Problem 11392. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria. Let the consecutive vertices of a regular convex \(n \)-gon \(P \) be denoted \(A_0, \ldots, A_{n-1} \), in order, and let \(A_n = A_0 \). Let \(M \) be a point such that for \(0 \leq k < n \) the perpendicular projections of \(M \) onto each line \(A_kA_{k+1} \) lie interior to the segment \((A_k, A_{k+1})\). Let \(B_k \) be the projection of \(M \) onto \(A_kA_{k+1} \). Show that

\[
\sum_{k=0}^{n-1} \text{Area}(\triangle(MA_kB_k)) = \frac{1}{2} \text{Area}(P).
\]

Solution, by the proposer.

For \(0 \leq k < n \), let the complex number \(z_k \) represent the point \(A_k \), and let \(z \) represent the point \(M \). Without loss of generality, we may assume that 0 represents the centroid of the polygon, and that the length of the side of \(P \) is equal to 1. Then, clearly we have \(z_k = \omega^k z_0 \) with \(\omega = \exp\left(\frac{2\pi i}{n}\right) \), and \(|z_0| |\omega - 1| = 1 \). Now, the number \(\Re\left((z - z_k)(z_{k+1} - z_k)\right) \) represents the vector \(\overrightarrow{A_kB_k} \), and \(z - z_k \) represents the vector \(\overrightarrow{A_kM} \), so the area of \(\triangle(MA_kB_k) \) is given by

\[
\text{Area}(\triangle(MA_kB_k)) = \frac{1}{2} \Im\left((z - z_k)(z_{k+1} - z_k)\right) \Im\left((z - z_k)(z_{k+1} - z_k)\right) = \frac{1}{4} \Im\left((z - z_k)^2 \omega^k (\omega - 1)^2 z_0^2\right).
\]

But,

\[
\sum_{k=0}^{n-1} (z - z_k)^2 \omega^{2k} = z^2 \sum_{k=0}^{n-1} \omega^{2k} - 2z z_0 \sum_{k=0}^{n-1} \omega^{k} + n z_0^2 = z^2 \left(\frac{\omega^{2n} - 1}{\omega^2 - 1}\right) - 2z z_0 \left(\frac{\omega^n - 1}{\omega - 1}\right) + n z_0^2 = n z_0^2,
\]

so that

\[
\sum_{k=0}^{n-1} \text{Area}(\triangle(MA_kB_k)) = \frac{1}{4} \Im\left((\omega - 1)^2 z_0^2 \sum_{k=0}^{n-1} (z - z_k)^2 \omega^{2k}\right) = \frac{n}{4} \Im\left((\omega - 1)^2 z_0^2 \sum_{k=0}^{n-1} \omega^{2k}\right).
\]

In particular, the right hand side of this equality is independant of \(z \), (in other words, it is independant of the position of \(M \).) And clearly, if \(M \) is the centroid \(O \) of \(P \), then the left hand side of the preceding equality is equal to \(\frac{1}{2} \text{Area}(P) \). This ends the proof.

My Proposal was published in AMM November 2008.