows theevolution of the same initial vortex, but for larger 1 = 20:0� 10�6 m�1. The QG3D (notshown) and nonlinear EQB models show nearly identical results, so we will focus on thevortex evolutions simulated by the EQB linear and nonlinear models. In both simulationsalignment of the initial vortex and attendant �lamentation of PV are observed, as found inprevious studies (Polvani 1991; Viera 1995; Dritschel and Juarez 1996). The linear resultscon�rm that the �lamentation observed in the nonlinear simulation near the core of thestable vortex monopole is primarily a consequence of linear vortex Rossby wave dynamicsand not `wave breaking'. In both simulations the vortex undergoes a complete alignmentwithin 5�e at virtually identical rates (see Fig. 5.15).The increased agreement between linear and nonlinear simulations for this larger valueof 1 is understood by examining the -dependence of R�. Figure 5.16 shows the initialR� in the vicinity of the maximum perturbation PV for various � as a function of 1. InSection 5.1.2 it was shown that for a given value of the internal deformation radius, R�decreases with decreased perturbation amplitude (recall R� � V 0) leading to increasedagreement between linear and nonlinear simulations. The naive scaling (5.6) would notpredict a dependence on 1, contrary to Fig. 5.16 which clearly shows R� decreasingwith increasing values. Farge and Sadourny (1989) explained the dependence of their QGshallow water turbulence simulations on deformation radius from the perspective of energy
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Figure 5.13: Evolution of vortex PV (from left to right) at t = 0, 1.5�e, 2.5�e, and 4�efor � = 0:3 and 1 = 20:0 � 10�6 m�1. Only the inner 600 km x 600 km is shown toemphasize the vortex tilt. Results from (a) the nonlinear EQB model with PV isosurface5:0�10�5 s�1 and (b) the linear EQB model with PV isosurface 5:0�10�5 s�1 are shown.The contours shown are (0:1; 1; 3; 5) � 10�5 s�1.
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Figure 5.14: see Fig. 5.13.
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Figure 5.15: As in Fig. 5.5 but for 1 = 20:0 � 10�6 m�1.



94and enstrophy spectra. For large rotation rates (i.e., large ) they demonstrated that thecascade of potential enstrophy to smaller scales is inhibited. This behavior can also beexplained geometrically by examining the dependence of the QG (baroclinic) perturbationPV inversion on 1. For small 1, the Green's function decays slowly with radius and PVover a broad area is incorporated into the inversion for streamfunction at a point. In thiscase the streamfunction �eld is unable to replicate strong curvature of the PV �eld. Formuch larger 1, the Green's function decays rapidly with radius and the streamfunction�eld is better able to reproduce the curvature of the PV �eld over the entire domain,leading to near-parallel PV and streamline contours (see Fig. 5.17), i.e.,J( 0; q0)! 0 as 1 !1: (5:7)Thus for 1 !1, R� tends to zero and the linear and nonlinear simulations converge. Anadditional consequence of this dependence of R� on 1 is that linear vortex Rossby wavedynamics will accurately capture the alignment process for a wider range of amplitudesthe larger 1 is. Although our focus here is on small to moderate tilts from the vertical,even vortices for which di=L � 2 (i.e., the RMW's of the upper and lower vortices justoverlap) the alignment process should still fall within the linear regime as long as 1 islarge enough.The complete picture of the dependence of vortex alignment on 1 for small initial tilts(� = 0.1) is shown in Fig. 5.18. The intercentroid distance after 5�e for both linear andnonlinear simulations is plotted as a function of 1. As expected, no discernible di�erencebetween the simulations is observed. After 10�e the curve is essentially the same, exceptthe transition region between small and large 1 is steeper (not shown). Three regions areclearly identi�able in the 1 phase space.For 1 � 10:0�10�6 m�1 complete vertical alignment takes place. The correspondingthreshold internal deformation radius is 100 km which is smaller than the scale of thecurrent vortex. The presence of vertical alignment at small � (or equivalently small initialdi) should be contrasted with the two-layer CD results of Polvani (1991). There, co-rotation was observed for all 1 in this range. As discussed in Appendix B, this is a
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Figure 5.16: Dependence of vortex beta Rossby number at z = 0 on tilt (�) and 1. Forconsistency only (m;n) = (1; 1) is used to de�ne the perturbation. The simulation for� � 0:5 does contain a small barotropic wavenumber two component which will elevateR� slightly for all 1.
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Figure 5.17: Comparison of the initial perturbation PV (heavy) and streamfunction (light)for the benchmark run. Negative values are dashed. (a) 1 = 2:5 � 10�6 m�1 (b)1 = 20:0 � 10�6 m�1. The perturbation PV and streamfunction isolines become moreparallel with increasing 1. Note also that the perturbation streamfunction amplitude de-creases with increasing 1. PV contour interval is 0:5� 10�5 s�1. Streamfunction contourinterval is 5� 104 m2s�1 in (a) and 1� 104 m2s�1 in (b).
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Figure 5.18: PV intercentroid separation between z = 0 and H after 5�e as a function of1 for � = 0:1. The diamonds represent linear EQB simulations and the squares nonlinearEQB simulations.



98consequence of using a single PV interface in the CD model. Utilizing the fact that thedynamics is fundamentally linear in this regime we can demonstrate why continuously-distributed vortex alignment must occur for all small initial di. The argument is essentiallythat when 1 is large, the e�ective \beta" term in the linearized PV equation can beneglected. The perturbation PV is then materially conserved following the local meantangential winds, leading to simple spirals around the vortex and algebraic decay of theperturbation streamfunction in the limit of long times (see Appendix B for details). Itis the sheared vortex Rossby waves which provide the irreversible deformation of the PV�eld needed for alignment.The small-amplitude version of the benchmark run (1 = 3:14�10�6 m�1) falls withinthe transition zone in what we call the slowly aligning regime. The horizontal vortex scalelies close to the midpoint of this regime. It should be noted that the vortex does notactually align here according to our de�nition which requires di = 0. At longer times thistransition region becomes narrower. Vortices at the large 1 end of the transition regionenter into the alignment regime after a su�ciently long period of time, while little changein the structure of the curve at small 1 is ever observed during long-time integrations ofthe model.The behavior of a tilted vortex for which 1 � 2:5 � 10�6 m�1 is unlike that foundin the rest of the 1 phase space. Recall that the initial value of di is approximately 41km. Thus, there is virtually no tendency for alignment (even after 10�e) in this regime.The vortex co-rotation is accounted for by the azimuthal propagation of the quasi-discretevortex Rossby wave �rst noted in the benchmark simulation. In the limit of vanishing 1the stationary pseudo-mode discussed by MK is recovered. As 1 is increased from thenondivergent limit, the long-time radial structure of azimuthal wavenumber one PV stillclosely resembles the pseudo-mode, but rotates at a non-zero frequency. If 1 becomestoo large, the quasi-discrete feature ceases to exist, as discussed above. The origin andcomplete characteristics of this quasi-discrete vortex Rossby wave are discussed below.Figure 5.19 shows a plot of the dependence of di on 1 as in Fig. 14, but for � = 0:3.There is a more noticeable discrepancy between linear and nonlinear simulations for this



99larger value of tilt, although the di�erence is small. The tilted vortex evolution is stillcaptured by linear dynamics for all values of 1. While a decrease in discrepancy withincreasing 1 in the alignment regime is expected based on vanishing R�, the decreasein discrepancy with decreasing 1 in the strict non-alignment regime was not entirelyanticipated. We believe that the continued good agreement between linear and nonlinearsimulations in the latter regime is a consequence of the robustness of the quasi-discretevortex Rossby wave.5.1.4 Quasi-mode interpretation of three-dimensional vortex co-rotationFor an initially-tilted vortex satisfying R� < 1 and small 1, the long-time inviscidsolution is an azimuthal wavenumber one asymmetry with vertical structure of the �rstinternal baroclinic mode propagating on the mean vortex. Although the rotation rate ofthe asymmetry is approximately constant (see Fig. 5.20) and the radial structure appearslargely una�ected by di�erential rotation, the slow, almost imperceptible decay of theasymmetry for 1 � 2:5 � 10�6 m�1 suggests that it is not a neutral mode. In thenondivergent limit ( = 0) wavenumber one does in fact become a smooth stationarymode, but it loses this modal characteristic once the Rossby deformation radius becomes�nite. To understand this behavior of wavenumber one, consider stable solutions to Eq.(4.13) of the form ~ mn(r; t) = ~�mn(r)e�i!mnt; (5:8)where !mn is a constant rotation frequency. Substitution into Eq. (4.13) yieldsd2 ~�mndr2 + 1r d~�mndr �  n2r2 + 2m! ~�mn � nd�=drr(n
� !mn) ~�mn = 0: (5:9)This is an eigenvalue problem with eigenvectors, ~�mn, and corresponding eigenfrequencies,!mn. In the nondivergent case an exact solution to (5.9) for n = 1 is ~� = cv with! = 0, where c is a constant (Michalke and Timme 1967). This is the aforementionedstationary pseudo-mode solution. For higher azimuthal wavenumber perturbations to atwo-dimensional vortex with monotonically decreasing mean vorticity, there are no smoothmodal solutions. Only singular continuous spectrum solutions exist, which decay to zero
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Figure 5.19: As in Fig. 5.18 but for � = 0:3.
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Figure 5.20: Instantaneous wavenumber one asymmetry rotation rate (!) at z = 0 forsmall values of 1.



102algebraically in the limit of long times (Sutyrin 1989; Carr and Williams 1989; Smith andMontgomery 1995; MK).According to the QG numerical simulations at small 1, the rotation frequency ofwavenumber one is small, but non-zero. The Doppler-shifted frequency, 
�!, will there-fore pass through zero at some large, but �nite value of r. Since the simulated wavenumberone streamfunction is not observed to pass through zero and d�=dr is non-zero for all raway from the origin and r = 1, solutions must reside in the continuous spectrum ofdiscrete singular modes. Why, then, do we observe a smooth, long-lasting wavenumberone asymmetry in the numerical simulations?An answer is found through close examination of the (m;n) = (1; 1) eigenmodes of(5.9) for the benchmark mean vortex (5.1) and 1 = 1:25 � 10�6 m�1. The eigensolverfollowing Gent and McWilliams (1986) and discussed in Appendix C is used, modi�ed soas to permit �nite deformation radius. Figure 5.21 shows the PV eigenvectors surroundingthe eigenmode whose eigenfrequency is closest to the numerically-simulated wavenumberone rotation frequency. A grouping of eigenmodes with slightly di�erent eigenfrequenciesis found centered on the numerically observed rotation frequency with both a smoothstructure and small-amplitude singular spike. The smooth structure is identical to thatfound in the numerical simulation at long times. The spikes occur at the radii where theDoppler-shifted frequency associated with each eigenmode equals zero and (5.9) becomessingular. There is in fact a continuum of these singular modes for frequencies between
min and 
max (Case 1960).If d�=dr is zero outside some radius, ra, there is a possibility of the vortex supportinga smooth, discrete mode since (5.9) is non-singular for r > ra. Schecter et al. (1999)demonstrated this in the nondivergent context for two-dimensional vortex monopoles andn = 2 by taking a pro�le with d�=dr everywhere nonzero and setting the gradient tozero outside some radius. A discrete mode was found in this case. Upon replacing thezero vorticity gradient region with a pro�le having small, but nonzero gradient, an eigen-analysis showed eigenstructures similar to the discrete mode for eigenfrequencies near thediscrete mode value, but with small singular spikes, as in Fig. 5.21. The superposition



103of these weakly singular continuum modes with nearly identical phase speeds is referredto as a quasi-mode because of the tendency for the singular modes to interact (linearly)and maintain a near-discrete structure in the presence of shear. Previous studies haveinvestigated quasi-modes in the upper-tropospheric ow (Rivest and Farrell 1992) and intwo-dimensional nondivergent vortex ows (Schecter et al. 1999). The singular modesthat comprise the quasi-mode move with slightly di�erent phase speeds, so the quasi-mode will slowly decay in time. Co-rotation of a geostrophic vortex with small initial tiltis therefore more accurately explained as the azimuthal propagation of a three-dimensionalquasi-mode.The longevity of the quasi-mode can be assessed by considering its spectral distribu-tion. To illustrate this, an arbitrary linear PV perturbation is expanded in a weightedsum of the PV eigenmodes, ~q(r; t) =Xk Akei!kt ~�k(r); (5:10)whereAk is the expansion coe�cient for the kth eigenmode, ~�k, and !k is the correspondingeigenfrequency. The right-hand side of Eq. (5.10) is the discrete equivalent of a Fouriertransform from the frequency domain to the time domain. For the PV perturbation givenby Eq. (5.3), inversion of (5.10) at t = 0 yields the Ak. The expansion coe�cients areplotted as a function of eigenfrequency in Fig. 5.22 for various values of 1. A discretemode would be represented here as a �-function in eigenfrequency space. The quasi-modeis clearly identi�ed at small 1 as the narrow spike in the expansion coe�cient spectrum.As 1 increases, the quasi-mode spectral peak broadens and takes on a more dipolarstructure. The broader the peak, and therefore the broader the distribution of phasespeeds of the individual modes that make up the quasi-mode, the faster a given initialwavenumber one asymmetry will �nd itself in the continuous spectrum of sheared vortexRossby waves. In nondivergent analyses of two-dimensional vortex monopoles, Schecteret al. (1999) were able to relate the decay rate of the quasi-mode to the half-width of thespectral peak in the special case where only a single narrow peak exists. Since the quasi-mode closely approximates a discrete mode in this case, one can bring the eigenvector
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Figure 5.21: PV eigenvector solutions to Eq. 5.9 for the benchmark mean vortex and(m;n) = (1; 1). Eigenfrequencies centered on the numerically-simulated rotation frequencyare shown as well as 
� ! for the central frequency. The units of ! are 10�6 s�1.



105outside the summation over frequency in Eq. (5.10). The time dependence of ~q(r; t) isthen obtained by computing the Fourier transform of A(!). This was done by Schecter etal. (1999) assuming a Lorentzian form for A(!) in the vicinity of the spectral speak. Thepresence of a dipole structure in the expansion coe�cient spectrum found here prohibitsan identi�cation with a single decay rate.Changing the width of the horizontal PV pro�le does not alter the basic resultspresented here. Figure 5.23 shows the PV intercentroid separation distance after 5�e asa function of 1 for mean vortices smaller and larger than that used in our benchmarksimulation (see Fig. 5.1). Recall that the vortex Burger number, (LR=L)2, is the parameterwhich appears in nondimensionalized invertibility relation and determines the partitioningbetween absolute and thermal PV. We observed in Section 5.1.3 that as the Burger numberdecreases from the nondivergent limit (i.e., 1 increases from zero) the vortex moves fromthe quasi-mode to alignment regime. For a value of 1 within the transition regime anincrease(decrease) in L will decrease(increase) the vortex Burger number, bringing thevortex closer to(further from) the alignment regime. As Fig. 5.23 shows, the result is thatthe quasi-mode regime contracts with increasing vortex scale.According to the arguments presented above, the existence and longevity of the quasi-mode depends on there being a region of near-zero mean vorticity gradient beyond someradius. As the scale of our Gaussian monopole increases, the radial region of small,but non-zero vorticity gradient decreases. Thus, there is a smaller range of frequencies forwhich Eq. (5.9) will support the weak singularity associated with the quasi-mode solutions.Precisely how this translates into the -dependence shown in Fig. 5.23 will depend on howvortex structure and 1 determine the quasi-mode frequency. This, we currently do notknow, but hope to understand through ongoing work.For a tilted vortex monopole with nonzero mean vorticity gradient at all radii (exclud-ing the origin and r = 1), alignment technically will always occur as t ! 1, regardlessof the nonzero value of 1. But for application to the atmosphere on physically-relevanttimescales of a few �e, it is useful and insightful to make the distinction between thequasi-mode and the rest of the singular mode continuum, and therefore co-rotation andalignment.
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Figure 5.22: Expansion coe�cient Ak as a function of eigenfrequency !k for values of 1in the quasi-mode and transition regimes. The wave one asymmetry given by Eq. 5.3 andeigenvectors shown in Fig. 5.21 were used to obtain Ak.
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Figure 5.23: As in Fig. 5.19 but for mean vortices smaller and larger than the benchmarkvortex.



1085.2 Application to Tropical Cyclogenesis5.2.1 Tilted VorticesA small fraction of all tropical disturbances develop into TCs. For example, on average100 tropical disturbances are observed in the Atlantic during hurricane season yet onlyabout 10{15 achieve tropical storm status (Frank 1975). In addition to the existence of low-to mid-level cyclonic vorticity, environmental factors like weak vertical shear and warmsea-surface temperatures are generally regarded as necessary conditions for development.The role of vertical shear in inhibiting TC genesis and development has been exploredboth in observational studies (Gray 1968; Zehr 1992) and in numerical and theoreticalworks (Jones 1995; DeMaria 1996; Bender 1997; Frank and Ritchie 1999). According toZehr (1992) the 200{850 mb vertical shear threshold above which development is severelyinhibited is 12.5{15 ms�1.Before considering the more complicated problem of a weak vortex forced by verticalshear it is necessary to understand the unforced problem. One can interpret the tiltedvortex of Section 5.1 as having resulted from some external forcing like environmentalvertical shear or horizontal strain associated with nearby vortices. Depending upon thehorizontal scale of the vortex and 1, the vortex will either return to a vertically-alignedstate through the sheared vortex Rossby wave mechanism or precess about its mid-levelcentroid due to the wavenumber one quasi-mode propagation. For tropical conditionsf = 5 � 10�5 s�1, H = 15 km, and N = 10�2 s�1, resulting in 1 = 1:0 � 10�6 m�1.For the mean vortex depicted in Fig. 5.1, 1 < L�1, well within the non-alignment regimeshown in Figs. 5.18 and 5.19. In the non-aligned state the vortex is especially vulnerableto further external forcing.Recently Dritschel and Juarez (1996), using a multi-layer QG CD model, found thata vortex column subjected to two-dimensional strain will become unstable and reduce itsvertical scale if the ratio of vortex height to width is greater than 3f=N , or equivalently1 < �=6L. Thus, for our vortex with L = 200 km, if 1 < 2:5 � 10�6 m�1, vortexbreak down should occur. Recall that this range of 1 was identi�ed using linear theory in



109Section 5.1 as the non-alignment regime. Therefore, a hypothetical weak tropical vortexextending through the depth of the troposphere and supporting a quasi-mode will tendto reduce its vertical scale in the presence of external shear until the alignment regime isreached. As noted by Dritschel and Juarez (1996), the vortex height to width ratio of 3f=Nis commonly observed for atmospheric vortices, including TCs. (Note that although TCsgenerally do not fall within the QG regime, by generalizing f to include vortex rotatione�ects, as discussed in Section 5.1.3 and demonstrated in Chapter 6, it is possible toextend the present results to vortices in approximate gradient balance.)In the case of TCs, the asymmetric transverse circulation required to maintain ther-mal wind balance in the small-1 tilted con�guration may actually help development. Ifthe persistent asymmetric low-level convergence and enhanced convection to the right ofthe tilt vector (Jones 1995; see also Chapter 6) is larger than would be produced throughsymmetric mechanisms alone, an enhanced strengthening of the vortex circulation throughsymmetrization of convectively-generated PV will occur (MK; ME98; M�oller and Mont-gomery 1999, 2000). According to the QG vortex alignment mechanism, even though thevortex has strengthened, it would still continue to wobble about its mid-level centroidsince 1 has not changed. If one naively extends the �ndings of Section 5.1 to include�nite Rossby number e�ects by replacing f2 in the expression for 21 with the productof the modi�ed Coriolis parameter and absolute vorticity of the associated vortex ow,the increase in vortex strength will increase 1. The vortex could potentially leave thenon-alignment regime and re-align itself without changing its vertical scale. In Chapter 6preliminary experiments using the AB model (Shapiro and Montgomery 1993) in whichthe standard Rossby number approaches unity demonstrate that the qualitative �ndingsof Section 5.1 still hold.5.2.2 Merger of a Tropical Vortex and Convectively-Generated PVWe now extend the tilted vortex results of the previous section to the merger of aconvectively-generated PV anomaly within an incipient vortex (e.g., easterly wave closedcirculation, MCV, ITCZ-derived). The dynamics of this problem was explored by ME98 inthe context of tropical cyclogenesis. They suggested the role of vortex Rossby waves in the



110merger process by showing good agreement between nonlinear and quasi-linear predictionsof mean ow change for a barotropic wavenumber two asymmetry on a barotropic meanvortex. Quasi-linear estimates of the mean ow change for a baroclinic two-cluster PVanomaly on a barotropic vortex also agreed with nonlinear simulations. Here we explicitlycompare linear and nonlinear simulations of the merger of a single-cluster convectively-generated PV anomaly with a weak vortex to assess the nature of the dynamics.The same barotropic mean vortex as ME98 is used (see Fig. 5.1). The single-clusterisolated anomaly with positive(negative) PV at lower(upper) levels is given byqsc(r; �; z) = �q0e�(��r)2 cos (�zH ); (5:11)where � is an amplitude factor, � is the inverse decay length of the asymmetry, and(�r)2 = (x � xc)2 + (y � yc)2. The parameters xc and yc denote the Cartesian locationof the asymmetry center. In the experiment presented here � = 0:5 and � = 1:0 � 10�5m�1. In order to initialize the EQB model with a barotropic mean vortex, as in theprevious section, the azimuthal wavenumber zero component of the anomaly at z = 0 isadded to the pre-existing mean vortex at all heights. In contrast to Section 5.1 we doallow the generation of azimuthal-mean vertical wavenumber two in the nonlinear EQBmodel through the wave-mean interaction of (m;n) = (1; 1), but it is incorporated intothe barotropic mean vortex (see Chapter 4). No modi�cations to (5.11) were made inthe QG3D model, so the mean vortex contains a small baroclinic component. The gridspacing for this QG3D model simulation is 7.5 km and the domain is now 1500�1500 km.Horizontal \del-squared" di�usion of PV has also been included with � = 100 m2s�1.The isolated anomaly is placed inside the RMW of the pre-existing vortex at xc = 125km and yc = 0 km to simulate an outbreak of convection near the vortex core. Figures5.24 and 5.26 show the PV evolution over 2.5�e simulated by the EQB and QG3D modelsfor 1 = 3:14�10�6 m�1. Although we are now considering tropical conditions, a value off = 1:0� 10�4 s�1 was used as a crude way of including the vorticity of the vortex in thede�nition of 1 (see ME98). The linear and nonlinear simulations agree well, consistentwith small R� (� 0:2) and the presence of the quasi-mode also observed in the tilted



111vortex experiments at this value of 1. Because of the greater departure of the horizontalstructure of the initial PV asymmetry from the barotropic pseudo-mode, more shearedvortex Rossby wave dispersion is evident. At longer times the sheared waves symmetrize,leaving just the quasi-mode. Discrepancies between the nonlinear simulations are likelyaccounted for by the di�erent initial mean vortex structures used. The phase di�erencein the azimuthal wavenumber one PV �elds after 2.5�e is, however, only 30{40 degrees.Complete merger of the low-level convectively-generated PV with the incipient vortexis not expected during the time period considered here due to the presence of the quasi-mode. But forward Lagrangian trajectories from the linear simulation do show that PVfrom the low-level positive anomaly is transported radially inward into the vortex core (seeFig. 5.27). Of course total PV is not materially conserved as the parcel moves towards thevortex center in the linear approximation, as evidenced by the reduction in peak PV in Fig.5.26, but the linear vortex Rossby waves do irreversibly transport PV nonetheless. Theradially-inward transport of cyclonic eddy vorticity and eddy PV implies a strengtheningof the low-level mean tangential winds in the vortex core by Stokes' Theorem, and viceversa. This is illustrated in Fig. 5.28 for the above experiment. Over 2.5�e the QG3Dmodel shows an increase in low-level tangential winds of approximately 0.21 ms�1 radiallyinside the location of the initial PV asymmetry. The nonlinear EQB simulation producesa similar structure for the tangential wind change, �v, but with a maximum value of 0.18ms�1.It is not surprising that the QG3D and nonlinear EQB models should agree as well asthey do given that the low-level PV evolution is largely captured by linear vortex Rossbywave dynamics. Since wave-wave interactions are small (recall R� � 0:2), the bulk of themean ow change is e�ected by the self-interaction of vertical wavenumber one (i.e., wave-mean interaction) as shown in Fig. 5.28. MK predicted, and it was later con�rmed in anondivergent model for small but �nite-amplitude disturbances (ME98) and for near orderone amplitude disturbances (Enagonio and Montgomery 2000), that in such a situationone can use the linear solution to estimate the mean ow change that would occur ina model where the wave-mean interaction was computed explicitly. The so-called quasi-linear approximation is an estimate because the mean ow is prohibited from changing
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Figure 5.24: Evolution of vortex PV (from left to right) at t = 0, 0.5�e, 1.5�e, and 2.5�efor the case of a barotropic mean vortex perturbed with an isolated baroclinic anomaly.Only the inner 600 km � 600 km is shown. The vertical depth is 10 km. The contourinterval is 2:0� 10�5 s�1. (a) QG3D model (b) linear EQB model.
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Figure 5.25: see Fig. 5.24.
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Figure 5.26: As in Fig. 5.5 but for the isolated anomaly experiment. See text for detailson the initial conditions. Asymmetry contour interval is 0:3� 10�5 s�1.
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Figure 5.27: Forward Lagrangian trajectories of parcels originating within the isolatedanomaly at z = 0 computed using winds simulated by the linear EQB model over 2.5�e.Note that high PV is transported in towards the vortex centroid.
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Figure 5.28: Change in azimuthal-mean tangential velocity at z = 0 over 2.5�e as afunction of radius for the isolated anomaly experiment. Shown are results from the QG3Dand EQB models illustrating the quasi-linear nature of the low-level intensi�cation of themean ow by vortex Rossby waves.



117in the linear model. The feedback on the wave dynamics is not captured as it is in thewave-mean model.The quasi-linear formulation in the QG context is obtained following Held and Phillips(1987) and Holton (1992; Section 12.4). Starting with the mean PV equation,@q@t (r; z; t) = �1r @@r (ru0q0); (5:12)and using the fact that ru0q0 = �@A@t ; (5:13)where A(r; t) � rq02=(2dq=dr) is the wave activity (or pseudo angular momentum), oneobtains the following equation for the change in mean PV:�q = 1r @@r (�A); (5:14)where � denotes the di�erence between a mean quantity at t!1 and t = 0.Given the PV perturbation,q0 = q̂1(r; �; t) cos��zH � ; (5:15)where q̂1 is real-valued, the wave activity can be written asA = Â2 �1 + cos�2�zH �� ; (5:16)where Â = rq̂21=(2dq=dr). Therefore �A has both a barotropic and vertical wavenumbertwo component. The mean angular momentum change due to the barotropic componentis obtained directly �(rv0) = 12�Â; (5:17)while the wavenumber two component is obtained by �rst solving the invertibility relation,1r @@r �r @@r (� 2)�� 22� 2 = 1r @@r  �Â2 ! ; (5:18)and then di�erentiating the incremental streamfunction�(rv2) = r @@r (� 2): (5:19)



118The total mean angular momentum change is the sum of these two contributions:�(rv) = �(rv0) + �(rv2) cos�2�zH � : (5:20)Since 2 is relatively small in our case, we may assume �v2 = �v0 to provide an upperbound on �v. The quasi-linear result derived from the linear EQB simulation is shown inFig. 5.28. It not only replicates the general radial structure of the nonlinear �v predictions,but is also of the correct magnitude.As a �nal note on the merger of an isolated anomaly with an incipient vortex, we com-ment on ME98's experiment involving the merger of an MCV-like vortex with convectively-generated PV. The initial pre-existing vortex has a large baroclinic component and theanomaly is given by (5.11). The anomaly in their experiment is placed well outside theRMW of the MCV vortex. For a convective blow-up inside the RMW, like that consideredabove, we would expect to be able to capture the subsequent alignment process using ourlinear model (linearized about a baroclinic mean vortex).



Chapter 6VERTICAL ALIGNMENT OF STRONGER, SHEARED VORTICES6.1 The E�ects of Flow CurvatureFor the benchmark mean vortex used in Chapter 5 with a 200-km RMW and maxi-mum tangential wind of 5 ms�1, the Rossby number is approximately 0.3 at the RMW.Although this value is less than unity, it is not entirely negligible either. To more accu-rately describe this vortex, we wish to utilize a balance theory appropriate for swirlingows. The AB model described in Chapter 4, based on a local Rossby number expansion,is used to validate the results of Chapter 5. Recall that the linear equivalent barotropicAB system looks very similar to the QG counterpart, except that the internal Rossbydeformation radius is now a function of the mean vortex swirl and there are additionalgeometric factors. Therefore, to the extent that the local Rossby number is much less thanunity and the AB formulation is formally valid, we expect at least qualitative agreementwith the QG results, i.e., co-rotation at small values of 1 and alignment at large values of1. Because of the dependence of 1 on radius we choose to characterize the simulationsby the value at the RMW.In the �rst experiment the benchmark vortex of Chapter 5 is used. The local Rossbynumber squared, standard Rossby number squared, and 1 are shown in Fig. 6.1. BecauseR21 � 1, we expect the linear AB theory to be highly accurate for tilted vortices withRo close to, but less than, unity. At large radius � ! f and � ! f , so the value of1 = 3:14 � 10�6 m�1 used in the QG simulation is recovered. Figure 6.2 shows theevolution of pseudo-PV at z = 0 over a 5�e period. 1 = 4:3 � 10�6 m�1 in this case.The evolution of pseudo-PV is nearly identical to that shown in Fig. 5.5 simulated by thelinear QG model. The radial vortex Rossby wave propagation is slightly more pronounced



120in the AB simulation. We conclude that the inclusion of curvature e�ects in the case of aweak vortex does not substantially alter the quasi-mode found in the QG system.Keeping the same tangential wind pro�le, but altering f and N should produce thesame variability in vortex evolution presented in Chapter 5, obtained there by varying just1. Figures 6.3 and 6.4 show the evolution of psuedo-PV upon increasing f and decreasingN by a factor of four, respectively. In the former case R21 is decreased and 1 = 13:7�10�6m�1, and in the latter case R21 remains the same as in 6.1 and 1 = 17:2�10�6 m�1. Bothsimulations show axisymmetrization of perturbation pseudo-PV, i.e., vortex alignment,consistent with the QG evolution at 1 = 20:0 � 10�6 m�1 shown in Fig. 5.13. Thecomplete picture of vortex alignment is therefore captured by QG theory for weak vortices.The question remains as to whether the QG formulation still captures the essence ofthe alignment mechanism for rapidly rotating vortices. Figure 6.5 shows R21, Ro2, and1 for the benchmark vortex (and benchmark environmental conditions), but with themaximum mean tangential wind increased to 10 ms�1. The local Rossby number squaredis still much less than unity in this case and therefore we still expect the AB theory tobe accurate. Figure 6.6 shows the evolution of the stronger benchmark vortex. In thiscase we estimate 1 = 5:4� 10�6 m�1. The wavenumber one PV asymmetry rotates at afaster rate than in the benchmark case (� twice as fast), but retains an underlying quasi-mode structure. The sheared vortex Rossby waves are much more prominent. Recall thediscussion in Chapter 5 where it was noted that a general initial condition will tend toproject more onto the sheared vortex Rossby waves at early times than when the vortexis perturbed with an asymmetry having the quasi-mode structure. Although the vortex inthis simulation has been perturbed with an azimuthal wavenumber one asymmetry havingradial PV structure of the pseudo-mode (which was identical to the quasi-mode structurein the QG simulations), the quasi-mode in the AB system at higher swirls may not takeon this form. Therefore, sheared wave dispersion occurs as the vortex asymptotes to thequasi-mode solution. This hypothesis will be tested in future work by performing an ABeigenanalysis similar to that done for the QG system.The above results are important in two regards. First, they suggest that the QGvortex alignment �ndings may be directly applied to the tropical cyclogenesis problem
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Figure 6.1: Benchmark vortex (a) Local Rossby number squared for azimuthal wavenum-ber one (dashed) and standard Rossby number squared (solid), and (b) inverse internalRossby deformation radius for vertical wavenumber one (units 10�6 m�1).
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Figure 6.2: Linear equivalent barotropic AB simulation of the wavenumber one componentof pseudo-PV (contour interval 1� 10�9 s�3 with negative values dashed) at z = 0 over a5�e period for the benchmark run (compare with Fig. 5.5).
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Figure 6.3: As in Fig. 6.2, but for a larger value of f = 4:0 � 10�4 s�1. Contour interval2� 10�9 s�3.
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Figure 6.4: As in Fig. 6.2, but for a smaller value of N = 2:5� 10�3 s�1. Contour interval0:05 � 10�9 s�3.
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Figure 6.5: As in Fig. 6.1, but for a stronger vortex with maximum tangential wind of 10ms�1.
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Figure 6.6: As in Fig. 6.2, but for a vortex with maximum mean tangential wind of 10ms�1. Note that the time period considered has been reduced due to the shorter circulationperiod. Contour interval 1� 10�9 s�3.



127for weak incipient vortices. The addition of �nite Rossby number e�ects modi�es theradial structure of the quasi-mode and governing dynamical equations somewhat, but thetransition from alignment to non-alignment regimes deduced from the QG simulationsremains approximately true. Second, it is likely that a quasi-mode in near-gradient bal-ance exists at higher swirls. The precise radial structure of this quasi-mode is currentlyunknown. The quasi-mode may be relevant to hurricane-strength vortices, although thecombination of higher swirl speeds and reduced static stability would put the vortex wellinto the alignment regime according to the QG picture. It remains to be demonstratedat what horizontal scale and internal deformation radius the transition from alignment tonon-alignment actually occurs in the higher swirling case.6.2 The E�ects of Vertical Shear6.2.1 Forced Vortex AlignmentVertical shear can be included in the linear model as follows. For simplicity weconsider the QG problem. First, letv(r; �; z; t) = v(r; z) + v0(r; �; z; t) + vs(r; �; z) (6:1)u(r; �; z; t) = u0(r; �; z; t) + us(r; �; z)q(r; �; z; t) = q(r; z) + q0(r; �; z; t) + qs(r; �; z)where ( ) and ( )0 are here de�ned as the vortex azimuthal mean and perturbation com-ponents, respectively, and ( )s are the environmental shear components of the total windand PV �elds. Linearizing the QG PV equation (4.1) by �rst neglecting the product ofvortex perturbation quantities yields� @@t + vr @@�� q0 + u0dqdr = Fs (6:2)whereFs = � �(v + v0)1r @qs@� + us @@r (q0 + q) + vsr @q0@� + u0 @qs@r + vsr @qs@� + us@qs@r � : (6:3)



128Let the environmental ow be purely zonal and vary with height so as to preserve theisothermal vertical boundary conditions, i.e.,us = U cos � cos�m�zH � = �1r @ s@� (6:4)vs = �U sin� cos�m�zH � = @ s@r ;where U is the maximum zonal wind. The environmental streamfunction and PV are thengiven by  s = �Ur sin� cos�m�zH � (6:5)qs = 1r @@r �r@ s@r �+ 1r2 @2 s@�2 + f2N2 @2 s@z2 = 2mUr sin� cos�m�zH � :Note that the last two terms of Eq. (6.3) cancel sincevsr @qs@� + us@qs@r = ��U sin�r � 2mUr cos �+ U cos � � 2mU sin�� cos�m�zH � = 0; (6:6)i.e., the zonal mean ow is itself an exact solution to the linearized PV equation (6.2).Therefore, Fs can be writtenFs = �U ��2mv + dqdr + 2mv0 + @q0@r � cos �+ �2mu0 � 1r @q0@�� sin�� cos�m�zH � : (6:7)The only deformation radius in the QG system is LR = NH=f , so there is no wayto independently change the deformation radius of the vortex and environment. Sincethe PV associated with the environmental ow consists entirely of thermal vorticity andis proportional to 21 times the streamfunction, the PV and its meridional gradient willincrease with decreased deformation radius (assuming the mean zonal wind remains �xed).Therefore, for very large 1 the solution to the forced linear problem will be dominated byRossby waves propagating on the environmental PV gradient excited by the vortex. Thedegree to which the initial vortex disperses as Rossby waves is characterized by the betaRossby number. The beta Rossby number di�ers from the vortex beta Rossby number(5.6) in that the vortex is now regarded as the perturbation and the mean PV gradient isassociated with the environment. The ratio of the vortex interaction terms in the linear PV



129equation (6.2) to the \e�ective �" term in (6.7), which is proportional to �effv = 21Uv,scales as R� � v2max=L2�effvmax = vmax�effL2 ; (6:8)where vmax is the maximum tangential wind of the vortex and L is the horizontal vortexscale. For vmax = 5 ms�1, L = 200 km, U = 0:5 ms�1, and 1 = 20:0�10�6 m�1, the betaRossby number is approximately 0.6. The vortex will therefore tend to disperse in thislimit. The dispersion of the vortex can be prevented by incorporating sloping boundariesto o�set the e�ective beta of the environmental ow (Smith et al. 2000), or it can becontrolled by using a balanced system which allows one to change the deformation radiusof the vortex without changing the environmental PV gradient (which we want to remainsmall for a wide range of 1). The inclusion of vertical shear in the linear AB system isbriey discussed below.In the limit of small 1 and weak vertical shear, Fs can be further simpli�ed:Fs � �U dqdr cos� cos�m�zH � : (6:9)This forcing represents the radial advection of azimuthal mean vorticity by the environ-mental ow. Expressing cos � as (ei� + e�i�)=2, the PV equation for (m;n) = (1; 1) is� @@t + i
� ~q11(r; t) � ir dqdr ~ 11(r; t) = �U2 dqdr : (6:10)The ~q1;�1 PV perturbation is given by the complex conjugate of ~q1;1. The RHS forcingis easily incorporated into the linear EQB semi-spectral model (6.10). Using this linearmodel, we expect to be able to approximately reproduce the boundary between co-rotation(or alignment) and the irreversible shearing apart of the vortex determined by Smith et al.(2000), who used a two-layer nonlinear QG model. Qualitatively we know that the vortexwill tend to shear apart when it is initially in the co-rotation regime, and will resist thee�ects of shear in the vortex alignment regime. The linear model can be used to quantifythe value of 1 at which alignment takes place as a function of the shear magnitude, �U=H,or, equivalently, determine the shear threshold above which the vortex is unable to holdtogether.



130Extension to the linear equivalent barotropic AB system yields a model for rapidlyrotating vortices. The two-layer nonlinear analogue model of Smith et al. (2000) forrapidly rotating, distributed vortices involved an ad-hoc coupling parameter. The \cou-pling parameter" in our case is known, and is simply 21(r) = (�=NH)2(��). Consequently,our model can be applied in a more straightforward manner to a physical scenario likethe alignment of a TC. It remains to be seen how well the linear AB model reproducesthe boundary between co-rotation (or alignment) and irreversible separation of upper andlower vortex centers for the stronger vortices (Ro � 5{10) described by Smith et al. (2000).In Chapter 5 we alluded to the possibility that a tilted vortex could realign itselfthrough the secondary circulation required to maintain thermal wind balance. The sec-ondary circulation itself is not responsible for the alignment, for it is merely the responseof the balanced vortex to changes in the geostrophic (QG system) or gradient (AB system)winds. Through enhanced low-level convergence and, as a consequence of coupling withthe boundary layer, enhanced convection, the secondary circulation can excite asymmet-ric low-level PV generation. If the magnitude of the low-level asymmetric convergence ismuch larger than the low-level axisymmetric convergence, the axisymmetrization of thisPV will strengthen the mean vortex. The dynamics of vortex interaction with verticalshear and supporting observations from Hurricane Olivia (1994) are presented below.6.2.2 TC Secondary Circulation Response to Vertical ShearRaymond and Jiang (1990) proposed a mechanism by which the PV anomaly associ-ated with a midlatitude mesoscale convective system interacts with environmental verticalshear to produce enhanced low-level lifting and cumulus convection, thus prolonging thelife of the mesoscale convective system. In their conceptual model they assumed that thedistortion of the PV anomaly by the vertical shear was negligible. Upward motion thenarose downshear as the ambient ow followed the distorted isentropes of the PV anomaly,and the vortex ow followed the tilted ambient isentropes. They estimated that verticaldisplacements in excess of 500 m could occur over a 24 h period, large enough to releaseconditional instability. In a subsequent study Raymond (1992) considered the additional



131e�ect of distorting the vortex isentropes through tilting by ambient shear. In his sim-ulations he found that the vortex ow on the distorted isentropes of the tilted vortexproduced an important contribution to the vertical motion, with maximum values in thedownshear-right quadrant.The relation between vertical shear and convective asymmetry in hurricanes has beennoted observationally (Willoughby et al. 1984; MHG; Franklin et al. 1993; Reasor et al.2000; Black et al. 2000) and explored recently using idealized and operational hurricanenumerical models (Jones 1995; DeMaria 1996; Bender 1997; Frank and Ritchie 1999).Jones (1995) simulated the evolution of an initially barotropic hurricane-strength vortexin unidirectional vertical shear. The early stages of the simulation produced upwardmotion downshear via the vortex ow on ambient isentropes and the upward motion ofisentropic surfaces as the tilting vortex tried to maintain thermal wind balance. Thecoupling of upper- and lower-level PV anomalies lead to changes in the direction of vortextilt with respect to the ambient vertical shear vector. As the tilt became more substantial,the pattern of vertical motion was governed increasingly by the vortex ow on distortedisentropes. The maximum upward motion then occurred to the right of the local tiltvector.Insight into the relative contributions of vertical shear and vortex tilt to the verticalmotion pattern may be obtained by �rst considering the dynamics in a QG framework.We begin by de�ning an initially circular barotropic vortex in pseudo-height coordinatestilted linearly with height in the zonal direction. In Cartesian coordinates the tilted vortexis described as follows: U = �2RvmaxyR2 + (x� �z)2 + y2 ; (6:11)V = 2Rvmax(x� �z)R2 + (x� �z)2 + y2 ;where U and V are the zonal and meridional components of the wind, respectively, R theRMW, vmax the maximum tangential wind, and � the constant change in vortex centerdisplacement with height. A vertically-sheared zonal environmental wind, Ue, is thenadded to this vortex wind �eld, and the total wind �eld is transformed into a cylindricalcoordinate system (r; �; z) whose origin is the vortex center on the lowest surface, z = 0.



132The vertical velocity �eld required to maintain thermal wind balance is obtainedby solving the well-known Q-vector form of the omega equation written in cylindricalcoordinates (Hoskins et al. 1978):N2r2w + f2@2w@z2 = 2r �Q; (6:12)where N is the Brunt V�ais�all�a frequency, r the horizontal gradient operator, and Q isthe horizontal Q vectorQ = �f �@u@z @v@r � @u@r @v@z � ; fr �@u@z �@v@� + u�� @v@z �@u@� � v��� (6:13)where u and v are the geostrophic radial and tangential winds, respectively. We �rstsubstitute the expression for the winds into (6.13) and then compute the horizontal diver-gence. A new coordinate system (r0; �0; z) is de�ned with the origin at the center of thedisplaced vortex at each height (see Appendix A for details). De�ning a nondimensionalradius b0 = r0=R, the expression for the Q-vector divergence becomes simplyr �Q = 16b0f3RoR(1 + b02)4 �(�Ro) �2� b02� sin�0 � 1f �@Ue@z ��1 + b02� cos �0� (6:14)where Ro � vmax=fR is the Rossby number. The �rst term on the right-hand siderepresents the forcing due to vortex ow on distorted isentropes, while the second termrepresents the e�ects of vortex ow on ambient isentropes. Note that in the transformedcoordinate system the Q-vector divergence projects only onto wavenumber 1. Since w isproportional to �r �Q, it follows that the maximum upward motion due to vortex owon distorted isentropes occurs to the right of the tilt vector, whereas the upward motionalong ambient isentropes occurs downshear, as expected. The radius of maximumQ-vectordivergence and, hence, vertical motion tends to occur around 0.5R for this particularvortex pro�le. If solid-body rotation is used instead inside the RMW, the maximumupward motion moves closer to the RMW.Although (6.14) is strictly valid for Ro� 1, it can be used to describe the qualitativefeatures of the vertical motion �eld at near unity Rossby number. As an example ofits applicability, we consider the vortex discussed by Trier et al. (1998) in their non-hydrostatic primitive equation (PE) simulation of the interaction of a mesoscale vortex



133with environmental vertical shear. Since they initialized their model with a baroclinicvortex di�erent from the barotropic vortex described by (6.11), we focus primarily onqualitative agreement. At 2.1 km height, R = 30 km and Ro � 1:5. The low-levelwesterly environmental shear is approximately 2 � 10�3 s�1. If the PV anomaly at eachheight is simply advected by the mean ow, then � � 3 after 0.5 h and � � 40 after 6 h.We �nd that at 0.5 h the vertical motion downshear near b0 = 0:5 is approximately threetimes larger than that to the right of the tilt vector. This is consistent with the simulationof Trier et al. which produced upward motion primarily downshear at this time (see Fig.6.7a). At 6 h, when the vortex tilt is more substantial, we estimate that the upward motionto the right of the tilt vector is about four times greater than the downshear component.This is again consistent with their simulated vertical motion (see Fig. 6.7b).Using the actual initial vortex and environmental ow parameters of Trier et al. in astandard QG omega-equation solver produces a vertical velocity pattern in good agreementwith their simulated results at 0.5 and 6 h (see Fig. 6.8). The magnitude of the QG verticalvelocity, however, is a factor of 2-3 less than the PE values. Employing a balance theorymore appropriate for rapidly rotating vortices would reduce this discrepancy. An equationsimilar to (6.12) was derived by Shapiro and Montgomery (1993) for the asymmetricbalance (AB) system valid for hurricane-strength swirling ows. The AB omega equation,assuming a barotropic mean vortex, is given byN2r @@r �r@w0@r �+ �� @2w0@z2 + N2r2 @2w0@�2 = r3D �A; (6:15)where A = (�r @@z �@�0@� �� @
@r @@z �@�0@� � ;�� @@z �@�0@r � ; u0 @(��)@r ) (6:16)is the three-dimensional generalization of the horizontal Q-vector from QG theory. ThisAB generalization of the QG omega equation may allow one to obtain an expression similarto (6.14). A more quantitative comparison with PE simulations and actual observationswill be investigated in future work.
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Figure 6.7: Vertical velocity at 2 km height resulting from the interaction of the vortexand vertical shear described by Trier et al. (1998). The results at (a) 0.5 hr and (b) 6 hrare shown. Dark shading denotes values from -1 to -3 cm s�1 and light shading valuesfrom 1 to 3 cm s�1. From Trier et al. (1998), used with permission.
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Figure 6.8: Vertical velocity derived from the omega-equation at 2 km height resultingfrom the interaction of the vortex and vertical shear described by Trier et al. (1998). Theresults at (a) 0.5 hr and (b) 6 hr agree with the PE simulations of Trier et al. The gridis shifted to the east to account for the eastward translation and increased vertical tilt ofthe vortex with time. Contour interval is 0.2 cm s�1 with dashed contours representingdownward motion.



1366.3 Observations of TC Vortex AlignmentThe observations of Hurricane Olivia on 25 September 1994 provide a unique lookat the role of vertical shear in producing structural changes to the inner-core wind �eld.The seven consecutive wind composites capture for the �rst time the asymmetric responseof a hurricane to dramatic changes in vertical shear over a relatively short time period.Figure 6.9 shows hodographs of area-averaged storm-relative wind (Ve �Vs) during theobservation period. Figure 6.10 shows the best estimate of inner-core vortex tilt derivedfrom the simplex algorithm. Initially the maximum local vertical shear is weak west-northwesterly, with values on the order of 3-5 m s�1 over the 0.75 km to 10.5 km depth.Consistent with the weak shear, the vortex is nearly vertically aligned. Over the next2.5 h the maximum shear increases to 15 m s�1 over the 0.75 km to 10.5 km depthand is westerly. A west to east tilt of the vortex with height evolves, with a maximumdisplacement from low to middle levels of about 3 km. Inspection of the ow �eld from6 km to 10.5 km height, where the simplex algorithm for �nding the vortex center is lessreliable, indicates that the inner-core does not tilt more than 5 km (not shown).According to the adiabatic mechanism for vertical velocity production, the preferredlocation for enhanced convection due to vertical shear e�ects should be downshear-right inthe east to southeast quadrant of the storm. Olivia was moving to the north-northeast atabout 5 m s�1 during this time, so enhanced asymmetric boundary layer convergence and,hence, convection might also be expected in the north-northeast quadrant (Shapiro 1983).Figure 6.11 shows an azimuth-height cross-section of vertical velocity in Olivia's innercore at 14 km radius. The upward velocity is generally maximum downshear during legs 1and 2, and consistent with the weak vertical shear during this time the values are smallerthan observed during latter legs. The front to back convective asymmetry discussed byShapiro (1983) is not apparent during the small shear/tilt period. It may exist at lowlevels unresolved in the present analysis.As the vertical shear and vortex tilt increase, the maximum upward velocity increasesfrom 1-2 m s�1 to 6-10 m s�1 and the pattern of convection becomes more complicated.A \double maximum" in upward motion develops on the downshear side of the vortex
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Figure 6.9: Hodographs of the area-averaged storm-relative wind (Ve�Vs) from 0.75 kmto 10.5 km height for each ight leg. The vertical distance between points is 0.75 km.
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Figure 6.10: Departures of the simplex-algorithm center (�) from the ight-level center(+) as a function of height from 0.75 km to 6 km for each ight leg.
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Figure 6.11: Azimuth-height cross-section of vertical velocity at 14 km radius from thestorm center for each ight leg. North is located at 90� and West is located at 180�.Contour interval is 2 m s�1. Negative values are depicted by the dashed curves. Theheavy, solid vertical line denotes the direction of storm motion.



140with one maximum downshear-left and the other downshear-right. The downshear-leftmaximum tends to be the stronger of the two. The storm motion during the period fromleg 1 to leg 7 is relatively steady and the direction of motion changes gradually by only 10degrees, so it is unlikely that the dramatic changes in vertical motion could be attributedto the asymmetric boundary layer convergence described by Shapiro (1983).The observed trend of increased upward motion downshear and downshear-right withincreased vertical shear and vortex tilt is consistent with the adiabatic mechanisms dis-cussed in Section 6.2. Frank and Ritchie (1999) found, however, that in their numericalsimulations of hurricanes in unidirectional vertical shear the downshear cold potentialtemperature anomaly produced via adiabatic mechanisms was eradicated in regions wherelayers were lifted to saturation. The contribution to upward vertical motion from vortexow on the distorted isentropes of the tilted vortex was then eliminated. The emergenceof a downshear-left convective asymmetry was hypothesized to result from low-level con-vergence through the downward projection of the downshear-displaced upper-level vortexPV at the surface. Olivia's tilt with height, while generally from west to east, shows ananticyclonic curvature consistent with the anticyclonic rotation of the shear vector withheight. The surface projection of Olivia's tilted PV at di�erent upper levels could forcemore broadly distributed mesoscale convection on the downshear side of the vortex, asobserved. Although the relative roles of the mechanisms described above are unclear inthis case, the involvement of vertical shear in producing the convective asymmetry is verylikely.If a tilted vortex supports a long-lasting quasi-mode, a persistent region of asymmetricconvection and low-level positive PV generation is expected. In the initial stages of tropicalcyclogenesis this may be especially important as it provides a means of producing pulsesof PV near the vortex core over an extended period of time. The pulsing of PV followedby its axisymmetrization are an integral part of the TC genesis mechanism of ME98.That the asymmetric convection is tied to the vortex core results in a more e�cientaxisymmetrization and mean ow intensi�cation mechanism (ME98).Understanding the inuence of vortex-scale dynamics on the distribution of convectionin the hurricane inner core should also aid in the prediction of the gross precipitation



141structure of a hurricane as it enters or is embedded in di�erent environmental ows. A clearrelationship exists between the mesoscale asymmetry in convection believed to be forcedby the vertical shear of the environmental winds (Fig. 6.11) and the asymmetric patternof reectivity (Fig. 2.2). The largest values of reectivity occur immediately downwind ofthe regions of enhanced convection, consistent with hydrometeors being carried up by theupdrafts of the convective cells and simultaneously swept downwind by the much strongerprimary tangential circulation.



Chapter 7CONCLUSIONSThe axisymmetric conceptual model of the TC life-cycle (e.g., Ooyama 1969) hasadded tremendously to our basic understanding of TC intensity change. The axisym-metric view continues to provide new insight into TC evolution (e.g., Montgomery et al.2000). In spite of the contributions of symmetric models to fundamental understanding,they have not demonstrated the capacity to accurately predict TC intensity change inall cases. The e�ects of asymmetric environmental inuences like synoptic-scale troughsand vertical shear are generally not parametrized in these models and can have signi�cantimpacts on TC evolution. In cases where environmental asymmetries are not observed toplay a large role in the evolution of the TC, symmetric ocean-atmosphere models haveshown modest success in predicting gradual changes in TC intensity over open ocean. Anotable example is the axisymmetric model of Emanuel (1995). Emanuel (1999) predictedthe temporal evolution of maximum tangential wind for several observed hurricanes withthis model using as input the initial observed maximum tangential wind, the ocean struc-ture along the observed track, and the degree of saturation required to obtain the initialobserved intensi�cation rate. Asymmetric redistribution of vorticity, which is central tothis dissertation, was simply parametrized as an enhanced radial momentum di�usion(Emanuel 1989). Emanuel (1989) states that some radial momentum di�usion is neces-sary to maintain a realistic eye and to obtain realistic vortex ampli�cation rates at earlytimes, but the actual magnitude of the di�usion is not crucial. Based on the examplesshown, taken at face value, the model demonstrates skill in predicting the basic trends inintensity. The ocean is, after all, the primary energy source for the hurricane, so the oceanmake-up should be reected in the intensity evolution of the vortex. Therefore, for the



143purpose of intensity prediction, do we really need to resolve asymmetric dynamical pro-cesses, or is it su�cient to simply parameterize their e�ect through enhanced momentumdi�usion?A closer look at the examples chosen by Emanuel (1999), which are likely the best pos-sible cases (although a couple failures attributed to vertical shear and nuances of the oceanstructure were presented), shows that the more rapid uctuations in intensity (aside fromthe initial intensi�cation over open ocean and spin-down over land) are generally not cap-tured by his model. The model sometimes produces uctuations in maximum tangentialwind qualitatively consistent with the observations, but in other instances the uctuationsare temporally o�set from the observed uctuations by a day or two, creating the illusionthat the changes in intensity are related. Given that the simulated vortex evolution is,according to Emanuel (1999), \quite sensitive to the initial state," the results must be ap-proached with caution. The axisymmetric simulations do not provide convincing evidencethat one need only represent the symmetric ocean-atmosphere interaction to capture all(non-environmental related) intensity uctuations. Internal asymmetric dynamical mech-anisms may be responsible for some of the observed uctuations. Furthermore, to obtainthe correct amplitude of the uctuations, the asymmetric mechanisms will likely need tobe represented explicitly.From an operational standpoint, why should we care about accurately resolving theseuctuations if the basic trends are captured? The answer is quite simple: These uc-tuations in tangential wind can, in some cases, mean the di�erence between a 45 ms�1and 60 ms�1 hurricane at landfall, which in practical terms translates into the di�erencebetween minor structural damage and potentially extensive damage. Additionally, themaximum tangential wind can appear as a localized anomaly generated internally, as inthe case of eyewall mesovortices produced through the barotropic instability of the vor-tex ow (S99). The peak tangential wind associated with the anomaly superposed onthe background mean ow may be substantially larger than that produced through anaxisymmetric simulation using the same vortex pro�le.The above discussion pertains to the intensity change of already well-developedstorms. Can the genesis of a TC be captured using an axisymmetric model? Rotunno and



144Emanuel (1987), using an axisymmetric model, demonstrated that �nite-amplitude incipi-ent vortices whose strength lies above a threshold can develop into mature cyclones. Bisterand Emanuel (1997) through a combined observational and axisymmetric model study ofthe genesis of Hurricane Guillermo (1991) proposed that following the formation of a mid-level MCV, lower-tropospheric evaporation of rain moistens the low levels and generatesa downdraft. This downdraft advects the mid-level vorticity downward. Enhancementof surfaces uxes due to the increased low-level winds leads to enhanced convection and,therefore, low-level vorticity. Through thermal wind balance, the strengthening of thewinds then leads to a warm-core vortex. Agreement between observations and the ax-isymmetric simulation were demonstrated. Bracken (1999) performed a re-analysis of theGuillermo observations using the entire data set and found at low (1{3 km) and middle(5{7 km) levels a more asymmetric evolution of the vorticity associated with pre-Guillermothan described by Bister and Emanuel, with the vortex centers at low and middle lev-els often o�set horizontally. Obviously one could not simulate the asymmetric vortexinteraction suggested by these observations with an axisymmetric model.The focus of this dissertation was on the role of asymmetric dynamical processesinternal to the TC vortex in promoting structure and intensity change, speci�cally mecha-nisms that cause redistribution of vorticity. Changes in the PV �eld, through invertibility,yield changes in the wind structure of the vortex. The internal dynamics was consideredin two stages: We �rst explored the horizontal redistribution of vorticity using wind �eldsderived from dual-Doppler measurements within Hurricane Olivia (1994). Some of thetwo-dimensional ideas presented were then applied to the problem of three-dimensionalvorticity redistribution in the context of vortex vertical alignment and vortex mergerwithin incipient tropical vortices.7.1 Horizontal vorticity redistributionFor completeness, we �rst considered the symmetric weakening of Hurricane Olivia.We did not speculate as to the primary cause of the weakening, but it likely involvedboth increases in the environmental vertical shear and reductions in the SSTs as Olivia



145moved northward. The magnitude of the observed near-linear decrease in tangential windswith time in the vicinity of the RMW agreed with the axisymmetric vortex spin-downpredictions of Eliassen and Lystad (1977) despite the observation of inow up to 3.5 kmheight and the presence of environmental vertical shear. Comparison of the observedmean tangential wind tendency and estimated tendency based on the symmetric radialand vertical advection of tangential momentum showed qualitative agreement over the 3.5hr observation period, with a negative tendency in the vicinity of the RMW and positivetendency radially outside the RMW. It was not readily apparent that the observed spin-up of tangential winds inside the eye could be accounted for by purely axisymmetricphenomena. We therefore hypothesized that asymmetric mechanisms might be playing animportant role in Olivia's symmetric evolution.The vorticity asymmetry in Olivia's inner core was dominated by an azimuthalwavenumber 2 feature below 3 km height and a wavenumber 1 feature above 3 km, bothmaximum near the RMW. During leg 1 the wavenumber 2 asymmetry extended fromlow to middle levels of the storm and appeared to decay through leg 2. An increase inthe wavenumber 1 asymmetry at middle levels around leg 3 coincided with the increasein vertical shear. Tilting of horizontal vorticity by enhanced convection on the east sideof Olivia, as suggested by Gamache et al. (1997), is a possible mechanism for the pro-duction of the wavenumber 1 asymmetry, but a consistent vorticity budget could not beperformed with this data and, thus, no de�nitive conclusions could be drawn. Followingleg 3 a low-level wavenumber 2 asymmetry re-emerged and persisted through the end ofthe observation period.Lower fuselage reectivity composites at low levels during leg 5 depicted an ellip-tical eye rotation. The rotation period was consistent with Kelvin's predictions for awavenumber 2 vorticity asymmetry propagating on the discontinuity of a Rankine vortex(Olivia's mean vorticity gradient outside 10 km radius was indeed sharp). The major axisof the reectivity ellipse was found to be aligned with the axis of positive vorticity of thewavenumber 2 vorticity asymmetry observed during leg 5. Since this asymmetry likely hadits structure and azimuthal phase speed modi�ed by convection and axisymmetrization,



146we did not observe general agreement between the phase evolution from leg to leg andKelvin's simple dispersion relation, except between legs 5 and 6.The possibility that the low-level wavenumber 2 asymmetry formed as a result ofinternal dynamical mechanisms was considered in light of recent theoretical and numericalwork by S99 exploring the two-dimensional barotropic instability of hurricane-like vorticitypro�les. Olivia's inner-core vorticity pro�le during leg 1 was found to take the form of avorticity ring and was most unstable to wavenumber 2 perturbations. The pro�le duringlater legs took on a more monotonic structure with increased values at the vortex centerand reduced values in the vicinity of the ring peak. This evolution of the symmetricvorticity is consistent with the numerically-simulated breakdown of a vorticity ring throughbarotropic instability described by S99 and our own simulations using Olivia-like pro�les.The wavenumber 2 vorticity asymmetry found in Olivia's eyewall region is an expectedby-product of the vorticity ring breakdown.Part of the vorticity mixing hypothesized to occur in the hurricane near-core region isthe expulsion of high vorticity from the eyewall in the form of linear and nonlinear vortexRossby waves (MK; S99). The perturbation vorticity at 3 km height showed trailingspiral bands of vorticity with radial wavelengths of 5-10 km outside of the regions of highvorticity associated with the wavenumber 2 vorticity asymmetry. These features may besymmetrizing vortex Rossby waves. A secondary bump in symmetric vorticity outsidethe RMW was hypothesized to result from the interaction of outward-propagating vortexRossby waves with the mean vortex ow. The estimated stagnation radius for vortexRossby waves excited in the eyewall was consistent with the location of the vorticitybump. Spiral bands of enhanced reectivity were observed in the vicinity of the vorticitybands, suggesting a coupling of the vorticity bands to the boundary layer through a forcedasymmetric transverse circulation. The possible connection between these vorticity andreectivity features is of great interest and is a topic of current study using full-physicsnumerical model output.



1477.2 Three-dimensional vorticity redistributionThe conditions under which a vertically-tilted vortex aligns have been documented inprevious studies (e.g., Polvani 1991). The cause for alignment (or non-alignment) o�eredin these studies is based on a nonlinear view of the dynamics: Given the basic geometry ofthe initial vortex (e.g., a two-layer vortex consisting of circular patches of PV horizontallyo�set from one another) and the Rossby deformation radius, a vortex con�guration can bederived which is a stationary solution of the nonlinear equations of motion formulated in arotating coordinate system. The nearness of the initial vortex to one of these co-rotatingvortex states (i.e., V-states) determines whether or not alignment will occur. A vortexin a parameter regime (de�ned by the tilt and deformation radius) far removed from aV-state is said to align through nonlinear �lamentation and wave breaking. In the contextof the laboratory and numerical simulations that have motivated this interpretation wherea random distribution of vorticity evolves into horizontally-coherent vortices, which thenalign from great horizontal distances to form vertically-coherent vortices, this is a naturaland useful approach to the problem. The question we have addressed here is whetherthe geometric interpretation of three-dimensional vortex alignment is the most insightfulone once the vortex cores at upper and lower levels begin to overlap. We demonstratedthat in this limit a new, physically-based understanding of vortex alignment supplantsthe geometric interpretation. The dynamics is accurately characterized as linear, thusreducing the parameter space that one must consider in order to predict the subsequentvortex evolution.The evolution of an initially-tilted PV column for which the nonlinear advective PVtendency is small compared to the linear radial advective tendency (i.e., R� << 1) is cap-tured by linear vortex Rossby wave processes. In this situation the vortex is meaningfullydecomposed into azimuthal-mean and perturbation components. The conceptual pictureof vortex alignment is then as follows: The perturbation PV tendency at upper(lower)levels is ascribed to the azimuthal advection of perturbation PV by the upper(lower)-levelmean ow and the radial advection of mean PV by the perturbation wind. The perturba-tion wind at upper(lower) levels is the sum of the ow associated with the upper(lower)-level PV anomaly and, according to the vertical penetration depth, the lower(upper)-level



148PV anomaly. For continuously-distributed PV this problem has not yet allowed analyt-ical solution despite its linear nature. Numerical vortex simulations based on the linearequivalent-barotropic QG system, and validated with a nonlinear three-dimensional QGmodel, show a dependence on the internal Rossby deformation radius consistent with pre-vious studies. The physical explanation for the tilted vortex evolution, however, departsfrom these studies.In the non-divergent limit (i.e., in�nite internal deformation radius) the stationarypseudo-mode is recovered. For large but �nite internal deformation radii the upper andlower PV anomalies slowly co-rotate. As the deformation radius is decreased, the co-rotation frequency increases. An azimuthally-propagating quasi-mode with the verticalstructure of the �rst internal baroclinic mode and wavenumber one azimuthal structureis found to be responsible for the co-rotation and inhibits vortex alignment. The quasi-mode, de�ned as a superposition of singular neutral modes sharply peaked in the phasespeed spectrum, decays slowly in the presence of di�erential rotation. A transition regioncentered on the horizontal vortex scale separates this regime from the alignment regimeat smaller internal deformation radii. The transition is accounted for by the spectralbroadening of the quasi-mode. In the alignment regime the decay rate of the quasi-modeis so large that the initial perturbation is essentially projected onto the (non-quasi-modal)continuous spectrum of vortex Rossby waves whose integrated perturbation energy decaysalgebraically to zero in the limit of long times. Alignment is de�ned here as when theintercentroid separation distance between upper- and lower-level PV anomalies is zero.We believe this to be a more accurate de�nition than used by Polvani (1991) who de�nedalignment as a net decrease in the intercentroid separation distance over one circulationperiod. In the single-interface CD model, Rossby edge waves persist where alignmentis observed for continuously-distributed vortices. Sheared linear vortex Rossby wavespromote the irreversible redistribution of PV necessary for complete alignment.We argued that linear theory captures the essence of co-rotation even as R� ap-proaches unity due to the robustness of the quasi-mode. In this regime nonlinear advec-tion simply tries to counteract the sheared vortex Rossby wave dispersion. As the internal



149deformation radius is decreased within the alignment regime (vortex Burger number orderunity or less), R� for the baroclinic portion of the asymmetry decreases rapidly. Thus,linear theory will capture the vortex alignment process for a wider range of initial tiltsthe smaller the internal deformation radius. The largest tilt considered here was when theRMW of the upper-level vortex overlapped the vortex center at lower levels. R� was lessthan 0.2 for this tilted con�guration for an internal deformation radius near 50 km. Thus,it is possible that alignment can still be approximately described with linear dynamicseven for vortices with barely overlapping upper- and lower-level PV centers. The determi-nation of the precise boundary in parameter space which delineates complete breakdownof the linear approximation remains for future work.These ideas are believed to have practical application to the problem of tropical cy-clogenesis. One of the basic questions in TC research is how a weak vortex with nearbyconvection resists the e�ects of external shear and strengthens. The dynamics of the asym-metric TC genesis mechanism of ME98 was further clari�ed by explicitly demonstratingthat the merger and alignment of convectively-generated low-level positive PV within theRMW of a pre-existing vortex can be captured by linear vortex Rossby wave processes.The attendant strengthening of the low-level mean vortex was also captured by wave-meandynamics.In typical tropical conditions this process is frustrated by vertical shear. Smith et al.(2000) found that a tilted vortex will either break apart under the inuence of vertical shearor co-rotate. Co-rotation did not occur in their two-layer model with distributed vorticeswhen twice the product of coupling constant (ranging between 0 and 1) and maximummean tangential wind was less than the di�erence between upper and lower level \envi-ronmental" zonal ow. Depending upon the value of the internal deformation radius, thelinear alignment mechanism discussed here suggests that the tilting of a vertically-alignedvortex by shear will either project perturbation energy onto the wavenumber one quasi-mode or entirely onto sheared vortex Rossby waves. In the latter case axisymmetrizationof the perturbation PV through the interaction of vortex Rossby waves with the meanow will resist the tilting by shear. In this regard, vertical shear acts as a sheared vortex



150Rossby wave generator. This interpretation of the interaction of a vortex with verticalshear is another way of viewing the vortex tilt evolution described by Jones (1995) forR� < 1. Jones correctly noted that the asymmetric transverse circulation associated witha tilted vortex is not fundamentally responsible for countering the e�ects of vertical shear,as suggested by Wang et al. (1993). The transverse circulation is simply a requirementof a balanced vortex whose ow is evolving in time. Jones' conclusion that \the rotarybehaviour of the vortex provides a mechanism which opposes the destructive action ofthe vertical shear" is consistent with the interpretation provided here, but does not fullyelucidate the underlying dynamics. The vortex tilt evolutions shown by Jones may verywell be captured by linear vortex Rossby wave theory at early times. As the upper- andlower- level PV centers become substantially removed from each other in the horizontal,the linear theory will break down.The asymmetric transverse circulation of a tilted vortex can e�ect vortex tilt in-directly by forcing asymmetric convection and low-level asymmetric PV generation. Thebasic dynamics of this convective enhancement mechanism was illustrated using data fromHurricane Olivia. The increase in westerly local vertical shear of Olivia's environment from3-5 m s�1 to 15 m s�1 over the lowest 10 km depth during the 3.5 h observation period wasaccompanied by an increase in the west to east tilt of the storm center with height anda dramatic increase in convection on the east side of the vortex. A double maximum inthe convection was found with largest upward motion downshear-left (� 8-12 m s�1) andweaker upward motion downshear-right (� 4-6 m s�1). These observations are consistentwith recent numerical simulations of hurricane-like vortices in vertical shear (Jones 1995;DeMaria 1996; Bender 1997; Frank and Ritchie 1999).For barotropic vortices tilted by vertical shear with small Rossby numbers we derivedan expression for the Q-vector convergence, illustrating the relative contributions to verti-cal motion from vortex motion on ambient isentropes and vortex motion on the isentropesof the tilted vortex. This formula was veri�ed to produce qualitatively correct results forRossby numbers near unity through a comparison with PE simulations performed by Trieret al. (1998). Future work will extend these results to mesoscale convective vortices andhurricane-strength vortices by utilizing the AB generalization of the QG omega equation.



151In addition to adding vertical shear to the linear problem, the next step is to extendthe QG results to more rapidly rotating ows. The vertical penetration depth will not onlybecome a function of radius, but will also increase over the QG value. This was clearlydemonstrated by Shapiro and Montgomery (1993) in the context of the AB formulationfor hurricane-like ows, where the local penetration depth is proportional to the squareroot of the product of the modi�ed Coriolis parameter and absolute vorticity of the asso-ciated vortex ow. Preliminary simulations in which the linearized equivalent barotropicAB model is initialized with our tilted benchmark vortex agree with the correspondingQG simulations. Further work is required, however, to understand the e�ect of variablepenetration depth on the evolution of the tilted vortex. It is possible that an altogethernew quasi-mode in quasi-gradient balance exists at higher swirl speeds. Its characteristicsand relevance to hurricane-like ows (e.g., track wobbles) would be of great interest. Thiswill be the subject of future investigation.As an immediate application of the present study, work is under way to use outputfrom cloud-resolving numerical model simulations (e.g., MM5 or RAMS) of TC genesisto examine the asymmetric distribution of vorticity and its evolution in time. The ideaspresented here regarding linear vortex alignment will be tested in a situation where ablow-up of convection is observed inside the RMW of a pre-existing vortex. Is therepositive vorticity generation at low levels and does it move closer to the vortex core intime? Is R� less than unity? Based on the relative magnitudes of the internal deformationradius and horizontal vortex scale, is alignment or co-rotation favored? It is importantto determine if the dry, idealized model predictions (and perhaps ultimately closed-formsolutions) have relevance even in convective situations where large vertical momentumtransports are allowed to occur and the dynamics is not so tightly constrained to the slowmanifold.Plans are to extend this work ultimately to the analysis of observational TC genesisdata sets, like Guillermo (1991). Very few of these type of data sets exist, and none havebeen analyzed with the asymmetric mechanisms presented here and in other theoreticalstudies (e.g., ME98) in mind. So from an observational standpoint, how a TC initially



152forms is still an open question. Asymmetric theories for TC genesis do provide a viablealternative to symmetric �nite amplitude instability theories (Emanuel 1989), and we hopeto demonstrate the usefulness of these ideas in the near future.



Appendix AQ-VECTOR DIAGNOSTICIn cylindrical coordinates (r; �; z) the geostrophic radial and tangential winds areu = �2Rvmax�z sin�R2 + (r cos �� �z)2 + (r sin�)2 + Ue(z) cos �; (A:1)v = 2Rvmax(r � �z cos �)R2 + (r cos �� �z)2 + (r sin�)2 � Ue(z) sin �:Substituting (u,v) into Eq. (6.13), we obtain the radial and azimuthal components of theQ-vector. Taking the horizontal divergence of Q in cylindrical coordinates and de�ningnondimensional parameters, b = r=R and a = �z=R, yieldsr �Q = 16f3RoR(1 + b2 + a2 � 2ab cos �)4 [(�Ro)(2b � b3 +2ab2 cos �� a2b) sin �� 1f (@Ue@z )((1 + b2)b cos ��a(1 + b2 + 2b2 cos2 �) + 3a2b cos �� a3)]: (A.2)This expression for r �Q is de�ned in a cylindrical coordinate system whose origin is thevortex center on the lowest surface, z = 0. Thus, as the tilt (i.e., �z) becomes large,harmonics other than wavenumber one will attain signi�cance in the expression for r �Qin this coordinate system. If we instead transform to a coordinate system (r0; �0; z) inwhich the origin at each level is the vortex center at that level, i.e., letr0 sin�0 = r sin� (A:3)�r0 cos �0 = �z � r cos �;then the simpler and more concise expression for r �Q given in Eq. (6.14) is obtainedwhich projects only onto wavenumber one.



Appendix BSIMULATING VORTEX ALIGNMENT: PV PATCHES VERSUSCONTINUOUS PROFILESClosed-form EQB solutions to the linear tilted vortex problem can be obtained formean vortices whose radial structure is that of a vortex patch, i.e.,�(r) = ( �max; 0 � r < a0; a < r � 1 (B:1)Solutions to Eqs. (4.13){(4.15) are sought of the form:~ mn(r; t) = ~ cs(r; t) + ~ ew(r; t); (B:2)~qmn(r; t) = ~qcs(r; t) + ~qew(r; t);where `cs' denotes the continuous spectrum and `ew' the edge wave component. The solu-tion method follows Smith and Montgomery (1995) and its generalization to the shallowwater system (courtesy Prof. M. Montgomery, personal communication).The continuous spectrum solution is given by~ cs(r; t) = Z 10 G(r; �)~q0(�)e�in
t�d�; (B:3)where G(r; �) = �( In(m�)Kn(mr); � � rIn(mr)Kn(m�); � � r (B:4)is the Green's function and ~q0 is the initial PV perturbation. In and Kn are the modi�edBessel functions.The edge wave solution is found by solving the modi�ed Bessel equation on both sidesof the basic state discontinuity. In both regions the mean vorticity gradient is identicallyzero. It follows that ~ ew(r; t) = Cn(t)~�ew(r); (B:5)



155where ~�ew(r) = �a( In(mr)Kn(ma); r � aIn(ma)Kn(mr); r � a (B:6)The dynamic condition requires pressure continuity at r = a. From this conditionCn(t) can be determined, completing the solution:Cn(t) = �n�maxa Z 10 d��G(a; �)~q0(�)�n � n
 e�in
t + (B.7)(C0 + n�maxa Z 10 d��G(a; �)~q0(�)�n � n
 ) e�i�nt; (B.8)where C0 is a constant of integration and�n = n�max[1=2� In(ma)Kn(ma)] (B:9)is the edge wave rotation frequency.This solution is intended to mimic the single-interface CD solution in the limit of in-�nitesimal vertical tilt. There are two points worth making regarding the linear solution.First, note that �n is nonzero for all n > 0 and 1 > 0. Therefore, as t ! 1, oscil-latory edge wave solutions exist for all wavenumbers. For continuous vortex monopoles,wavenumbers greater than one symmetrize within a couple �e (see Fig. 5.7). Second, notethat as 1a!1, (Abramowitz and Stegun 1972)K1 � r �2a1 e�a1 (B:10)and I1 � 1p2�a1 ea1 ; (B:11)so �1 approaches �max=2 and wavenumber one propagates around the vortex inde�nitely.This is consistent with the CD simulations of Polvani (1991) where co-rotation was foundin this parameter regime. Continuous vortex monopoles, however, do not exhibit thisbehavior.As 1 increases, the Green's function involved in the inversion of perturbation PV forstreamfunction decays rapidly away from its source point. The convolution of perturbationPV and Green's function, which de�nes the streamfunction, will yield smaller values the



156larger 1 is (see Fig. 5.17). The radial advection of mean vorticity by the perturbationradial wind can then be neglected compared to the azimuthal advection of perturbationPV by the mean tangential wind (which does not depend on 1) in the limit 1 ! 1.The resulting linear PV tendency equation is� @@t + in
� ~qmn(r; t) = 0: (B:12)Thus, the perturbation PV is materially conserved following the mean tangential windsand will take on a spiral pattern around the vortex in time since~qmn(r; t) = ~qmn(r; 0)e�in
t: (B:13)The streamfunction is given by ~ cs above, and decays algebraically in the limit of longtimes (Carr and Williams 1989; Smith and Montgomery 1995). Therefore, continuousvortices always align in the small tilt, large 1 limit.



Appendix CNONDIVERGENT BAROTROPIC EIGENSOLVERWe begin with the linearized vertical vorticity equation for two-dimensional barotropicnondivergent ow( @@t +
 @@�) "1r @@r (r@ 0@r ) + 1r2 @2 0@�2 #� 1r @ 0@� d�dr = 0; (C:1)where  0 is the perturbation streamfunction. Given the azimuthal-mean tangential windand vorticity pro�les, solutions to (C.1) of the form 0(r; �; t) =  ̂(r)ei(n�+�t) (C:2)are sought, where n is the azimuthal wavenumber,  ̂ the eigen-streamfunction, and � theeigen-frequency. We require  ̂(r) vanish as r ! 0 and r ! 1. A standard eigenvaluesolver is used to perform the numerical calculations following Gent and McWilliams (1986).Independence of the solutions under changes to domain size and radial grid-spacing havebeen veri�ed.
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