1 Introduction

Biometrics is a reliable, robust and convenient way for person authentication [2]. With the growing use of biometrics, there is a rising concern about the security and privacy of the stored biometric templates. Biometric cryptosystem [3] is a very secure approach for template protection because the output is encrypted, but suffers from two major limitations. First, this approach requires binary input while most of the templates are real-valued. Therefore, a template binarization step is required. Second, the capability for handling the intra-class variations is limited. In turn, the recognition accuracy may not be satisfied.

To fulfill the binary input requirement, some binarization schemes [6–13] have been proposed in the last few years. We roughly categorize these schemes into two approaches, namely local and global. Local binarization methods consider each component x_r of the input real-valued template $x = (x_1, x_2, \ldots, x_l)$ (feature vector) independently. For each x_r, a function f_r is applied to extract a bit b_r (or maybe several bits) from x_r ($b_r = f_r(x_r)$). The advantages of local approach are simple and low complexity but, it will distort the original data distribution. In turn, the system performance will be degraded. Global binarization methods consider template as a whole. A series of functions f_1, f_2, \ldots, f_n are constructed to extract bits b_1, b_2, \ldots, b_n from template x. That is, $b_r = f_r(x)$. The advantage of this approach is that the binary templates could preserve the original real-valued template data distribution and discriminability. Therefore, the recognition performance of global methods, normally, outperform local methods. However, existing methods are either designed only for authentication system [8] or fingerprint biometric [9].

To overcome the limitations on existing binarization algorithms, this paper proposes a new binary discriminant analysis method to convert a real-valued template to binary template while the discriminability is maximized. The proposed method follows the global approach and can be used for both authentication and identification. The idea of the proposed method is inspired by the linear discriminant function (LDF) for classification process. When applying in our context, each linear discriminant function divides the biometric template space into two subspaces and each subspace is then represented by a bit (either “1” or “0”) as illustrated in Figure 1(a). Therefore, when more linear discriminant functions are used, the space will be divided into a number of subspaces. Each subspace can then be represented by a binary bit string. In turn, all templates within a subspace will have the same binary representation as illustrated in Figure 2. So the problem is how to determine the "optimal" set of linear discriminative functions. Details are discussed in next section.

2 Binary Discriminant Analysis

The rationale of our binary discriminant analysis algorithm is illustrated in Figure 2. We would like to find the binarization function f from class labeled training data. In BC approach, the bio-cryptographic algorithms, such as fuzzy commitment scheme [4] and fuzzy vault scheme [5], could only handle a small image variations. Feng et al. [8] have suggested that, ideally, all real-valued templates in the same class should be mapped to the same point in binary space. In practice, it is hard (if not impossible) to achieve. Instead, we would like to maximize the number of real-valued tem-
plates in the same class mapped to the same point in binary space. However, performing multi-class optimization in binary space may not be feasible. Instead, we propose a new idea to tentatively fix the training class data centers, called ideal centroids, and BCH code is employed. In doing so, we develop a new multi-class gradient descent method to determine the "optimal" binary function.

In this section, we will first discuss how to make use of linear discriminant function for the binarization of real-valued template. After that, we will report our method in finding the "optimal" discriminant functions. Finally, we will provide the complete algorithm for the enrollment and query stages.

2.1 Linear Discriminant Function for Binarization

Assume there are \(c \) classes \(\Omega_1, \Omega_2 \ldots \Omega_c \) in a database. Each class \(\Omega_i \) contains \(p \) training samples \(x_{ij} \) \((i = 1, 2 \ldots c, j = 1, 2 \ldots p) \). We want to find a binarization function \(f(\cdot) \), such that the between-class variance \(V_B \) is maximized and within-class variance \(V_W \) is minimized in binary space.

While the straightforward method is to find \(f \) using a multi-class optimization method, it does not work because the output is in binary space. Instead, this paper proposes to employ the linear discriminant function, which is a popular way in classification. As Figure 1(a) shows, the linear discriminant function draws a hyperplane to divide the data space into two subspaces and therefore separates the two classes. To find the optimal linear discriminant function, each sample will be labeled with a label “0” or “1” according to its class number.

For multi-class problem, obviously one discriminant function is not sufficient thus multiple discriminant functions are applied (as Figure 1(b) illustrates). Assume \(n \) discriminant functions

\[
g_s(x_{ij}) = (w_s^T x_{ij}) + t_s \quad (s = 1, 2 \ldots n)
\]

are constructed. These functions are rewritten as the generalized form and the binarization can be written as follows:

\[
b_s(x_{ij}) = \begin{cases} 1 : & u_s^T y_{ij} > 0 \\ 0 : & u_s^T y_{ij} \leq 0 \end{cases} \quad (s = 1, 2 \ldots n)
\]

(1)

where \(u_s^T = [w_s^T : t_s] \) and \(y_{ij}^T = [x_{ij}^T : 1] \). And

\[
b_{ij} = (b_1(x_{ij}), b_2(x_{ij}) \ldots b_n(x_{ij}))
\]

(2)

Denote \(U \) as the matrix with columns \(u_s \). Next we need to construct the class centroids \(\bar{b}_i \) \((i = 1, 2 \ldots c) \), and then find binarization function \(f \) with minimized \(V_W \).

2.2 Gradient Descent Algorithm for Multi-class Binarization

To enhance the discriminability of the extracted binary templates, the reference binary templates for different classes should be well separated (i.e. large \(V_B \)). This paper adopts \([n, k, d] \) BCH codes. Such codes have length \(n \), dimension \(k \) and minimum distance \(d \) between each other. Then any codewords from the BCH codes can be chosen as class centroid \(\bar{b}_i \) and they have a minimum distance \(d \). With large \(d \), the separation between each class will be large, i.e. large between-class variance \(V_B \).
With the class centroid, we employ the gradient descent algorithm [14] which has been used to find the optimal linear discriminant function for two-class problems. Here, we will extend to multiple classes.

In traditional gradient descent algorithm, the perceptron criterion function is constructed as follows

\[J(u) = \sum_{y_{ij} \in \Phi} |u^T y_{ij}| \]

where \(\Phi \) is the misclassified set of \(y_{ij} \). While it is proved that the gradient descent algorithm will converge and \(J(u) \) will reach 0 if the two classes are well separated. In many practical applications, this may not happen. The iteration will turn over again and again when \(J(u) \) is small. The value \(J(u) \) and corresponding \(u \) are then selected as the optimal value. In multi-class problem, the criteria function is constructed as follows.

\[J(U) = \sum_{y_{ij} \in \Phi} \sum_{u_s \in \Psi(y_{ij})} |u_s^T y_{ij}| \]

where \(\Phi \) is the misclassified set templates \(y_{ij} \) and \(\Psi(y_{ij}) \) indicates the set of \(u_s \) which convert \(y_{ij} \) to a bit which is different from its class centroid. Denote \(q \) as the number of iterations. Then

\[U(q + 1) = U(q) - \eta(q) \frac{\partial J(U(q))}{\partial U} \]

From Equation (4), we have

\[\frac{\partial J(U)}{\partial U} = \sum_{y_{ij} \in \Phi} \frac{\partial \sum_{u_s \in \Psi(y_{ij})} |u_s^T y_{ij}|}{\partial U} \]

Since

\[\frac{\partial |u_s^T y_{ij}|}{\partial u_s} = \text{sign}(u_s^T y_{ij}) y_{ij} \]

where \(\text{sign}(\cdot) \) denotes the sign of the argument, therefore,

\[\frac{\partial \sum_{u_s \in \Psi(y_{ij})} |u_s^T y_{ij}|}{\partial U} = \sum_{u_s \in \Psi(y_{ij})} Y_s. \]

where \(Y_s = [0 : 0 : 0 ... 0 : \text{sign}(u_s^T y_{ij}) y_{ij} : 0 ... 0] \) is the matrix with same dimension as \(U \), all columns except the \(s^{th} \) column are zero. By substituting Equation (8) into (6) and then substituting into (5), we have

\[U(q + 1) = U(q) - \eta(q) \sum_{y_{ij} \in \Phi} \sum_{u_s \in \Psi(y_{ij})} Y_s(q) \]

where \(\eta(q) \) is the learning rate of the gradient descent algorithm. Therefore, in each iteration, Equation (9) is used to update \(U \) and to find the optimal solution in our binarization process.

2.3 Procedure of the proposed BDA algorithm

This section summarizes the proposed binary discriminant analysis algorithm.

Enrollment:

1. Choose suitable [\(n, k, d \)] BCH codes. Randomly choose \(c \) codewords from the BCH codes as reference bit templates \(\bar{b}_i \).

2. Randomly initialize \(U(1) \) and convert the original templates \(x_{ij} \) into bit template \(b_{ij} \) with Equation (1) and (2). Set iteration number \(q = 1 \).

3. While \(q < q_{end} \),
 a. Compute \(J(U(q)) \) with Equation (4).
 b. Do identification with \(b_{ij} \) as query and \(\bar{b}_i \) as reference. Store the misclassified binary templates to set \(\Phi \).
 c. Update \(U(q) \) to \(U(q + 1) \) with Equation (9).
 d. Update \(b_{ij} \) with \(U(q + 1) \) and \(q = q + 1 \).

The total iteration time \(q_{end} \) is determined experimentally. We choose the \(U(q) \) with minimum \(J(U(q)) \) in the last few steps as the optimal \(U \).

Query:

1. A query template \(x_{ij}' \) is presented to the system.
2. Generate a binary template \(b_{i'j'}' \) from \(x_{ij}' \) with Equation (1) and (2).
3. Perform identification: compare \(b_{i'j'}' \) with each reference binary template \(\bar{b}_i \), and classify the query to class \(\Omega_i \) if \(\bar{b}_i \) is closest to \(b_{i'j'}' \).

3 Experimental Results

Two popular and public domain databases, namely CMU PIE [15] and FRGC [16], are employed in our experiments. The parameters are shown in Table 1, where \(c \) is the number of classes in the database, \(m \) denotes the number of images per class and \(p \) is the number of images per class used for training.
In all experiments, face region is manually extracted and aligned. Fisherface [1] is used to extract the facial feature vector which is considered as the original face template. We choose codewords from the [511, 76, 171] BCH codes and determine the reference binary templates, which has sufficient between-class variance ($d = 171$) and sufficient security level ($k = 76$). Random Multispace Quantization (RMQ) algorithm [7] is used for comparison. The extracted RMQ binary templates have the same length as the original templates. We test our proposed algorithm in both identification and authentication systems.

Table 1. The experiment settings

<table>
<thead>
<tr>
<th>Database</th>
<th>c</th>
<th>m</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMU PIE</td>
<td>68</td>
<td>105</td>
<td>10</td>
</tr>
<tr>
<td>FRGC</td>
<td>350</td>
<td>40</td>
<td>5</td>
</tr>
</tbody>
</table>

The experimental results are shown in Figure 3, with symbol “Original” denotes original system without protection, “RMQ” denotes the Random Multi-scale Quantization and “BDA” denotes the proposed Binary Discriminant Analysis algorithm. The experimental results show that the binary templates extracted by our proposed BDA algorithm have better discriminability than the original templates and the binary templates extracted from the RMQ algorithm. The genuine accept rate (GAR) with fixed false accept rate FAR=0.01 in ROC curves and rank 1 accuracy of these methods are also reported in Tables 2 and 3, respectively.

Table 2. GAR (in %) for the BDA algorithm, RMQ algorithm and the original template

<table>
<thead>
<tr>
<th>GAR(%)</th>
<th>Original</th>
<th>RMQ</th>
<th>BDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMU PIE</td>
<td>59.26</td>
<td>66.18</td>
<td>87.32</td>
</tr>
<tr>
<td>FRGC</td>
<td>26.28</td>
<td>65.15</td>
<td>67.02</td>
</tr>
</tbody>
</table>

Table 3. Rank 1 accuracy (in %) for the BDA algorithm and RMQ algorithm

<table>
<thead>
<tr>
<th>Accuracy (%)</th>
<th>RMQ</th>
<th>BDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMU PIE</td>
<td>66.93</td>
<td>83.25</td>
</tr>
<tr>
<td>FRGC</td>
<td>54.50</td>
<td>57.71</td>
</tr>
</tbody>
</table>

4 Conclusions

In this paper, we have proposed a new binary discriminant analysis (BDA) scheme to convert the original face templates into binary templates. A new multiple class gradient descent algorithm is proposed for optimizing the objective function in binary space. Experimental results show that the proposed BDA algorithm handles the discriminability of the extracted binary templates well and suitable for the biometric cryptosystem approach.

5 Acknowledgement

This project is supported by the Hong Kong RGC, GRF Research Grant 210909, Science Faculty Research grant of Hong Kong Baptist University and NSFC-GD research grant U0835005.

References