
Online Ridge Regression method using sliding windows

Paola Arce
Center for Technological Innovation

in High Performance Computing
CTI-HPC, UTFSM
Valparaı́so, Chile

Email: paola.arce@usm.cl

Luis Salinas
Informatics Dpt. and Centro Cientı́fico-

Tecnológico de Valparaı́so - CCTVal
UTFSM

Valparaı́so, Chile
Email: lsalinas@inf.utfsm.cl

Abstract—A new regression method based on the aggregating
algorithm for regression (AAR) is presented. The proposal
shows how ridge regression can be modified in order to reduce
the number of operations by avoiding the inverse matrix
calculation only considering a sliding window of the last input
values. This modification allows algorithm expression in a
recursive way and therefore its use in an online context. Ridge
regression, AAR and our proposal were compared using the
closing stock prices of 45 stocks from the technology market
from 2000 to 2012. Empirical results show that our proposal
performs better than the other two methods in 28 of 45 stocks
analyzed, due to the lower MSE error.

Keywords-Ridge Regression; Machine Learning; Online
Learning;

I. INTRODUCTION

The learning from examples problem is an ill-posed prob-
lem which admits an infinite number of solutions. In order
to restrict the space of admissible solutions, the regression
problem is usually formulated in terms of regularization
theory [1] as an optimization problem, which minimizes the
functional:

J(w) =

m∑
t=1

(yt − f(xt))
2 + γR(w), f ∈ H , (1)

where m is the number of samples (xt, yt) with xt ∈ Rl, l
correspond to the number of features, yt ∈ R is the target,
R(w) = ||w||2 where ||.||2K is a norm in a reproducing
kernel hilbert space H defined by the positive definite
form K, and γ is a regularization parameter [2]. When
the hypothesis space is reduced, the risk of overfitting
the training data decreases and therefore leading to better
generalization capability. Ridge regression (RR) is a batch
method generally used to solve this problem, which is a
generalization of least squares method (LS).

However, online algorithms are more attractive than batch
algorithms because their simplicity and ability to manage
large data sets, this is why they are popular in financial
applications.

There are several popular online methods such as per-
ceptron [3], passive-aggressive [4], stochastic gradient de-
scent [5], aggregating algorithm [6] and the second order

perceptron [7]. In [8] it is provided an in-deph analysis of
online learning.

The aggregating algorithm for regression (AAR) method
formulates a recursive formulation of RR in an online way.
AAR consider all data to make a prediction, but in highly
variant scenarios the old data could be useless.

In this paper, we propose an online method based on the
idea presented by [6] considering in our case a single sliding
window of the most recent data. This proposal also reduces
the number of operations at every step of the algorithm
by expressing the inverse matrix in an iterative form. Our
algorithm is later tested with financial data from stock
market.

II. RIDGE REGRESSION

A. Regression problems

The objective of regression problems is to find a function
f which explains the relation between an input xt ∈ Rl, and
an output yt ∈ R such that: yt = f(xt) + εt for a set of m
data points {(xt, yt)}mt=1. If the relationship between yt and
xt is thought to be linear, f can be written as:

f(xt) = wᵀxt =

l∑
i=1

w(i)xt(i) ,

where w is a weight vector determined in a training phase.
The least squares method is a well known way to solve a

regression problem. This method consists of minimizing the
sum of squared error:

J(w) =

m∑
t=1

(f(xt)− yt)2 =

m∑
t=1

(wᵀxt − yt)2 , (2)

which is equivalent to minimize J(w) with γ = 0 in
equation (1). Expressed in matrix form this amounts to:

J(w) =
∥∥
x1(1) · · · x1(l)

...
. . .

...
xm(1) · · · xm(l)


w(1)...
w(l)

−
 y1...
ym

∥∥2L2

or a more reduced expression is:

J(w) = ‖Xw − y‖22,

where

X =

x
ᵀ
1
...

xᵀ
m

 , y =

 y1...
ym

 and w =

w(1)...
w(l)


As is well known, the optimal solution w∗ obtained mini-
mizing equation (2) is:

w∗ = (XᵀX)−1Xᵀy (3)

Thus, when a new input xt arrives, the prediction of the
target value yt is defined as:

f(xt) = wᵀ
∗xt .

B. Ridge Regression

In order to avoid the singularity of the matrix XᵀX
in equation (3), a regularization term is introduced. The
optimization problem including the regularization term is
shown in equation (1).

When R(w) = ‖w‖2, the method is called ridge regres-
sion and the optimal solution w∗ is well known:

w∗ = (XᵀX + γI)−1Xᵀy , (4)

Equation (4) can be also be expressed as:

w∗ =
(m∑
t=1

xtx
ᵀ
t + γI

)−1
m∑
t=1

ytxt

w∗ = A−1b ,

where

A =

m∑
t=1

xtx
ᵀ
t + γI and b =

m∑
t=1

ytxt .

Algorithm 1 Ridge Regression
Input:
{x1, . . . ,xm}: m input vectors
{y1, . . . , ym}: m targets

Output:
{f(x1), . . . , f(xm)}: model predictions

1: Initialize A = γI and b = 0
2: for t = 1 to m do
3: read new xt

4: output prediction f(xt) = bᵀA−1xt

5: A = A+ xtx
ᵀ
t

6: Read new yt
7: b = b+ ytxt

8: end for

The ridge regression method is shown in algorithm 1
where the prediction value for a new input xm+1 is:

f(xm+1) = wᵀ
∗xm+1

= bᵀA−1xm+1 .

III. THE AGGREGATING ALGORITHM FOR REGRESSION

The AAR, proposed by [6], is an application of the
aggregating algorithm to the problem of regression.

The prediction formula for AAR is given by equation (5):

f(xm+1) =
(m∑
t=1

ytxt

)ᵀ(m+1∑
t=1

xtx
ᵀ
t + γI)

)−1
xm+1 , (5)

which is very similar to the RR method except because AAR
includes information of the new input xm+1. This means that
AAR updates matrix A with the new input xm+1 before the
prediction f(xm+1) is made.

Algorithm 2 shows this procedure based on equation (5).
This algorithm can be obtained by swapping lines 4 and 5
from algorithm 1.

Algorithm 2 The aggregating algorithm for regression
Input:
{x1, . . . ,xm}: m input vectors
{y1, . . . , ym}: m targets

Output:
{f(x1), . . . , f(xm)}: model predictions

1: Initialize A = γI and b = 0
2: for t = 1 to m do
3: read new xt

4: A = A+ xtx
ᵀ
t

5: output prediction f(xt) = bᵀA−1xt

6: Read new yt
7: b = b+ ytxt

8: end for

IV. ONLINE RIDGE REGRESSION METHOD

Despite of RR and AAR being very succesfull methods,
they consider all the available data for making predictions.
However some time series show a strong dependence on
the latest information instead of all the data. The method
proposed consists of a modification of AAR considering a
sliding window which contains only the last L samples and
the new input xt, i.e. {xi}ti=t−L.

In order to formulate the algorithm we need to first define
the following matrices:

X(t) =

x
ᵀ
t−L
...
xᵀ
t

 ,y(t) =

yt−L

...
yt

 .

The optimal solution using a sliding windows is then:

w(t)∗ = (X(t)ᵀX(t) + γI)−1X(t)ᵀy(t) . (6)

It is worth noticing that the matrix X(t + 1) is slightly
different from X(t):

X(t+ 1) =

x
ᵀ
t−L+1

...
xᵀ
t+1

 . (7)

Therefore the updated matrix A is obtained by:

A = X(t+ 1)ᵀX(t+ 1)

A = X(t)ᵀX(t) + xt+1x
ᵀ
t+1 − xt−Lx

ᵀ
t−L .

Algorithm 3 shows the complete procedure, which is very
similar to AAR (algorithm 2) except for the calculation of
matrix A.

Algorithm 3 Recursive Ridge Regression
Input:
{x1, . . . ,xm}: m input vectors
{y1, . . . , ym}: m targets
L: sliding window size (L < m)

Output:
{f(xL+1), . . . , f(xm)}: model predictions

1: Initialize A =

L∑
t=1

xtx
ᵀ
t + γI and b =

L∑
t=1

ytxt

2: for t = L+ 1 to m do
3: read new xt

4: A = A+ xtx
ᵀ
t − xt−L−1x

ᵀ
t−L−1

5: output prediction f(xt) = bᵀA−1xt

6: Read new yt
7: b = b+ ytxt

8: end for

A. Matrix inverse

In order to avoid the matrix inverse calculation, we can
use the Sherman Morrison formula.

If A is a positive definite matrix and its inverse matrix is
known, then the inverse of the matrix B = A+xxᵀ can be
obtained as:

B−1 = A−1 − (A−1x)(A−1x)ᵀ

1 + xᵀA−1x
.

This reduces the inverse matrix computation order from
O(n3) to O(n2).

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 10 20 30 40 50 60 70

E
rr

o
r

Time

AAR
Target

(a) AAR v/s the target for SPY

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 10 20 30 40 50 60 70

E
rr

o
r

Time

RR
Target

(b) RR v/s the target for SPY

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 10 20 30 40 50 60 70

E
rr

o
r

Time

SLAAR
Target

(c) SLAAR v/s the target for SPY

V. EXPERIMENTAL RESULTS

In order to measure performance of our algorithm, we
used daily stock returns of 45 stocks from the technology
sector dated from the 1st of January 2000 to the 1st of July
2012.

Returns {xt}m−1
t=1 were defined in based on stock prices

{pt}mt=1 and are related as:

xt =
pt+1 − pt

pt
.

The objective is to build a model of the returns of stock k
based on returns of other stocks of the same financial sector.

Therefore, every input vector xt will have 44 stock returns
at time t without considering information of stock k. The
target vector y will be the stocks returns of stock k.

We compared RR, AAR and our proposal called sliding
windows AAR (SLAAR) and the results are shown in

table I. The MSE was shown in bold when our method was
better than RR and AAR. The table shows that our method
outperforms in 28 of 45 stocks.

AAR RR SLAAR Best L

Stock AAR error RR error SLAAR error Best L
IBM 0.230307 0.231317 0.228963 70

MMM 0.199237 0.197172 0.195550 990
CVX 0.155454 0.152070 0.155150 750
UTX 0.260980 0.268351 0.261140 340
CAT 0.223338 0.222240 0.210500 360

MCD 0.268211 0.266997 0.267182 990
BA 0.292699 0.295623 0.292180 150

XOM 0.160376 0.157125 0.159074 780
JNJ 0.213276 0.214747 0.212601 680
PG 0.494937 0.493036 0.495395 950
KO 0.272203 0.274337 0.270888 870

WMT 0.272945 0.269190 0.254820 630
HPQ 0.276595 0.275459 0.280236 980
AXP 0.204162 0.211216 0.195888 230

DD 0.204220 0.202591 0.203177 330
JPM 0.238405 0.255824 0.204777 290

MRK 0.214294 0.211708 0.196368 850
DIS 0.324324 0.326105 0.297895 290
VZ 0.203936 0.206390 0.196078 490
HD 0.236339 0.237688 0.242606 990

T 0.235940 0.234002 0.230230 570
MSFT 0.332521 0.331694 0.334283 710
CSCO 0.227675 0.228196 0.233057 990
INTC 0.262545 0.264391 0.271204 1000

GE 0.168935 0.168258 0.168924 1000
PFE 0.200335 0.199163 0.204552 1000

BAC 0.299956 0.333396 0.200134 530
AA 0.249913 0.250263 0.246067 1000

XLF 0.300486 0.299604 0.301322 830
EWH 0.186584 0.188475 0.180674 260
EWG 0.156459 0.158946 0.152092 470
EWA 0.231424 0.233347 0.224692 960
XLV 0.140344 0.139772 0.118340 610
XLI 0.089607 0.087342 0.086304 450

XLU 0.107657 0.106929 0.091362 550
XLY 0.103068 0.102359 0.095318 590
XLB 0.105090 0.102791 0.099280 940
XLE 0.118998 0.117319 0.111371 1000
SPY 0.073800 0.071908 0.067655 230

EWS 0.223738 0.223721 0.228166 990
EWC 0.172954 0.174107 0.164855 330
EWU 0.146232 0.145031 0.146491 640
EWW 0.205101 0.203012 0.199228 80
EWM 0.249645 0.248694 0.257393 80
XLK 0.098086 0.098599 0.097944 440

Table I
MSE AND BEST L

The error was calculated considering the mean squared
error (MSE) using the last 70 predictions made.

Table I also shows that the smaller error in our method
was for the SPY stock, which is an expected result consid-
ering that the SPY value is constructed based on the main
stocks of the markets.

A graphical comparison between AAR, RR and SLAAR
with the target for stock SPY is shown in figures 1(a),1(b)
and 1(c). It shows how AAR and our method fit better
than RR to the target and also that our method is slightly

better compared with AAR. It’s also possible to notice that
when returns change drastically none of the methods fit
satisfactorily.

VI. DISCUSSION AND CONCLUSION

The existing approaches to solve regression problems are
well known, however they are not used in an online context
because they involve many calculations and in order to make
a prediction, they consider all the data available. However,
in some cases, only a portion of data is needed or available
to make a prediction and sometimes the accuracy could be
improved considering less data.

In this article, this historical dependence of data is studied
and the results show that in some cases, if we use a sliding
window of data instead of all the data, the MSE of the
predictions is minimized. It’s possible to check that there are
some stocks which depend more on the historical data than
others and this is valuable information for future algorithms.

On the other hand, RR and AAR calculates an inverse ma-
trix at every step, which is computationally very expensive.
In our proposal, this inverse matrix calculation is avoided
and therefore it’s more suitable to be used in an online
context.

ACKNOWLEDGMENT

Partially supported by FONDECYT research grant
1100805.

REFERENCES

[1] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and
neural networks architectures,” Neural Computation, vol. 7, pp.
219–269, 1995.

[2] T. Evgeniou, M. Pontil, and T. Poggio, “Regularization net-
works and support vector machines,” in Advances in Compu-
tational Mathematics. MIT Press, 2000, pp. 1–50.

[3] F. Rosenblatt, “The Perceptron: A probabilistic model for in-
formation storage and organization in the brain,” Psychological
Review, vol. 65, pp. 386–408, 1958.

[4] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and
Y. Singer, “Online passive-aggressive algorithms,” Journal of
Machine Learning Research, vol. 7, pp. 551–585, MAR 2006.

[5] T. Zhang, “Solving large scale linear prediction problems
using stochastic gradient descent algorithms,” in ICML 2004:
Proceedings of the twenty-first international conference on
Machine Learning. OMNIPRESS, 2004, pp. 919–926.

[6] V. Vovk, “Competitive on-line statistics,” International Statis-
tical Review, vol. 69, p. 2001, 2001.

[7] N. Cesa-Bianchi, A. Conconi, and C. Gentile, “A second-order
perceptron algorithm,” SIAM J. Comput., vol. 34, no. 3, pp.
640–668, 2005.

[8] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and
Games. New York, NY, USA: Cambridge University Press,
2006.

