

AN INTELLIGENT USER SERVICE ARCHITECTURE
FOR NETWORKED HOME ENVIRONMENTS

Carsten Magerkurth (1), Richard Etter (1), Maddy Janse (2), Juha Kela (3), Otilia Kocsis (4), Fano Ramparany(5)

(1) Fraunhofer IPSI, AMBIENTE, Germany; (2) Philips Research, High Tech Campus, Nederland; (3) VTT Tech.
Research Center of Finland; (4) LogicDIS, Patras, Greece; (5) France Telecom, RD-TECH-GRE, France

ABSTRACT

This paper discusses a novel architecture of intelligent
user services that address the domain of networked
home environments. The work described in this paper
represents the central achievements of the first 1.5 years
in the work package on intelligent user services within
the EU-IST funded research project Amigo. The
discussed service architecture consists of five distinct
services that address both user- and system oriented
issues in Ambient Intelligence (AmI) home
environments.

INTRODUCTION

With the advent of mass-market enabling technologies
that allow for interconnecting heterogeneous devices
and equipping smart spaces with dedicated sensing
infrastructures, the vision of smart homes that assist its
inhabitants in their everyday tasks is becoming
graspable.
The EU-IST funded research project “Amigo – Ambient
Intelligence for the Networked Home Environment”
addresses the issues of realizing such smart homes that
do not only integrate various household appliances,
sensors, and consumer electronics devices, but also
aims at creating service infrastructures that use Ambient
Intelligence methods to reason about the user’s goals
and utilize context information in order to provide
adapted functionality that acts appropriate in any given
situation. The aim of Amigo hence is “to research and
develop open, standardized, interoperable middleware
and intelligent user services for the networked home
environment, which offers users intuitive, personalized
and unobtrusive interaction by providing seamless
interoperability of services and applications” (Amigo
Project, 1).
While lower level middleware that address issues such
as interoperability of various devices, appliances, and
protocols, service discovery, security, and scalability is
an open and interesting research field in itself, this
paper focuses on higher level services that build upon
existing infrastructures and provide functionalities to

the users that have a perceivable effect on them. We
define these services as “intelligent user services” in the
sense that intelligence refers to adaptive capabilities
with regard to being aware of the usage conditions,
physical contexts, and social situations. Likewise, the
notion of a user service refers to assisting users and
taking the preferences and profiles of individual users
into account in order to optimally adapt to individual
needs. Lower level middleware related to AmI
environments, e.g. for composing device services or
related Quality-of-Service (QoS) issues are discussed in
Vallée (16) and Papaioannou et al. (11) and are beyond
the scope of this paper.

DESIGN SPACE

The development of the service architecture presented
here is addressed in the central work package
“Intelligent User Services” that spans almost the entire
3.5 years project duration of Amigo. One of the most
fundamental design alternatives that informed the initial
planning and specification of the services is the nature
of intelligence that we want to base our work on. The
term “Ambient Intelligence” refers to information
processing taking place in the periphery of our attention
and hints at an implicit and largely automatic approach.
However, as Streitz et al. (15) discuss in their analysis
of smart homes and smart artifacts, there are ambivalent
properties of implicit and automatic reasoning. They
distinguish between two types of approaches: system-
oriented, importunate and people-oriented, empowering
ones. In the former approach, the services take certain
actions based on autonomous reasoning such as
adjusting the heating system or regulating lighting
conditions based on assumed user goals. The problem
here is that the user is not kept in control and incorrect
decisions might have very negative consequences.
Contrarily, people-oriented, empowering approaches
focus on empowering users to make their own decisions
and take mature and responsible actions. Keeping the
human in the loop, however, might lead to information
overload and might overwhelm users who do not want
to deal with regulating services at all times.

Balancing the design goal of system-oriented autonomy
and people-oriented control is an open research field.
We believe that both approaches need to be combined
in a flexible manner. Therefore, we have initially
developed a set of intelligent user services that are
integrating both approaches to varying degrees and
allow applications that integrate them to set their
individual foci. In the following sections we now
discuss the initial set of services provided by the Amigo
intelligent user service architecture. These services are
currently in active development. Some are already
deployed with initial functionality, others are currently
in the specification phase. The first discussed service,
the Context Management Service, provides the essential
context information for Amigo aware applications.

CONTEXT MANAGEMENT SERVICE (CMS)

Ambient intelligence (AmI) pushes forward a vision
where our daily environment proactively serves our
needs by understanding our activities, anticipating our
needs and collaborating with us in achieving our daily
tasks. To make this vision come true, the AmI
environment needs to be aware of any context
information that is helpful for identifying user's
activities, needs and tasks. This information is to be
found in the physical environment as well as from the
users or from the computer systems or devices they use.
We have adopted the following general definition of
context from Dey (4): "Context is any information that
can be used to characterize the situation of an entity. An
entity is a person, place or object that is considered
relevant to the interaction between a user and an
application, including the user, the device and
application themselves".
In the Amigo project, interactions between users and
their physical environment is mediated by device based
services. In a sketchy way, services are software
components that hide physical devices and artifacts to
humans, behind high level and user-friendly interfaces.
Within this service oriented approach, context
information affects the way services execute so as to
optimally fit users' needs. Services can exploit context
information in different ways.
Context information can (i) trigger a service so as to set
up a pro-active environment, (ii) adapt the process of a
service, or (iii) simply be presented to users using a
variety of modalities in order to empower the smartness
of users while they might interact with their
environment. An awareness system displaying the status
or availability of a person buddies is an example of this
third type of context awareness.
Although any device endowed with processing and
communication resources could potentially act as a
source of context information, the Amigo project is

currently deploying a focused range of context sources
that have be selected on the basis of the project target
applications needs. Those context sources include:
• household appliances such as ovens, cookers,

freezers, dishwasher and washing machine
• comfort sensors such as temperature, humidity,

CO2, air cleanness sensors
• location sensors such as RfID, GPS, acoustic

position estimation sensors
• user activities information provider such as a

discussion topic recognizer
• components that aggregate basic context

information such as a context history manager
In the Amigo project, information exchanged between
those context sources and context aware services that
exploit this information for adapting their execution is
modeled using web services technology.
More precisely, we use the Resource Description
Framework (RDF) for modeling context information.
RDF is a language that has originally been designed for
representing information about resources in the World
Wide Web (RDF-CONCEPTS). Using RDF, resources
are described as a collection of triplets consisting of
(subjects, predicate, object). Thus, in our modeling
approach a piece of context information is a RDF
fragment which relates entities (subjects of the triplets
that are instances of concepts or classes from the
context ontology) to other entities (objects of the triplet)
or to literate values (strings, numerical values, etc.)
using the predicate component of the triplet. The
predicate should be defined in the context ontology as a
relation linking the subject class to the objet class.
An example of context information about Jerry being
located in the Kitchen" is represented graphically in
pure RDF as:

Jerry Kitchen
Located in

While transmitting this information between context
sources and context aware applications a textual
serialized format based on XML is used. In RDF/XML
notation, the same information will look like:

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-
rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-
schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"
 xmlns="http://www.owl-
ontologies.com/unnamed.owl#"
 xml:base="http://www.owl-
ontologies.com/unnamed.owl">
 <User rdf:ID="Jerry">
 <locatedIn>
 <Room rdf:ID="Kitchen"/>
 </locatedIn>
 </User>
</rdf:RDF>

Context sources and context aware services interactions
for exchanging context information are organized
within the following architecture (see figure 1):

Figure 1 Context Management Components.

The general principle behind this architecture is to
provide context aware services, with a well-defined and
unified interface to context sources, such as physical
sensors. This interface adopts:
• RDF as the language to be used for exchanging

context information among consumers and
providers irrespective of the context's nature and
the type of context sources

• A shared context Ontology to enable consumers
and providers to understand each other

• RDQL as the language to be used by context
consumer to query and subscribe to context
information.

• Web service protocols as the mechanisms to be
used by context consumers and context sources to
connect and speak to each other

Context aware applications discover context sources of
interest by applying their needs to context brokers.
Context sources simply need to register to a context
broker as soon as it is deployed in the environment.
To enrich this core functionality additional components
have been introduced such as context interpreters and
context history managers that enable to aggregate and
reason on heterogeneous pieces of context information.
Such reasoning is used for deriving high-level context
information or analyze, recognize and predict temporal
patterns of context events.

Compared to existing context management
infrastructure (e.g. Salber et al (13), Khedr and
Karmouch (9)) our approach promotes
• scalability through a distributed architecture
• dynamicity as context sources can appear and

disappear in the environment with minimal impact
on services currently running,

• functional interoperability through the adoption of
the web service technologies

• semantic interoperability through the adoption of
the semantic web technologies.

While CMS forms the backbone of both people-oriented
and system-oriented approaches, the next discussed
service is specifically geared towards people-oriented
approaches by modeling users so that intelligent
systems can utilize the context information from CMS
and apply it to user profile information in order to
realize highly adaptive applications.

Context aware
Service

Context
source

Context
broker

Context
source

Context
source

Context
source

Context
history

Context
interpreter

need

Context

Query
subscription

Context
info

capabilitie
USER MODELING AND PROFILING (UMPS)

The User Modeling and Profiling Service (UMPS),
presented in this section provides the methodology for
context dependent personalization and adaptivity of
applications and services in the Amigo environment. In
a first step user profiles are built based on stereotypes
and explicit user input, and in the second step these
profiles are refined using the interaction/context history.
User modeling, also known as personalization, user
profiling, or adaptive user interfaces, is the key in the
construction of interactive software systems which are
able to recognize and to adjust themselves to the needs
of particular users at every stage of use, whether these
users be beginners or experts. Although user modeling
has become a mature research field with demonstrable
results, little progress has been made in the
development of user modeling components for
commercial software systems, mainly aimed at
supporting personalization of e-commerce systems on
the World Wide Web (Fink and Kobsa, 5).
User modeling and profiling has evolved from
representation of groups of users using a certain system
in certain conditions, to personalization of these systems
towards individual users’ preferences and requirements.
In case of ambient intelligence systems personalization
applies to different system components and application
domains, particularly to user interfaces (e.g., graphical,
gesture, voice-based) and content presentation (e.g.,
multimedia). Personalization depends on the initial
knowledge of the system about its potential users and
the mechanism used to learn user’s behavior and
preferences (Khedr and Karmouch (9), Rich (12)). It
also depends heavily on the context in which the system
is used. Therefore the system should be adaptable to the
context. In addition, system behavior and adaptation to
multi-user environments must be considered.

Service Description

UMPS provides the methodology to enhance the
effectiveness and usability of applications, services and
interfaces in the Amigo environment in order to:
(a) tailor information presentation to user and context,
(b) reason about user’s future behaviour,

(c) help the user to find relevant information,
(d) adapt interface features to the user and the context in
which it is used,
(e) inform about interface features and information
presentation features for their adaptation to a multi-user
environment.
These goals are achieved by constructing, maintaining
and exploiting user models and profiles, which are
explicit representations of individual user preferences,
personal data and system assumption on users’
characteristics.
While the user modeling is certainly an important
prerequisite to make the ambient intelligence user-
friendly and accessible to the general public, it is also
subject to potential dangers of misuse. To prevent
misuse and resist to dangers of leaking user-related
information in the Amigo system users will be made
aware of the fact that the system contains a user
modeling component, such that the user can decide
whether or not to consent to being modeled by the
system, or even to “switch off” the component or
certain modeling subcomponents.
Personalization can be achieved either in completely
autonomous mode, when the system decide what to
present to the user based on the existing user profile
data, or in a semi-automatic mode, when the system
makes suggestions to the user, allowing him to feel in
control and reducing the number of system mistakes.
These two ways are not exclusive: in one context it is
appropriate to act autonomously and in another context
it is recommended to ask the user's opinion. However,
at earlier stages of user-system interaction, when the
confidence of the system on the validity of user profile
data is low, the semi-autonomous mode should be
preferred. UMPS, in a first step, will build a user profile
based on the common sense knowledge of the system
about its potential groups of users (stereotypes) and
explicitly acquired data from the user. This first step
makes possible to avoid the costly and elaborate
construction of user ontology through the system itself,
simplifying the initiation process of the adaptive
system. In the second step, the user profile is refined
based on the knowledge of events and facts of the
Amigo system (interaction/context history, user's choice
among system's suggestions, user's feedback). This
refinement is a continuous process, involving and
affecting all applications and services of the system that
will make use, at runtime, of the profile data (i.e. the
Awareness and Notification Service will make use of
the user notification profile data).

Architectural Design

UMPS has an add-on modular architecture (see figure
2), which is closely related to the implementation

phases. The basic inner shell of the architecture is the
Core Profile Service. This service handles the profile
information storage, the request-response operations to
other services and applications layer, the information
flow to the middleware, as well as the security issues.
At the Core Profile Service level, the update of the
profile will be based on static modeling methodology.
The major components of the Core Profile Service,
providing the functionality necessary for the interfaces
offered to other system services and to the applications
domain, are:
(a) The Reasoning Module, which is responsible for
exploring the user profile and responding to other
services or applications requests. Depending on the type
of the request, this module can use functionality offered
by the Dynamic Modeler or to the Multi-Profile
Aggregator in order to fulfill the request.
(b) The Static Modeler, which is responsible for the
creation, removal and modification of user profiles at
user’s or application’s request. A GUI will also be
provided by this component, allowing the user to edit its
personal data, enable modeling of certain preferences,
or directly set preferences values.
(c) The Feedback Analyzer, which enable the update of
the profile at system’s initiative, based on explicit or
implicit user feedback. This component will also
provide functionality to request explicit user input,
using the User Interface Service, whenever needed by
the other components of UMPS.
(d) The Context Module, which provides access to the
context history data gathered by the Context
Management Service. Both, asynchronous event-based
subscriptions to context data and synchronous context
queries are supported by this component.
The Expanded Profile Service, the outer shell of UMPS,
will implement enhanced functionalities of the service,
including the Multi-Profile Aggregator and the
Dynamic Modeler.
The Multi-Profile Aggregator will provide an
aggregated profile in case of multiple users found in the
same context (i.e. the same room). Aggregated profiles
can be obtained by merging profiles of several
individuals whose preferences are known beforehand or
by considering presence of other persons as social
context.
The Dynamic Modeler will enable modification of the
user profile data using the interaction/context history,
the implicit/explicit feedback received from the user, as
well as context changed events received through the
Context Module from the Context Management Service.
Depending on the data received, the profile can be
updated by activating additional stereotypes, or by
learning new parts of user profile (reasoning on context
history data). Activation of new stereotypes may result
in modification of the profile tree (enrichment with new
preferences or removal o non-valid ones), change of
preference values (merging of values from different

sources), and modification of system confidence on
preference values.

Figure 2 Architectural design of UMPS.

The major research areas considered for modeling in
Amigo are multimedia preferences and
personalization/adaptivity of the speech user interface.
Specifically, research on integration of personalization
of speech user interfaces in the Amigo environment will
consider: (a) use of stereotypes based on users’ levels of
expertise with speech interfaces, (b) use of correction
grammars to correct speech understanding errors due to
user specific pronunciation and use of language and (c)
optimization of dialogue flow using system learning
from interactions (reinforcement learning).
So far, CMS and UMPS provide the means to create
highly adaptive, context-aware services or applications.
Given the complexity of smart home environments,
however, it is equally important to ensure that context
information is filtered and transmitted to interesting
parties in order to avoid having each possible entity deal
with each potential piece of context information. This is
handled by the Awareness and Notification Service.

AWARENESS AND NOTIFICATION SERVICE
(ANS)

The Awareness and Notification Service (ANS) enables
developers to rapidly develop applications that allow
people and other applications to stay aware of any
significant change in context with minimal effort.
Context that ANS is able to keep track can be of various
nature such as, the activities, presence, and location of
other people.

From the system perspective, ANS makes applications
aware of context changes by notifying them.
Applications register monitoring rules that specify what
changes in context shall be notified to them.
From the user perspective, ANS provides context-aware
notifications with appropriate rendering of intensity,
based on the user’s preferences and current context.

Rapid Development of Context-Aware Applications
with ANS

Building applications that allow people to stay aware of
context changes with ANS is highly convenient. First
the Amigo service discovery mechanism is used to
discover ANS. ANS has one main interface that allows
an application to install notification rules. A notification
rule defines in which context a notification is sent to the
application. For example, an application might define a
notification rule that notifies Maria when her kids enter
home with friends. Once this rule is set, ANS constantly
evaluates this rule. As soon as the rule turns to true
ANS notifies the application. The benefit of using ANS
is that applications do not have to care about
subscribing to and monitoring of context data. These
tasks are handled by ANS. Furthermore complex
contexts can be described conveniently by using the
defined rule language. Another feature of ANS is, that it
provides notifications based on the user’s preferences
and their current context. In order to be notified
appropriately, users can create an individual notification
profile. Based on this profile, ANS sends a notification
with an appropriate rendering of intensity. The
application receiving the ANS notification implements
the notification of the user according to the intensity,
for example the usage of an ambient light for an
ambient notification.

Architectural Design

Figure 3 shows the overall architectural design of ANS.
The implementation of ANS is based on the principles
of service oriented architecture. The service is
implemented as a web service and is based on the
standards SOAP, WSDL, XML, and UDDI. ANS has a
clear defined interface that allows to manage and use of
the service. All external services that ANS depends on
are implemented as web services, too.
Internally ANS follows a component based approach
with loose coupling between the components. The
service consists of the 5 main components
RuleManager, EventMonitor, Controller, Notifier, and
NotificationProfileManager that are introduced in the
following.

The RuleManager allows applications to manage
notification rules. Applications set rules and so specify
the contexts which shall be notified to them.

Figure 3 Architectural design of ANS.

The EventMonitor is responsible for finding and
subscribing to the required context data. It interfaces
neatly with the Context Management Service (see CMS)
that manages the handling of the context sources.
The Controller contains a rule engine that is based on
the rule engine Jess (8).
The Notifier is responsible to send notifications to
applications and users with the appropriate intensity.
The NotificationProfileManager’s task is to provide the
notifications preferences of the users. It interfaces with
the User Modeling and Profiling Service (see UMPS)
that manages these profiles.

Internally ANS works as follows. First the
RuleManager parses the rules. It extracts and relevant
context data from the condition part of the rule and tells
the EventMonitor to find and subscribe to the
corresponding context sources. After parsing each rule,
the RuleManager stores it in the rules database.
Semantically and syntactically valid rules are processed
by the Controller, which, in turn, receives event
notifications from the EventMonitor. The Controller
evaluates the rules and when a rule turns true, it checks
the action part of the rule. In the action part it is
specified which user or application is to be notified. The
Controller then invokes the Notifier to send a
notification.
Upon a request for notification, the Notifier asks the
NotificationProfileManager for the respective
notification profile. The Notifier then checks the profile
to find out how the user should be notified. In order to
get current context information about the user, the
Notifier invokes the EventMonitor. The Notifier then
evaluates the user notification profile against his current

context information and sends a notification with an
appropriate intensity.

The ANS Rule Language

Applications that want to be notified have to register
monitoring rules. The developed ANS rule language
follows the Event-Condition-Action (ECA) pattern. In
this pattern, an Event models an occurrence of interest
(e.g., a change in context); A Condition specifies a
condition that must hold prior to the execution of the
action; and an Action consists of requesting a
notification service. The ECA pattern, or sometimes
called Triggering pattern, has been widely explored in
the field of context-awareness (Henricksen and Indulska
(7), Ipina and Katsiri (6)).
When designing the ANS ECA rule language, high
attention has been paid to the following qualities:
• Expressive power: the language permits the

specification of complex event relations. It allows
the use of relational operator predicates (e.g., < , >,
=), and the use of logical connectives (e.g., AND,
OR, NOT) on conditions to build compound
conditions.

• Convenient use for application developers: It
provides high-level constructs that facilitate event
compositions.

• Extensibility: The language allows the addition of
new predicates to accommodate events being
defined on demand.

The example of the rule ‘Maria would like to be notified
when her kids enter home with friends’ would be stated
in this way:
Upon EnterTrue (Pablo.isAtHome) OR EnterTrue
(Roberto.isAtHome)
When (Pablo.isAtHome AND Pablo.withFriends) OR
(Roberto.isAtHome AND Roberto.withFriends)
Do Notify (Maria, “kids are home with friends”)

Context-Aware Notifications

User notification profiles enable ANS to notify users
with the appropriate level of intensity. Before sending a
notification to a user, the service checks the user’s
notification profile in order to determine the level of
intensity. A user notification profile defines which level
of intensity is appropriate in which user context.
Available context parameters are for example the
availability of the user that is to be notified, the location
of the user that is to be notified, and the co-presence of
other persons. The notification profiles are dynamic and
allow users to take into account additional context data,

as soon as this data becomes available in the Amigo
system.
When editing his user notification profile, a user is free
to combine the above parameters in order to specify
appropriate levels of intensity for certain situations.
Each user can individually edit his/her profile by using
UMPS, where the profiles are stored. In case the
settings are conflicting, a conflict strategy implemented
in ANS resolves the issue.
While ANS already deals with what kind of information
to transmit to users or applications, the mechanisms of
how the interaction with users should be performed is
left to dedicated user interface services that integrate
various interaction modalities common in smart home
environments such as natural speech, gestures, or
traditional graphical user interfaces.

USER INTERFACE SERVICES (UIS)

Our everyday interpersonal communication utilises
several different senses such as hearing, speaking, sight
and touch. The multimodal interaction, i.e. the
combination of different interaction modes such as
speech and gestures, starts right at our birth and it is
natural and essential part of our everyday life. Recent
development has enabled us to use multiple modalities
also in human-computer interaction, making the
communication more flexible, enjoyable and natural.
This chapter presents the User Interface Services that
provides multimodal interaction framework for the
Amigo Ambient Intelligent environment. The developed
interaction framework combines natural and flexible
end-user interfaces and communicates intelligently via
several modalities or even with multilingual capabilities
enabling the user to handle the overall home easily and
by using the most appropriate and convenient
interaction mode each time. The user interfaces
designed for Amigo support dynamic adaptation to the
users, context and devices. The User Interface Service
consists of three different modalities, namely voice
input and output, gestures and graphical user interface.
Figure 4 presents the conceptual architecture of the
User Interface Services.
User input to the system is captured using different
communication devices. Graphical User Interface can
utilise different mobile platforms such as PDA's, which
can also be used for stylus based 2D gesture input. The
concept of the GUI Service is to provide a platform
which combines every given service to build a
homogenous control interface of the environment. The
actual GUI is automatically generated by the GUI
Service exploring information provided by the services.
Therefore each service has to explain its capabilities
(functionalities) and the internal dependences. Voice IO
is realised using microphone and speaker arrays spread

around the ambient intelligent environment. In addition
to the typical speech recognition and synthesis voice
can be also used for voice activity detection, speaker
change detection and recognition, and acoustic source
localisation and tracking. Finally the 3D gestures and
infrared based pointing is captured using dedicated
wireless control device equipped with acceleration
sensors. Gestures can be used to select a control targets
from the environment and to control those with
predefined set of hand gestures. In addition to the
typical explicit control these input channels can also be
used for implicit interaction. For example audio input
can be used to identify users and to recognise the topic
of the discussion.

Applications

Multimodal
Fusion

Gesture
Service

Voice
Service

GUI
Service ...

High-Level UI
Manager

Implicit
Speech

Interactions

Modality
Advisor

GUI

Awareness
and

Notification
Service

User Modeling
and Profiling

Service

Context
Management

Service

Communication Devices

Multimodal IO

Advanced
Interaction
Services

Multi Device
Service

User Interface Service

Figure 4 Architectural Design of the User Interface
Services.

The inputs, i.e. communicative events, from different
modalities are merged by Multimodal Fusion. The aim
of the Multimodal Fusion is to combine the information
provided by the user via its communication channels
and to reduce the ambiguities and to finally resolve the
actual meaning of the user. The merged output is
delivered to the High-Level UI Manager that transmits
the communication event to the corresponding
applications. If the High-Level UI Manager doesn't
know the target application for the event, i.e. the
communicative event is ambiguous or it has no target
application High-Level UI Manager initiates a dialog to
resolve the problem. The High-Level UI Manager is
also responsible of synchronisation of the dialogue. For
example, if the user is programming the Personal Video
Recorder functions by voice the selection the user has
already made has to be also reflected in the Graphical
User Interface dialogue, thus making it possible to
switch between modalities inside the task.
Implicit Speech Interactions provides a generic
framework to facilitate the work of the application
developer who wants to develop applications that

continuously “listen to” the user and react accordingly.
Ideally, everything the user is doing (movements,
speech, gaze, etc.) that can be perceived by the system
may be potentially interpreted as an implicit interaction.
Such information perceived by the system is not directly
exploited as an implicit interaction, but it is first
included into the context; thus, the instantaneous
context continuously evolves, and when it reaches some
given state that can be interpreted as an implicit input.
The corresponding Amigo service is activated and it
may or may not react, depending on the user
preferences or other contextual parameters. In Amigo,
implicit speech inputs are considered, and the service
that handles them will mainly exploit information about
the topic of discussion of the user in specific
application-dependent situations.
The Multi Device Service and Modality Advisor assist
the Amigo applications in finding optimal compositions
of modes and devices for the given context. By
specifically addressing the uniqueness of different
modes and devices, a dynamic, re-configurable, and
context-aware composition of devices can be achieved.
The service assists in finding the optimal set of devices
and interfaces by matching the interaction
characteristics of each available device with the
properties of each so called Interaction Request an
application might formulate. Such a request might be to
present the user either privately or publicly an incoming
email, depending on who else is around. For instance, if
only family members are around, the large TV screen
might be used to display the greeting card of the
grandmother, but when strangers are around, the mobile
phone of the recipient might vibrate and the reception of
the mail might take place on the PDA screen, which is
harder to read, but obviously more private than the TV.
The User Interface Service has also support for direct
access to the modalities. In some cases applications
might want to have private access to certain modality
without using the Multimodal Fusion. For example
games usually require fast uninterrupted access to the
controller interface, thus making it feasible to keep the
communication path as short and efficient as possible.
In these cases a separate instance of the modality is used
to serve the direct request, making it possible to use the
same modality service for example in other room.
In this chapter an abstract architecture of the intelligent
user interface services was presented. The main goal of
user interface services is to provide a multimodal
interaction framework that will be user-friendly and
user-adaptable, will better support dynamic adaptation
to the context and devices and will further support more
natural implicit and explicit user interactions using
multiple modalities, such as natural language and
gestures.
The final service discussed in this paper addresses
privacy and security. Given the all-importance of
protecting private data acquired by the various sensors

deployed in a smart home, privacy & security has a
special role among the discussed services. With regard
to its pervasiveness, there is no single privacy service,
but mechanisms that other services and applications can
use to ensure privacy and security.

PRIVACY & PERSONAL SECURITY (PPS)

The role of the Privacy and Personal Security
Mechanisms is to ensure people’s personal privacy and
security for the highly personalized Amigo system. The
major challenge is to account for the implications
induced by acquiring, collecting and inferring personal
information of users in a social and perceptual
acceptable and ethical responsible way. Intelligent User
Services require the tracking and collection of
significant portions of users’ everyday activities and
interactions to compose user profiles and to model the
context in which these user behavior’s and interactions
occur. The disclosure of this private information to
other parties, whether it be friends or family, service
providers or commercial traders, in return for benefits
like receiving a desired personalized and context-aware
service or specific activities being taken care off,
induces a delicate balance that needs to be maintained
(Amigo Deliverable, 2) and protected.
Privacy and personal security issues play a role in
nearly all elements of the Amigo scenario. For example,
the following situations affect the perception of privacy
and security by users:
• Acquisition of surveillance data of users.
• Using implicit means for collecting information.
• Disclosing personal information to other people

and services: preferences, habits, lifestyles, health
information, location information, and availability.

• Storage risks: information might get lost, hidden,
stolen, attacked, or misused.

• Dependability risks: loss of convenience when the
system is not available, malfunctioning of home
appliances.

• Affecting social relationships between parents and
children, spouses, friends, social groups.

It is assumed that the Amigo system will be a multi-user
system that can be personalized and customized, such
that it:
• Generates and maintains privacy profiles,
• Enables user authentication,
• Tracks user behavior,
• Detects physical intrusions,
• Assesses situation conditions, and
• Is context-aware.
This implies that personalized mechanisms must be
designed to exploit the benefits of personalization to the
maximum while protecting user privacy. In other words,

it is crucial to keep the user in control of which data will
be collected and how they will be used.
This special role of the Privacy and Personal Security
Mechanisms requires a different design approach then
the other Intelligent User Services. The diagram in
Figure 5 shows this conceptual view.

Figure 5 Amigo Service Framework.

In Amigo, a distinction is made between how the
appropriate levels of privacy and personal security
within the Amigo Service framework can be ensured
and accomplished and what the guidelines and rules are
that can account for it.
With regard to the ‘how’, we envision in first instance a
PrivacyFilter implemented as a rule-based system. With
regard to what needs to be implemented to ensure the
user’s privacy and personal security we take an
empirical approach in which elements from the Amigo
scenario (Amigo Deliverable, 2) will be selected. These
elements provide the basis for cases that can be
implemented or simulated and exposed to users. This
user involvement is organized in a systematic and
controllable fashion as to derive guidelines that can be
represented in rules.
Since “perfect” privacy guarantees are in general hard
to provide Chen and Kotz(3), Salber et al (13), the users
of an Amigo system should be able to have the control
over their contextual information and over who may
gain access to it. The system architecture then needs to
provide user-controllable tradeoffs between privacy
guarantees and both functionality and efficiency. The
difficulty then is to be specific about what context
information should be visible to whom, and when.
The concept of privacy used for Amigo consists of a
physical, informational and social dimension. For
example, consider the situation when someone is at the
door of an Amigo home. The physical dimension is
determined by entrance rules that people maintain. The
informational dimension consists of three factors, i.e.,
information sensitivity, information receiver, and

information usage. The social dimension is determined
by interpersonal closeness and relationships.
In short, privacy is a dynamic and volatile concept,
which is subject to significant variation depending on
each individual and the current situation. To guarantee
adequate privacy protection, individual privacy settings
have to be dynamically adapted to the present context.

 Amigo service framework

 Privacy and security ‚filter’

Awareness and
notification service

Awareness and
notification service

User interface
services

Context management
services

R
ules

D
ialogues

C
ontext info

U
ser profiles

Events
U

ser action

U
ser interaction

C
ontext info

The conceptual data model is based on three concepts:
PrivacyGroup, PrivacyRules and PrivacyFilter.
PrivacyGroup is defined as a collection of users,
centered around one user, typically all combinations of
all users can compose a privacy group, including ‘none’
and ‘all’. A service can use PrivacyGroup in specific
ways. For example, from information acquired from the
Context Management Service, PrivacyGroup can
determine when the location of users is known and
where this location is, from information acquired from
the Content Storage and Distribution module in the
Base Middleware, PrivacyGroup can determine
ownership of content and from the User Modeling and
Profiling Service, user profiles can be acquired.
PrivacyRules is defined as the rules that the services
and applications have to defer to in order to warrant the
privacy conditions of the users. Aggregated reasoning
on PrivacyGroups will be conducted to prevent that
services, which might not always have sufficient
information about users and context, infringe on the
user’s privacy. ’Ground rules’ are provided for this. It
is, however, the users who control their own privacy
and decide on hiding and sharing information. This will
be modeled in PrivacyRules. Amigo aware services and
applications need to defer to all PrivacyRules.
Authentication and authorization as provided by the
Amigo Base Middleware cannot ensure personal
privacy. It can protect personal data and in this way
facilitate the protection of privacy and personal security.
Finally, the functionality that allows a service to check
an action it intends to execute against the set of
PrivacyRules can be defined as a PrivacyFilter.
The privacy mechanisms will be implemented
orthogonal to the functionality of the other Amigo
services. Since perceived privacy and security changes
and varies dependent on context and persons, the
Amigo project adopted a multifold approach based on
generating empirical evidence obtained from users in
actual situations, deriving guidelines and rules for
privacy, and providing users with means to control their
personal privacy conditions.

CONCLUSIONS

In this paper, we presented the initial Amigo intelligent
user services that allow for creating context-aware
applications for smart home environments. The
discussed composition of services facilitates both

people-oriented and system-oriented approaches. While
Amigo aware applications that integrate context
management and user modeling services are capable of
operating rather autonomously and adaptive to user and
context information, the sophisticated user interface
services as well as the awareness and notification
service are provided explicitly to keep the user in the
loop. The degree to which an application can be more
people-oriented or more system-oriented is largely
determined by the respective Amigo services it
integrates.
It is a matter of experimentation whether people- or
system-oriented approaches are more beneficial in the
real world situations of smart home environments. We
believe that a sensible mixture of both paradigms
provides the most efficient and acceptable user
experiences. The exact degree to which both approaches
should be realized will be investigated within the
Amigo project by using the intelligent user service
infrastructure as a testbed for respective user studies.
Several living laboratories that will host the Amigo
service infrastructure are already set up at partner sites.
We now work towards the first distributable suite of the
intelligent user services, so that the aforementioned user
studies can be conducted and also feedback can be
gathered from users outside the Amigo project.

ACKNOWLEDGEMENTS

The authors would like to thank all their colleagues and
co-workers from the eleven research groups involved in
the Amigo IUS work package who actively design,
implement, and test the services discussed above.
Special thanks go to Tom Broens, Christophe Cerisara,
Patricia Dockhorn Costa, Henk Eerting, Sanna Kallio,
Basilis Kladis, Remco Poortinga, Thorsten Prante,
Matthieu Quignard, Christian Ressel, Maja Stikic, Elena
Vildjiounaite and Peter Vink for their involvement in
the creation of this paper.
The Amigo project is funded by the European
Commission as an integrated project (IP) in the Sixth
Framework Programme under the contract number IST
004182.

REFERENCES

1. Amigo Project –

http:/www.hitech-projects.com/euprojects/amigo

2. Amigo Deliverable D1.2: Report on User
Requirements, Janse M. D. (ed.), IST-004182
Amigo, April 2005

3. Chen, G., Kotz, D., A Survey of Context-Aware
Mobile Computing Research. Dartmouth Computer
Science Technical Report, 2000

4. Dey, A. K., Salber, D., Abowd, G., A conceptual
framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Human-
Computer Interaction, 16, pp. 97-166, 2001.

5. Fink, J., Kobsa, A., User Modeling and User-
Adapted Interaction, 10, pp. 209-249, 2000.

6. Ipina, D., Katsiri, E., An ECA Rule-Matching
Service for Simpler Development of Reactive
Applications. Published as a supplement to the
Proc. of Middleware 2001 at IEEE Distributed
Systems Online, Vol. 2, No. 7, November 2001.

7. Henricksen, K., Indulska, J., A software
engineering framework for context-aware pervasive
computing. Proc. of the 2nd IEEE Conference on
Pervasive Computing and Communications
(Percom2004), Orlando USA, 2004.

8. Jess – the Rule Engine for the Java Platform.
Available at http://herzberg.ca.sandia.gov/jess/

9. Khedr, M., Karmouch, A., ACAN-Ah hoc Context
Aware Network. IEEE CCECE'02, Winnipeg,
Canada, 2002.

10. Nebel, I. T., Smith, B., Paschke, R., Tagungsband
der GI-Workshopwoche Lernen – Lehren – Wissen
– Adaptivitat, Universitat Karlsruhe, 327-330,
2003.

11. Papaioannou, I., Tsesmetzis, D., Roussaki, I.,
Anagnostou, M., A QoS Ontology Language for
Web-Services. Accepted for AINA 2006.

12. Rich, E., Readings in Intelligent User Interfaces.
Springer-Verlag, Berlin, Germany, 1998.

13. Salber, D., Dey, A. K., Abowd, G., The Context
Toolkit: Aiding the Development of Context-
Enabled Applications Proceedings of the 1999
Conference on Human Factors in Computing
Systems (CHI '99), May 15-20, 1999, pp. 434-441.

14. Spreitzer, M., Theimer, M., Providing location
information in a ubiquitous computing
environment. Proc of the 14th ACM Symposium on
Operating Systems Principles, (270-283),
Asheville, NC, December 1993.

15. Streitz, N. A., Röcker, C., Prante, Th., van Alphen,
D., Stenzel, R., Magerkurth, C., Designing Smart
Artifacts for Smart Environments. In: IEEE
Computer, March, 2005. pp. 41-49.

16. Vallée, M., Ramparany, F., Vercouter, L., Flexible
composition of smart device services. In: The 2005
International Conference on Pervasive Systems and
Computing(PSC-05), Las Vegas, Nevada, USA.,
June 27-30, 2005.

	INTRODUCTION
	DESIGN SPACE
	CONTEXT MANAGEMENT SERVICE (CMS)
	USER MODELING AND PROFILING (UMPS)
	Service Description
	Architectural Design
	AWARENESS AND NOTIFICATION SERVICE (ANS)
	Rapid Development of Context-Aware Applications with ANS
	Architectural Design
	The ANS Rule Language
	Context-Aware Notifications

	USER INTERFACE SERVICES (UIS)
	PRIVACY & PERSONAL SECURITY (PPS)
	CONCLUSIONS
	ACKNOWLEDGEMENTS

