A note on weak Sidon sequences

P. Mark Kayll

Department of Mathematical Sciences, University of Montana, Missoula, MT 59812-0864, USA

Received 15 July 2003; received in revised form 13 May 2004; accepted 14 May 2004
Available online 26 July 2005

Dedicated to Professors Brian Alspach and Bernt Lindström on the occasions of their milestone birthdays in 2003

Abstract

A sequence \((a_i)\) of integers is weak Sidon or well-spread if the sums \(a_i + a_j\), for \(i < j\), are all different. Let \(f(N)\) denote the maximum integer \(n\) for which there exists a weak Sidon sequence \(0 \leq a_1 < \cdots < a_n \leq N\). Using an idea of Lindström [An inequality for \(B_2\)-sequences, J. Combin. Theory 6 (1969) 211–212], we offer an alternate proof that \(f(N) < N^{1/2} + O(N^{1/4})\), an inequality due to Ruzsa [Solving a linear equation in a set of integers I, Acta. Arith. 65 (1993) 259–283]. The present proof improves Ruzsa’s bound by decreasing the implicit constant, essentially from 4 to \(\sqrt{3}\).

Keywords: Weak Sidon; Well-spread

A sequence \((a_i)\) of integers is well-spread (resp. Sidon) if the sums \(a_i + a_j\), for \(i < j\) (resp. \(i \leq j\)), are all different. Such sequences, especially Sidon sequences, have received considerable attention since Erdős and Turán [2] initiated their study in 1941; see, e.g., [8]. Kotzig [5] suggested the term ‘well-spread’—‘weak Sidon’ is a common synonym—but obtaining this reference requires some digging; [7] covers the highlights. For a nonnegative integer \(N\), let \(f(N)\) denote the maximum integer \(n\) for which there exists a well-spread sequence \(0 \leq a_1 < \cdots < a_n \leq N\). Our purpose is to present an alternate proof of the following result of Ruzsa [9].

Theorem. \(f(N) < N^{1/2} + O(N^{1/4}).\)

E-mail address: mark.kayll@umontana.edu.

© 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.disc.2004.05.019
After the proof, we indicate how our approach improves Ruzsa’s bound. We begin with a cruder estimate:

Lemma. If N is sufficiently large, then $f(N) < 2.001N^{1/2}$.

Proof. Let $n := f(N)$ and $0 \leq a_1 < \cdots < a_n \leq N$ be a well-spread sequence. Since the sums $a_i + a_j$, for $i \neq j$, are distinct and lie in the set $\{1, 2, \ldots, 2N - 1\}$, we have $\binom{n}{2} < 2N$, from which the assertion follows easily. □

Proof of Theorem. Let N be large enough to invoke the lemma, set $n := f(N)$, and consider a well-spread sequence $0 \leq a_1 < \cdots < a_n \leq N$. The key is to study the positive differences $a_j - a_i$. By obtaining both upper and lower bounds for the sum of a certain subset of these differences—the ‘small’ ones—we shall deduce the desired bound.

Following [6], for $1 \leq i < j \leq n$, we call $j - i$ the order of the difference $a_j - a_i$. Since the differences of order $\alpha > 0$ can be arranged into sequences of the form

$$a_\alpha - a_\beta, a_\beta - a_\gamma, a_\gamma - a_\delta, \ldots,$$

where $\alpha - \beta = \beta - \gamma = \gamma - \delta = \cdots = v$, by ‘telescoping’, we see that the sum of all these differences is at most vN (and less than vN for $v > 1$). Thus, for $m \geq 2$, the sum \mathcal{S} of all the positive differences of order at most m is less than $m(m + 1)N/2$.

We call a_i a mean-point if $2a_i = a_j + a_k$ for some $j, k \in \{1, \ldots, n\}$; notice that then $a_i - a_k = a_j - a_i$. Except for the values $a_j - a_i$, for mean points a_i (or a_j), the differences $a_k - a_\ell$, for $1 \leq \ell < k \leq n$, are all distinct since (a_i) is well-spread. Now the only candidates for mean-points are a_2, \ldots, a_{n-1}, so we have at most $t := n - 2$ differences occurring with higher multiplicity, and the well-spread property implies that this multiplicity is 2. If $1 \leq m < n$ and $s := n - (m + 1)/2$, then the number of positive differences of order at most m is $mn - m(m + 1)/2 = ms$. Thus,

$$\mathcal{S} \geq \sum_{i=1}^{t} 2i + \sum_{j=1}^{ms-2t} (t + j) = \frac{ms(ms + 1)}{2} - t(ms - t).$$

For $1 < m < n$, it follows that

$$\frac{ms(ms + 1)}{2} - t(ms - t) < \frac{m(m + 1)}{2} N,$$

so that

$$\frac{(ms)^2}{2} < \frac{m(m + 1)}{2} N + mst.$$

Since $s, t < n$, the second term on the right side is less than mn^2, which by the lemma is at most $(2.001)^2 mN < 4.5mN$. Thus, $s^2 < N(1 + 10/m)$, and since $(1 + x)^{1/2} < 1 + x/2$
for $x = 10/m$, we have

$$n = \frac{m + 1}{2} + s < \frac{m + 1}{2} + N^{1/2} \left(1 + \frac{5}{m}\right).$$

(1)

With $m := \lceil N^{1/4} \rceil$, this gives the bound in the statement of the theorem. □

Closing remarks. Our proof uses the main idea of Lindström [6], as adapted to well-spread, constant-parity sequences in [4]. Ruzsa [9] also based his proof on the idea of studying the ‘small’ differences $a_j - a_i$ in a “somewhat hidden” fashion (his quote). Here we compare the resulting implicit constants.

To optimize ours, we first perform another iteration of the proof. Instead of applying the lemma (to bound mn^2 from above), we apply the theorem itself. This allows us to replace ‘10’ by ‘$3 + O(N^{-1/4})$’. To minimize the right side of (the adjusted) inequality (1), we now choose m to be $\lceil cN^{1/4} \rceil$, for $c := \sqrt{3}$. These modifications reduce our upper bound on $f(N)$ to $N^{1/2} + cN^{1/4} + O(1)$. Ruzsa’s proof essentially delivers the value 4 in place of our $\sqrt{3}$: he shows that a weak Sidon sequence contained in the set $\{1, \ldots, N\}$ contains at most $N^{1/2} + 4N^{1/4} + 11$ terms. Thus, aside from being more transparent, our proof yields an (however slight) improvement to the bound.

It should be noted that the theorem compares favourably with the best-known lower bounds for $f(N)$. Using Singer difference sets (see [10]), it is easy to show that $f(N) > N^{1/2}$ for infinitely many integers N; additionally, prime density results (e.g. [1]) imply that $f(N) > N^{1/2} - N^{21/80}$ if N is sufficiently large.

Finally, we add a word on an application. In [4], our present theorem was used to determine the growth rate of the maximum label $A(n)$ in a ‘most-efficient’ metric, injective edge-labelling of the complete graph K_n for which every Hamilton cycle has identical length. We proved that $2n^2 - O(n^{5/2}) < A(n) < 2n^2 + O(n^{61/40})$, thus settling the main conjecture in [3].

Acknowledgements

This note’s first draft was written during my sabbatical leave at the University of Ljubljana, Slovenia. Thanks to the Department of Mathematics, the Institute of Mathematics, Physics & Mechanics, and especially to Bojan Mohar for their hospitality. Some of the research took place at the Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences. Thanks to Gyula Katona for hosting me, Miki Simonovits for suggesting a related problem, and János Pintz for a helpful discussion. I am grateful to a referee for the reference [9].

References