Forefront Object Segmentation for Moving Camera Sequences Based on Foreground-Background Probabilistic Models and Prior Probability Maps

Jaime Gallego, Pascal Bertolino
GIPSA-lab, Grenoble, France
Jaime.Gallego-Vila,pascal.bertolinog@gipsa-lab.grenoble-inp.fr

Abstract

• Monocular moving RGB camera where foreground object and background can present difficult situations like: camouflage, zoom effects, rotations, rigid/non-rigid shape.

• Use 3 region-based probabilistic models for foreground, near background surrounding the object and global background into MAP-MRF framework.

• Use prior probability maps obtained from the cumulative segmentation within temporal window.

1. Introduction

o Pixel-wise segmentation methods:
 • In general, not valid for moving camera sequences models difficult to build and update correctly

o Methods based on the evolution of different features of the image:
 • Estimate optical flow, motion saliency ...

o Our approach:
 Probabilistic framework

 ➢ Use region-based probabilistic models:
 • Foreground model gathers the information of the object.
 • Near Background models the information of the background that surrounds the object.
 • Global background describes more relevant color regions of each frame to avoid false detections due to background occlusions.

 ➢ Prior probability maps: cumulative knowledge of the object used to preserve its spatial shape.

 ➢ Use a Bayesian decision for pixel classification

 ➢ Apply regularization by using Graph cuts energy minimization

2. Probabilistic models

 • Combine foreground, near background and global background models into MAP-MRF framework:
 o Foreground and Near Background: Region based model Spatial Color Gaussian Mixture Model (SCGMM) in z=(R,G,B,X,Y) space.
 \[P(z_i|l) = \sum_{k=1}^{K_l} \omega_k G_k(z_i, \mu_k, \Sigma_k) \]
 \[l \in \{fg, bg\} \]

 o Global Background: Get the most representative regions of the background, and create a SCGMM with the R,G,B values.
 \[P(z_i|\text{global bg}) = \sum_{l=1}^{N} \frac{Q_l}{Q} \omega_l G_{gb}(z_i, \mu_{gb}, \Sigma_{gb}) \]

3. Spatial Prior Probability Maps

 o Consecutive frames in a video sequence:
 • High degree of overlapping
 • Objects to segment present a moderate degree of change

 Take into account the history of the object segmentation into the classification process:

 • FIFO queue with the last J segmentation masks
 • Normalize the spatial domain of each mask by using the centroid position Correct overlapping of the J masks.

 o The spatial prior probability \(P_i(l) \) is formulated as:

 \[P_i(l) = \frac{1}{J} \sum_{j=1}^{J} M_{i,l}(t-j), \quad l \in \{fg, bg\} \]

 \[M_{i,l}(t-j) \in (1,0) \text{ for mask obtained for class } l \text{ in frame } (t-j) \]

4. MAP-MRF pixel classification

 • Bayesian pixel classification and graph cuts regularization: The likelihood for each pixel \(i \) is defined for each class as:

 \[P(l_i|z_i) \propto P(z_i|l_i) P(l_i) \quad l \in \{fg, bg\} \]

 Where \(P(bg|z_i) = max(P(\text{near bg}|z_i), P(\text{global bg}|z_i)) \)

 • We consider a MRF framework: take into account neighborhood information. → Solved with Graph-cuts

5. Results & Conclusions

• Evaluation analyzing SegTrackv2 database.

Correct object segmentation reducing false positives, and false negatives detections also in those complicated scenes where camera motion, object changes and occlusions are present.

Sequence	Segmentation Technique	SPT+CSI	Key seg.	Bayes	Bayes p maps
Girl | 89.2 | 87.7 | 87.82 | 87.86 |
Birfall | 62.5 | 49.0 | 29.13 | 59.60 |
Cheetah-1 | 40.9 | 11.7 | 16.47 | 20.51 |
Cheetah-2 | 93.4 | 96.3 | 94.03 | 93.02 |
Parachute | 71.3 | 74.3 | 75.60 | 80.17 |
Monkeydog-1 | 18.9 | 4.9 | 48.02 | 48.29 |
Penguin-1 | 51.5 | 12.6 | 83.18 | 95.41 |
Penguin-2 | 76.5 | 11.3 | 80.35 | 89.35 |
Penguin-3 | 75.2 | 11.3 | 79.43 | 81.07 |
Penguin-4 | 57.8 | 7.7 | 73.80 | 80.62 |
Penguin-5 | 66.2 | 4.2 | 72.75 | 76.34 |

Download the software and see more results at
https://sites.google.com/site/jaimegallegovila/icip2014_bayesian_prior
http://www.gipsa-lab.grenoble-inp.fr/~pascal.bertolino/projects/readplay1/

The authors would like to thank the French Région Rhônes-Alpes for its funding of this work in the context of the ReadPlay project.