A computational pipeline for quantification of mouse myocardial stiffness parameters

Øyvind Nordbøa, Pablo Lamatab, Sander Landb, Steven Niedererb, Jan M. Aronsenc,d, William E. Louchc,e, Ivar Sjaastadc, Harald Martensf, Kristin Tøndelb, Hans Torpb, Maelene Lohezici, Jurgen E. Schneiderh, Espen W. Remmee,j, Nicolas Smithb, Stig W. Omholtk, Jon Olav Vikg,

a Department of Mathematical Sciences and Technology, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
b Department of Biomedical Engineering, King’s College London, St. Thomas’ Hospital, Westminster Bridge Road, London SE17EH, UK
c Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Kirkeveien 166, 4th Floor Building 7, 0407 Oslo, Norway
d Bjørknes College, Oslo, Norway
e Rizzoli Cardiovascular Research Center and Center for Heart Failure Research, University of Oslo, 0407 Oslo, Norway
f Department of Engineering Cybernetics, Faculty of Information Technology, Mathematics and Electrical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
g Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
h Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Postboks 8905, Medisinsk teknisk forskningscenter, NO-7491 Trondheim, Norway
i Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Welcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
j Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
k Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, N-7491 Trondheim, Norway

ARTICLE INFO

Article history:
Received 12 March 2014
Accepted 20 July 2014

Keywords:
Myocardial stiffness
Parameter estimation
Passive inflation
Transversal isotropy
Speckle tracking

ABSTRACT

The mouse is an important model for theoretical–experimental cardiac research, and biophysically based whole organ models of the mouse heart are now within reach. However, the passive material properties of mouse myocardium have not been much studied.

We present an experimental setup and associated computational pipeline to quantify these stiffness properties. A mouse heart was excised and the left ventricle experimentally inflated from 0 to 1.44 kPa in eleven steps, and the resulting deformation was estimated by echocardiography and speckle tracking. An in silico counterpart to this experiment was built using finite element methods and data on ventricular tissue microstructure from diffusion tensor MRI. This model assumed a hyperelastic, transversely isotropic material law to describe the force–deformation relationship, and was simulated for many parameter scenarios, covering the relevant range of parameter space. To identify well-fitting parameter scenarios, we compared experimental and simulated outcomes across the whole range of pressures, based partly on gross phenotypes (volume, elastic energy, and short- and long-axis diameter), and partly on node positions in the geometrical mesh. This identified a narrow region of experimentally compatible values of the material parameters. Estimation turned out to be more precise when based on changes in gross phenotypes, compared to the prevailing practice of using displacements of the material points. We conclude that the presented experimental setup and computational pipeline is a viable method that deserves wider application.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The passive mechanical properties of the heart wall play an important role during the filling of the ventricle; for instance, stiffening of the myocardium can lead to diastolic dysfunction and heart failure [1]. Incorporating patient-specific geometries and
material properties into biomechanical models holds promise for the improved diagnosis and treatment of heart failure [2,3]. In biomechanical models, the stress–strain relationship for myocardial tissue is described by constitutive laws whose parameters describe the material stiffness along the microstructural axes, e.g. fibre and sheet directions. Several studies have quantified passive myocardial stiffness in humans [3–5] and model organisms, such as the pig [6,7], dog [8,9], and rat [10] (see Table 1, with references). Less well studied, however, is the mouse, which is an important model organism in cardiac research. Transgenic mouse models have been extensively used in cardiac research over the last decade, where manipulation of the mouse genome has provided several novel insights in the development of cardiac disease [11]. Alterations of the myocardial properties of the heart, both in the extracellular matrix and in the cardiomyocytes, are suggested to play a major role in development of diastolic dysfunction and heart failure. Several mutations leading to heritable heart disease occur in both mouse and human [11], and the hearts have similar composition and function with regards to mechanical properties [12].

Here we propose a workflow for estimation of passive material properties of mouse myocardium by comparing computer simulations of soft tissue mechanics to observed deformation under passive inflation of an excised mouse heart. Firstly, we estimate trajectories of material points by speckle tracking of echo data through the deformation from zero to end diastolic pressure levels. This deformation is used, together with fibre structure obtained from diffusion tensor MRI, to build meshes for computer simulations. Secondly, we run model simulations and use full factorial experimental designs to cover the biological relevant region of the parameter space for the transversely isotropic Guccione law [13]. The results show that the parameters of the constitutive law are not separately identifiable from these passive inflation measurements alone, in accordance with previous studies [14–16]. For the four-dimensional parameter space of the material law, we identify an elongated region of parameter combinations with nearly equivalent good fit to deformation data from passive inflation.

We describe the structure of this parameter redundancy, and compare our findings with published estimates. Following a discussion of its advantages and limitations, we conclude that the presented pipeline merits wider application.

2. Methods

The quantification of the passive mechanical properties of the myocardium relies on mechanistic models whose parameters are tuned to reproduce the observation of a corresponding experiment [9,14,15]. Below we describe the passive inflation experiment with deformation measurement, MR imaging for geometric meshing, image processing and speckle tracking to estimate deformation, mechanics simulations, and comparison of experiment and simulation.

2.1. Passive inflation experiment

A single mouse was anesthetized with 5% isoflurane and sacrificed by cervical dislocation. The heart was then rapidly excised and cannulated via the aorta and mounted on a Langendorff setup (Fig. 1). The cannula was firstly placed over the level of the aortic valves, to perfuse the myocardium with cardioplegic solution of pH 7.4, 118.3 mM NaCl, 3.0 mM KCl, 4 mM MgSO4, 0.2 mM CaCl2, 2.4 mM KH2PO4, 24.9 mM NaHCO3, 10 mM glucose, 2.2 mM mannitol. Some calcium was included in the superfusate since calcium-free conditions promote breakdown of gap junctions and dissociation of cardiomyocytes [17], which could cause underestimates of myocardial stiffness. The cannula was then introduced into the left ventricle, and thereafter retracted into the aorta. This technique allowed the cannula both to manipulate left ventricular pressure and to perfuse the coronary arteries; the latter was found necessary to prevent ischemia and stiffening in preliminary experiments. Pressure was increased from 0 kPa to approximately 1.44 kPa over 10 s by adjusting the height of a fluid column connected to the cannula. Deformation of the left ventricle

<table>
<thead>
<tr>
<th>Study</th>
<th>Experiment</th>
<th>Reference configuration</th>
<th>Recording</th>
<th>Time-points used</th>
<th>Species</th>
<th>a (kPa)</th>
<th>b1</th>
<th>b2</th>
<th>b3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guccione law</td>
<td>Passive inflation</td>
<td>Cylinder</td>
<td>PV-curves, implanted markers</td>
<td>5</td>
<td>Rat</td>
<td>2.2</td>
<td>9.2</td>
<td>2.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Epicardial suction</td>
<td>Passive inflation</td>
<td>Zero pressure</td>
<td>Tagged MRI</td>
<td>3</td>
<td>Dog</td>
<td>0.10–1.0</td>
<td>39.5–93.0</td>
<td>61–61.6</td>
<td>3.1–73.1</td>
</tr>
<tr>
<td>In vivo</td>
<td>MVO</td>
<td>Tagged MRI</td>
<td>2 (ED, ES) Sheep</td>
<td>0.12–0.35</td>
<td>9.2–67.1</td>
<td>5.0–26.6</td>
<td>9.3–21.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive inflation</td>
<td>Low pressure</td>
<td>Tagged MRI</td>
<td>5</td>
<td>Pig</td>
<td>0.07–0.79</td>
<td>8.0–83.4</td>
<td>61–36.4</td>
<td>8.2–62.4</td>
<td></td>
</tr>
<tr>
<td>In vivo</td>
<td>MVO</td>
<td>Tagged MRI</td>
<td>2 (ED, ES) Sheep</td>
<td>0.95</td>
<td>49.3</td>
<td>19.2</td>
<td>17.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In vivo</td>
<td>MVO</td>
<td>Tagged MRI</td>
<td>2 (MVO, ED) Dog</td>
<td>17</td>
<td>14.3</td>
<td>4.5</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive inflation</td>
<td>Mid Diastole</td>
<td>PV-curves</td>
<td>3</td>
<td>Mouse</td>
<td>11</td>
<td>8.0</td>
<td>2.0</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>In vivo</td>
<td>Calculated</td>
<td>Tagged MRI, pressure wire</td>
<td>4–6</td>
<td>Human</td>
<td>2</td>
<td>19.3</td>
<td>10.7</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td>Costa law</td>
<td>In vivo</td>
<td>Ellipsoid</td>
<td>Implanted markers</td>
<td>2 (ED, ES) Dog</td>
<td>1.8</td>
<td>6.0</td>
<td>3.0–12.0</td>
<td>3.0–7.0</td>
<td></td>
</tr>
<tr>
<td>Shear tests</td>
<td>Unstressed</td>
<td>Tissue block</td>
<td>Several</td>
<td>Pig</td>
<td>0.22</td>
<td>42.5</td>
<td>7.8–18.6</td>
<td>10.9–11.0</td>
<td></td>
</tr>
<tr>
<td>Shear tests</td>
<td>Unstressed</td>
<td>Tissue block</td>
<td>Several</td>
<td>Pig</td>
<td>0.26</td>
<td>37.2</td>
<td>91–18.9</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Passive inflation</td>
<td>Calculated</td>
<td>PV-curves</td>
<td>Several</td>
<td>Human</td>
<td>0.3</td>
<td>39.0</td>
<td>4.2–7.6</td>
<td>12.8–17.2</td>
<td></td>
</tr>
<tr>
<td>Current study</td>
<td>Passive inflation</td>
<td>Zero pressure</td>
<td>Echocardiography</td>
<td>8</td>
<td>Mouse</td>
<td>3.1 (2.0–5.6)</td>
<td>5.0 (2.7–7.0)</td>
<td>3.7 (2.1–5.2)</td>
<td>2.6 (1.5–6.0)</td>
</tr>
</tbody>
</table>

* These studies used a definition of a that was twice the one used in the other studies. Estimates in this table have been halved to make them directly comparable with the others.

* The orthotropic Costa law has three parameters in place of b2 and two in place of b3. The values in the b2 and b3 columns for Costa-law studies show the variability between these non-isotropic coefficients.
was recorded by B-mode echocardiography (Vevo2100, VisualSonics) using a 35 MHz scan head. Three short-axis (probe mounted at the side of the ventricle) and four long-axis views (probe mounted at apex) were recorded for each pressure level (see Fig. 1 for details). Due to capillary forces in the cannula, the left ventricle pressure was not equivalent to the height of the fluid column. In a subsequent experiment, we therefore calibrated left ventricular pressure vs. fluid column height by a Samba pressure catheter (Samba 3000; Samba Sensors AB), inserted via the apex. The Samba pressure catheter was autocalibrated using the Samba memory control unit at room temperature. Proper calibration was evaluated by pressure at 0 mmHg at no height of the water column and 10 mmHg at the corresponding height of the water column.

2.2. Mesh of mouse ventricle with embedded microstructure

MR imaging: Diffusion tensor MRI (DTI) measurements of an isolated mouse heart (a different individual than the one used in the inflation experiment) embedded in 1% agarose were performed on a 9.4 T horizontal bore MR system (Agilent Technologies, Santa Clara, CA) equipped with a shielded gradient system ($G_{\text{max}}=1$ T/m, rise time=130 µs, inner diameter=60 mm), using a 13 mm-diameter volume transmit/receive coil. A 3D fast spin-echo sequence was used as reported previously [18] with the following imaging parameters: $TR=1$ s, number of echoes=8, $TE_{\text{eff}}=44.25$ ms, matrix size=256 x 256 x 192, number of averages=4, field of view $13 \times 13 \times 13$ mm3 (yielding a resolution of $51 \times 51 \times 68$ µm3), maximum b-value=688 s/mm2 (including imaging gradients and cross-terms between imaging and diffusion gradients). Eight non-collinear gradients directions were used, arranged according to an optimized scheme based on the electrostatic repulsion principle [19].

Post-processing: The fibre field was extracted from these 3D DTI data as described previously [20]. A smooth cubic Hermite mesh [21] of the left ventricle was built, and the fibre field was embedded into this mesh (see Fig. 3). The estimated transmural gradient in fibre angle was similar to previous findings [22].
2.3. Speckle tracking and estimation of 3D deformation

In ultrasound imaging, speckle pattern arises because sub-resolution scatterers interfere with the incoming ultrasound pulses. Although the reflected signal contains no information about the underlying microstructure of the tissue [23], individual pieces of tissue respond consistently to the ultrasound, and can thus be traced through a sequence of images. However, there is some uncertainty due to decorrelation of the speckle pattern between successive frames, as may be caused by out-of-plane motion, rotation, deformation, and additive thermal noise. Apart from the ultrasound gel and probe, no other external forces were applied to the ventricle. Because the excised heart was still beating slightly, we removed images that were from the systolic phase, as identified by a high mean absolute signal difference between subsequent images. We used block-matching [23] followed by endo- and epicardial points to estimate particle paths during inflation, as detailed in Appendix A. The particle paths estimated from the different slices were aligned into 3D deformed configurations for the various pressures (methods are explained in Appendix B), and a set of smooth cubic Hermite interpolated meshes (CH meshes) were then constructed combining the methods described in [21,24] (see Fig. 3).

2.4. Mechanical simulations

The myocardium was modelled as a hyper-elastic incompressible material [25] with homogenous, transversal isotropic properties. The framework for mechanics is described in [26]. Adopting the approach of Ref. [14], we used the cubic Hermite mesh corresponding to the zero pressure configuration (CH1, see Fig. 3) of the left ventricle (Fig. 4) as the reference configuration [27]. According to [13], the estimated stiffness parameters were not particularly sensitive to the magnitude of the residual stress [28], which supports our approach.

We formulate the stress equilibrium equations by using the principle of virtual work on a general deformable body with initial volume \(V \) and surface area \(A \):

\[
\int_V S : \delta\varepsilon dV - \int_A p_{\text{app}} F^{-T} N \cdot \delta u dA = 0. \tag{1}
\]

Here \(S \) is the second Piola–Kirchhoff stress tensor and \(\delta\varepsilon \) is the virtual Lagrangian strain tensor. \(p_{\text{app}} \) is the applied ventricular pressure acting on the endocardial surface, \(F^{-T} \) is the inverse of the transposed deformation gradient tensor, \(N \) is the normal vector for the undeformed material surface while \(\delta u \) is an arbitrary virtual displacement. For hyper-elastic materials, the components of the second Piola–Kirchhoff stress tensor are calculated by differentiating the strain energy function by the corresponding components of the Lagrangian strain tensor. For incompressible materials, the strains are separated into distortional and dilatational components, and we calculate the second Piola–Kirchhoff stress tensor from

\[
S = \frac{\partial W}{\partial\varepsilon} - Jp(F^TF)^{-1}. \tag{2}
\]
where \tilde{W} is the strain energy function and F is the deformation gradient tensor. The scalar P serves as a Lagrangian multiplier interpreted as the hydrostatic pressure in the material/tissue. The work done by the hydrostatic forces is zero due to the incompressibility constraint, expressed on variational form as

$$\int (\text{div} \, p) \, dV = 0,$$

(3)
where J is the determinant of the deformation gradient tensor F. The stress–strain relation in hyper-elastic models follows from our assumption of a strain energy function, W. The strain energy density function, W, was described by the Guccione law [13]

$$W = \frac{1}{2}a(e^Q - 1)$$

where

$$Q = b_1E_{11} + b_2(E_{22} + 2E_{33} + E_{33}) + b_3(2E_{12}E_{21} + 2E_{13}E_{31}).$$

Here, a, b_1, b_2, and b_3 are material specific parameters, while E_{ij} are the various components of the Lagrangian strain tensor aligned to the underlying tissue microstructure. The subscripts indicate the microstructural directions (1 is along the fibres while 2 and 3 are orthogonal directions, normal to the fibres).

Table 1 summarizes published parameter estimates for the Guccione [13] and Costa [29] laws, showing that stiffness parameters vary across two orders of magnitude. To comprehensively cover the parameter space, simulations were performed with parameters incremented based on a log scale from the minimum to the maximum value reported in Table 1.

For the 4 Guccione law parameters, we used a full factorial design with eight levels, resulting initially in $8^4 = 4096$ parameter sets. For each parameter set, the simulation model was run for the same pressure steps as in the experiment (eleven levels ranging from 0 to 1.44 kPa).

We applied boundary conditions constraining the basal plane to not move in the z-direction, which should correspond well to the experimental setup where the heart was attached to the cannula through the aortic valve. Additional Dirichlet boundary conditions to avoid whole-body rotation/translation are shown in Fig. 4.

Inside the cavity, we assumed a homogeneous internal pressure. The estimated overall stiffness parameter a and elastic energy, the model was able to capture the essential dynamics.

2.5. Comparison of measured and simulated deformations

In both the simulations and the measurements, the shape of the heart ventricle at a given pressure is represented by node positions and an associated cubic Hermite interpolation of the surfaces between nodes. We tried two different objective functions for comparison of experimental and simulated deformation, restricting the computation to the most biologically relevant pressure range [30], > 0.2 kPa.

1. Comparison of positions for all endocardial and epicardial nodes in the CH mesh. The criterion for good fit was the L2 norm between experimental and simulated node position, averaged over the relevant pressures M and nodes N in the mesh

$$\Omega_1 = \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} \left((x_{\text{sim}} - x_{\text{exp}})^2 + (y_{\text{sim}} - y_{\text{exp}})^2 + (z_{\text{sim}} - z_{\text{exp}})^2 \right)_{mn}$$

2. Comparison of $K=4$ aggregated phenotypes (change in Volume (AV), short and long axis diameter (ΔS_a and ΔL_s), and elastic energy ($fPDV$, computed as the integral of the pressure–volume curve). For each phenotypic variable, the difference between simulation and experiment is nondimensionalized as a proportion of the respective experimental value. Then, each variable is weighted equally in averaging over the K phenotypes and M relevant pressures

$$\Omega_2 = \frac{1}{MKm} \sum_{m=1}^{M} \sum_{k=1}^{K} \frac{|\Phi_{\text{sim}} - \Phi_{\text{exp}}|}{\Phi_{\text{exp}}}_{mk}$$

These objective functions were computed for all simulated parameter scenarios, and we identified the parameter regions that corresponded to low values of each objective function. The identified region of the parameter space was further analyzed by manually selecting new parameter limits and running new simulations for a full factorial design over the new parameter regions. We did this in an iterative way (3 times), and got an overview of the landscape of the parameter space and were able to see the correlation between estimated parameters.

We evaluated the ability of each objective function to precisely estimate parameters (i.e. identify a small set of well-fitting parameter scenarios) by asking “how many parameter scenarios lie within a given % increase from the optimal value (least lack-of-fit) of the objective function?” This is valid because both objective functions have a meaningful absolute zero point.

3. Results

3.1. Experimental deformation

The deformation of the experimentally manipulated heart was estimated by speckle tracking of four long-axis and three short-axis image sequences. The free wall generated larger longitudinal strains than the septum, causing the apex to tilt towards the septum during the inflation (Fig. 2). The pressure–volume relationship was quite linear within the interval of applied pressures (Fig. 7a), in agreement with previous in vivo work [31,32]. The mesh corresponding to zero and maximum pressures are shown in Fig. 4.

3.2. Comparison of simulated vs. experimental deformation

The objective function based on aggregated phenotypes (Eq. (7)) was more selective than the one based on node positions (Eq. (6)), in terms of identifying some parameter scenarios as better fitting than others (Fig. 5). For example, the number of parameter scenarios within a 50% increase from the minimum of the objective functions (6) and (7) was 5729 and 65, respectively. Likewise, the contrast between Figs. 6 and 7a shows how the scenarios selected by the latter criterion give a much tighter match to the observed inflation trajectory. Furthermore, the objective function (6) tended to select scenarios with much lower compliance than observed in the experiment (Fig. 6) and worse fits for whole organ phenotypes (Fig. 7). Subsequent analyses were therefore based on the objective function in Eq. (7). Especially for the volume, short axis and elastic energy, the model was able to capture the essential dynamics.

3.3. Correlation structure of well-fitting parameter combinations

Well-fitting parameter combinations (i.e. those with a low value of the objective function) showed considerable variation along all individual parameter axes, though there were clear patterns of covariation among parameters (Fig. 8). Similar to the finding in [24], the well-fitting parameter scenarios tended to lie nearly along a straight line in the space of $(\log a, \log(b_1+b_2+b_3))$.

The estimated overall stiffness parameter a was clearly bounded from below, while the values of the b were bounded from above. Conditional on a value for a, the b_1 and b_2 parameters were also bounded from below, but the optimal estimate of b_3 approached parameter regions with bad convergence of the
mechanics solver. The tissue was stiffer along the fibres than in the directions orthogonal to the fibres \((b_1 = 5.0, b_2 = 3.7, b_3 = 2.6) \), with \(b_2 \) more tightly constrained than \(b_1 \) and \(b_3 \) (Table 1, Fig. 8). Although the point estimate appears comfortably inside the explored parameter region as viewed in the projections in Fig. 8, there were convergence problems for some of the parameter scenarios adjoining the best-fitting one as viewed in more than two parameter dimensions. Therefore, we cannot conclude whether the material parameters would be uniquely identifiable with a more robust numerical integration solver.

4. Discussion

There are several advantages to the experimental and computational pipeline presented here. Echocardiography is simple to use during pressure manipulation of excised hearts and is faster than tagged MRI (as used in e.g. [14]), thus reducing problems with rigor mortis. Furthermore, it can follow internal material points over the entire geometry [9], unlike the method of video recordings of epicardial markers (used by [33]). Passive inflation experiments avoid the sectioning of tissue required for uni-axial and biaxial material testing [34], which would disrupt the microstructure and influence the material properties. However, this limits the possibility of experimentally inducing shear forces as described by [35], [8] argue that passive inflation produces insufficient transverse shear strain to quantify the material properties in those directions, and therefore developed an epicardial suction setup for isolated arrested hearts. However, our results indicate that the relevant parameter \((b_3) \) is constrained from above (Fig. 8), but shows larger relative uncertainty than the other \(b \) parameters in the Guccione law Eqs. (4), (5).

Our numerical experiments enable parameter estimation and an overview of the structure of parameter uncertainty across a bounding box of all previously published parameter estimates (Table 1; see Supplementary Fig. S1 for a visual comparison of the corresponding stress–strain relationships). The simultaneous estimation of parameters is an improvement over one-at-a-time optimization, and highlights the possibility that many empirical data sets may not be able to support the complexity of commonly used models and material laws [24,36]. The robustness of an exhaustive search comes with the associated computational cost of a wide sweep of parameters, as compared with other approaches [4,24,37,38].

The definition of an adequate objective function to compare data and model is critical for a data assimilation method. Both data and model are limited by acquisition issues and assumptions, respectively, and a suitable choice of the space to compare them is required. Parameters were easier to identify using aggregate measures of cardiac deformation, rather than the more detailed node positions, for the goodness-of-fit criterion (objective function). This may reflect an inability of our model to mimic certain deformations that occurred in the experimental data, particularly a bending due to larger longitudinal strains in the free ventricular wall than the septum during inflation (Fig. 3, bottom), or circumferential variation in material stiffness, violating our assumption of homogeneity. Other possible causes originate in the experimental data, a 3D reconstruction of 2D observations that is subject to misregistration and out-of-plane errors. Regardless of the cause, our results suggest that a gross description of mechanical deformation introduces the benefit of a more relevant and robust comparison between data and model.

As opposed to the traditional and more intuitive direct use of displacement fields for the objective function [9,24], recent works have explored the use of integral deformation metrics [37], or advanced mathematical frameworks (using the concept of currents) [39]. Our proposed aggregated phenotypic metric is a simple and effective solution, and offers an intuitive interpretation of where the agreement and disagreement occurs. Preliminary results with our echo data, not reported here, showed that the inclusion of twist (defined as the difference in rotation between base and apex as done clinically [40]) in the objective function was detrimental, probably due to a combination of imaging acquisition and analysis limitations. Further research is needed to optimize the definition of the objective functional, and to analyse the comparative performance of the different alternatives.

Because the excised heart kept beating a little throughout the experiment (see “Speckle tracking” in Methods), despite perfusion...
with cardioplegic solution, and we were unable to measure the calcium level inside the heart, we cannot be sure about our assumption that there were no active forces. This assumption greatly simplifies the decoupling of active and passive relaxation processes [15], but may overestimate the stiffness of the tissue. On the positive side, the residual heartbeat confirmed that the excised heart was still capable of contraction, and so its material properties remained similar to in vivo.

Our experiment showed that the fibre stress-strain relationship for the mouse left ventricle was quite linear over a biologically relevant range of pressures (Fig. S1). This brings challenges in identifying, separately from the overall stiffness a, the b parameters...
that pertain to curvature in the material law (Fig. 8, [24]). However, in contrast to [24], we find that a is well bounded from below while the bs are bounded from above: No parameter scenarios with low a or very high bs could be made to match the data well (Fig. 8).

The mouse myocardium was found to be stiffer along the fibres than normal to the fibres, which is in agreement with the findings in other model organisms [6]–[10]. The value of b_1 was considerably higher than b_2 and b_3, in agreement with findings in in vivo sheep and human hearts [15,41] and in tissue blocks of pig heart [7]. The stiffness parameters estimated in this work describe a relatively soft material (low stress–strain relationships) compared with most of the literature, and is most similar to the material properties found in a similar experiment on rat hearts [10].

Complementary experiments are needed to better constrain the material parameters of this law. We inflated the ventricle from 0 to 1.44 kPa, i.e. within the normal diastolic pressure range. In this range the stress (or pressure) vs. deformation relationship was relatively linear, while the nonlinear behavior occurs at higher pressures. The estimated parameters capture the passive material properties for normal diastolic pressures in a healthy specimen, but extrapolation outside this range, for example for the study of increased filling pressures, will require further characterization.

Several future refinements are possible in this parameter estimation workflow. Better speckle tracking would improve the ability to find regional differences in material passive properties by following material points in a Lagrangian, moving frame of reference, as suggested for tagged MRI by [16]. Other challenges include the aligning of 2D data into 3D geometries. Misalignment may cause spurious bulging in the estimated deformation of the apex region (Fig. 4), and is probably one of the main reasons for the lack of fit between the simulated and experimental deformation data on a nodal basis (Eq. (6) and Fig. 5). Manual interactions could be reduced, facilitating e.g. the study of individual variation, by automating the selection of valid end diastolic frames from the echocardiographic recordings. Also, mesh construction might benefit from being constrained by incompressibility [42]: our current meshes differed in volume by 15% from the start to the end of filling. Complementary experiments are needed to uniquely constrain the material parameters of this law. In particular, the application of higher pressures, e.g. of relevance to hypertension, might bring out nonlinearities in the force-deformation relationship that would constrain the possible parameter combinations.

We have demonstrated the feasibility of quantifying mouse myocardial stiffness using the experimental setup and associated computational pipeline described above, and found that it is a viable method that deserves wider application. A better knowledge of passive properties would shed light on diastolic dysfunction and is an important step towards understanding diastolic heart failure in mouse and human.

Conflict of interest statement

The authors declare no competing interests.

Acknowledgments

This work was funded by the Research Council of Norway under the eVITA programme, project number 178901/V30 and by the Virtual Physiological Rat project funded through NIH grant P50-GM094503. NOTUR, the Norwegian Metacenter for Computational Science, provided computing resources under project nn4653k. JES is a BHF Senior Basic Science Research Fellow, and acknowledges funding from the Biotechnology & Biological Sciences Research Council (BB/J012117/1).

Appendix A. Speckle tracking

Two-dimensional particle paths can be estimated from a series of images by block-matching [23]. The algorithm compares a region of the current image with nearby regions in the next image, finding the best-matching displacement by optimizing some matching criterion. This is repeated for each region of interest in the current image, for example centred on manually chosen landmarks to be tracked.

Each series consisted of approximately 300 images (long-axis: 512×384 pixels; short-axis: 512×472 pixels; pixel size 0.0234 mm). However, the heart was still beating a little during the experiment, whereas our focus was on passive mechanics only. We therefore removed systolic images before speckle tracking, identifying these images by their large mean absolute signal intensity difference between subsequent images. Because the sampling rate was high relative to the rate of displacement, we subsampled the data to every third image to avoid round off problems with zero displacements. The speckle tracking algorithm was implemented in Matlab ([43]) as follows:

- We chose limits for the search algorithm, consisting of the size of the matching kernel window and the maximum allowed displacements. Kernel windows were 17×31 and 9×17 pixels for long- and short-axis images, respectively. The maximum allowed displacements between two subsequent images were 2 pixels (in x and y directions) for long-axis and 3 pixels for short-axis images.
- The ventricular wall was more visible and easier to segment from the high pressure images. We therefore selected material points along the inner and outer surface of the ventricle for the image corresponding to maximal pressure, and worked backwards from high to low pressure images. The selected material points were used as central points for block matching between subsequent images in the following automatic procedure.
- The ventricle in the current image was masked based on the position of the material points in the preceding image (echo intensity was set to NaN outside the ventricle).
- The displacement for each material point in the current image was estimated by matching the neighbourhood of the material point against candidate regions in the next image, minimizing the mean absolute difference between the sub-images.
- Due to considerable noise, especially in the basal region in the long axis images, we imposed additional constraints on the deformation:
 - The material points closest to the base were allowed to move only in horizontal direction and the outward radial search region was reduced.
 - The local wall thickness was measured. If the wall thickness was shrinking compared with the max pressure image, the material points on the inner wall were moved inwards, normal to the surface of the outer wall.
 - The displacements were smoothed using a cubic spline. (Displacements from short axis images were converted to polar coordinates before smoothing).
 - The coordinate position of each material point was updated, based on its estimated displacement, before the next image was analysed by block-matching.

Appendix B. From 2D particle paths to 3D deformation

The individual 2D particle paths were smoothed over time and interpolated so we could estimate the position of each 2D material...
point for any specified LVP. We used the long-axis images to find displacement in longitudinal and radial direction, while circumferential displacements were obtained from the short-axis images. The short-axis images also contain information about the radial movement, but this was not utilized because the out-of-plane movement is larger for these images than for long-axis images. The long-axis images were centred, based on the centre of mass of the basal points in the zero pressure images, and rotated about the z-axis (0°, 45°, 90° and 135°) to correspond to the experimental views (see Fig. 1a). The apical points were defined as a weighted average of the most apical points from the different long-axis slices. The short-axis images were aligned to match the long-axis images with respect to the free wall and the septum. The most apical short-axis image was aligned with the long-axis images in the z-direction, so that the inner diameters of the long- and short-axis images were identical in the maximum pressure configuration. The circumferential displacements of all nodes were then interpolated in the z-direction between the short-axis slices by using a cubic spline (we required zero circumferential displacement in the base, in accordance to the experimental setup). The nodes were then used as nodes in a triquadratic interpolated mesh, and estimated 3D-displacements were used to calculate the configuration for each pressure level (see Fig. 3).

Appendix C. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.compbiomed.2014.07.013.

References

