Component Simulation-based Substitutivity
Managing QoS and Composition Issues

Pierre-Cyrille Héama,b
Olga Koucharenkob
Jérôme Voinotb

a LSV CNRS/INRIA
ENS Cachan
61 av. du Président Wilson
F-94235 Cachan Cedex
pcheam@lsv.ens-cachan.fr

b INRIA/CASSIS and LIFC
University of Franche-Comté
16 route de Gray
F-25030 Besançon Cedex
{okoucharenko,jvoinot}@lifc.univ-fcomte.fr

Abstract

Several scientific bottlenecks have been identified in existing component-based approaches. Among them, we focus on the identification of a relevant abstraction for the component expression and verification of properties like substitutivity: When is it possible to formally accept or reject the substitution of a component in a composition? This paper suggests integer weighted automata to tackle this problem when considering a new factor – Quality of Service (QoS). Four notions of simulation-based substitutivity managing QoS aspects are proposed, and related complexity issues on integer weighted automata are investigated. Furthermore, the paper defines composition operators: sequential, strict-sequential and parallel compositions, bringing path costs into the analysis. New results on the compatibility of proposed substitutivity notions w.r.t. sequential and parallel composition operators are established.

Key words: Substitutivity, Component, Simulation, weighted automata, Quality of Service1

1. Introduction

This paper is dedicated to the verification of substitutivity of components modelled by integer weighted automata while considering a new factor – Quality of Service (QoS). In this context modelling and verifying both functional and non-functional properties is possible. For these verification problems, we provide new theoretical decidability results. Furthermore, the paper defines composition operators: sequential, strict-sequential and parallel compositions, bringing path costs into the analysis. We point out how compatible proposed substitutivity notions and sequential and parallel composition operators really are.

Component-based development provides significant advantages – portability, adaptability, re-usability, etc. – when developing, e.g., Java Card smart card applications or when composing Web services within Service Component Architecture (SCA). Several scientific bottlenecks have been identified in existing component-based approaches. Among them,

1This work is partially funded by the French ANR projects ARA COPS and ACI TACOS.
we focus on the identification of a relevant abstraction for the component expression and verification. When is it possible to accept or reject the substitution of a component in a composition? Moreover, with the increasing importance of QoS in the design of component-oriented applications, like Web services, it is of great interest for users and developers to be able to determine, possibly dynamically, that a Web service performs the same tasks as another possibly failing service, with comparable/higher quality.

1.1. Contributions

Most of prior and current works on component and service composition focus on either the functional aspect or the QoS aspect alone, it is very difficult to address both. This paper takes an approach of modelling components and services and QoS descriptions by integer weighted finite state automata, and studies the complexity of substitutivity of one such automaton by another.

More precisely, the present paper makes the following contributions: The first contribution is formal definitions of four – (partial) substitutivity and (partial) strong substitutivity – problems based on a simulation of automata taking path costs into account. For these substitutivity problems new decision/complexity results for different classes of integer weighted automata are presented.

The second contribution is formal definitions of composition operators: sequential, strict-sequential and parallel compositions, bringing path costs into the analysis. New results on the compatibility of proposed substitutivity notions with relation to sequential and parallel composition operators are established.

The third contribution concerns some practical issues on service and component substitutivity. We briefly situate component substitutivity w.r.t. various compositions in the context of a new type of urban, possibly driverless, vehicles. These examples illustrate why the topic is very important in practice, especially given the need to bring costs into consideration.

Notice that the first contribution was presented in [HKV08]. The second contribution is completely new. The third contribution follows and develops the examples in [HKV08].

1.2. Related Work

Weighted automata, trace-equivalence, simulations. Weighted automata – an extension of integer weighted automata – is a formalism widely used in computer science for applications in images compression [IvR99, KMT04], speech-to-text processing [MPR02, MPR05, BGW01] or discrete event systems [Gau95]. These large application areas make them intensively studied from the theoretical point of view [Krc04, Web94, HIJ02, KLMP04]. See [BR88] for more detail on weighted automata.

To compare processes or components, trace equivalences are in general not expressive enough and there are stronger equivalence relations permitting to consider deadlocks, livelocks, branching behaviours, causality, etc. Among them, the strong bisimulation equivalence by Milner [Mii80] and Park [Par81] is widely used in computer science because of its numerous advantages: It preserves branching behaviours and, consequently, most of the dynamic properties; there is a link between the strong bisimulation and modal logics [HM85]; this is a congruence for a number of composition operators, e.g. parallel composition, prefixing by an action, etc. The reader is referred to the survey [vG01] on simulation-preorder relations.

Bisimulation relations over weighted automata were investigated in [BK03]. In that paper authors consider that a max/plus automaton simulates another one if it can perform at the same moment the same action with the same weight. Our main purpose is to handle QoS aspects which are global notions over components. This is why in our paper, unlike [BK03], weights are related to successful paths of automata.
In the recent survey [tBBG07], the authors pointed out that, let us quote, “automata-based models are increasingly being used to formally describe, compose, and verify service compositions”. The role of automata-based analysis is also emphasised in [BABC+09] for distributed components (Fractal, GCM and ProActive components). The main advantage of numerous works on component/service composition based on the use of automata or Labeled Transition Systems (LTSs) (see for instance [FUMK07, MR08]) is that their formal basis allows automatic tool support. However, extending automata (finite state automata, timed automata, I/O automata, team automata, etc.) with costs makes various verification problems undecidable in general [BBBR07]. In this framework, the present work defines four component/service substitutivity notions based on simulation relations of integer weighted automata, and provides constructive proofs for deciding substitutivity verification problems over those automata. Moreover, the article shows that the proposed notions are compatible with sequential and parallel composition operators which are essential for building new applications.

Modelling of QoS and of non functional properties of systems. The term non-functional requirement has been in use for more than 20 years, but there is still no consensus in the software engineering community on what non-functional requirements are, and on how we should elicit, document, and validate them [Gli07]. On the other hand, there is a unanimous consensus that non-functional requirements and properties are important and are critical for the success of a software development project. Hundreds of works exist based on the well-known quality models in [MRW77, BBK+78] and those developed since 1977. In all these works, non-functional requirements and properties are a significant part of the software quality. A synthesis and a classification of existing requirements for the description of a component in order to use it in a component-based approach is in [CCH+07].

Within the SCA initiative\(^2\), a recent set of specifications describes a language-neutral model for building applications and systems using a Service-Oriented Architecture. SCA is claimed to be extendable and user friendly with:

- multiple implementation types including Java, C++, BPEL, PHP, Spring, etc.
- multiple bindings including Webservice, JMS, EJB, JSON RPC, etc.
- multiple hosting environments such as Tomcat, Jetty, Geronimo, OSGI, etc.

The policy framework provided with SCA supports specifications of constraints, capabilities and QoS expectations, from component design to concrete deployment.

Recently, minimum-cost delegation in service composition through the integration of existing services was studied in [GIRS08]. In this work, services are modelled as finite state machines augmented with linear counters, and service requirements are specified in a sequence form. Activity processing costs are integrated into the delegation computation, and promising polynomial time delegation techniques are developed. The main difference between this study and ours is that our goal is to verify if a service/component can be substituted by another one w.r.t. sequential and parallel compositions, while theirs is to compute a way to delegate desired actions to available services. Their automated composition synthesis task is closely related to planning.

Verifying the substitutivity of components and Web services. There are numerous works dealing with component substitutivity or interoperability [SCHS07, CVZ07, CHS06, BV06, Bra03]. Our work is close to that in [CVZ07], where the authors addressed component substitutability using equivalences between component-interaction automata, which are defined

\(^2\)The first official specification of SCA providing hierarchical components is the 1.0 version, published in March 2007.
with respect to a given set of observable labels. In the present work, in addition to a set of labels, path costs are taken into account when comparing integer weighted automata.

In [BCH05, BCHS07], the authors defined three substitutivity notions over interface automata modelling Web services. First two notions deal with signatures and propositional constraints on the consistency between various method calls and return values. They are stateless and cannot be handled in our framework. The third substitutivity notion on protocol interfaces is based on a simulation relation over labelled transition systems like in the present paper. It is shown to be polynomial time decidable but it does not manage costs.

Different solutions have been proposed to allow taking QoS into account while specifying Web services and their compositions [LKD+03, Tia05, d’A06, BRL07, HKV07]. In [HKV07] the substitutivity problem has been investigated for the trace equivalence over integer weighted automata.

In [LMW07, SW09] the authors studied the correct interaction between services modelled by open nets (uncoloured Petri nets with interfaces). The behaviour semantics of a set of open nets is given by annotated automata. These works on the correct interaction between services have been mainly inspired by the notion of soundness for workflow nets [vdA98]. Extending an annotated automaton with global constraints over its states proposed in [SW09] gives an operating guideline to characterise all correctly interacting partners of a service. Then simulation relations are used for deciding service composition and substitutability.

In [LVO09] the authors compared and evaluated two different Petri net semantics for BPEL. Both implemented semantics abstract from data (messages and the content of variables). The properties that can be verified on the resulting models are (based on) soundness [vdA98], relaxed soundness [DvdA04], and also temporal logic properties.

The recent work in [CCSS08] is dedicated to the verification of a dynamic substitutability problem: can a component replace another component during an execution? The verification approach is based on recent model-checking techniques. Notice that action costs are not taken into account in [CCSS08]. In that setting, i.e. without considering costs, their substitutivity notion is stronger than the notion defined in the present paper.

The integration of (abstractions of) QoS properties into component models is supported several component-based approaches and tools, such as KLAPER [GMRS07], Palladio [BKR07] and RoboCop [FEHC02]. As these component models do not define any refinement notion, they are clearly distinguishable from our work. However, these models already provide very well validated abstractions on performance. Let us notice that the protocol for using a component is often context-dependent. It is due to automated component adaptation and architectural dependency analysis. Parametric contracts [Reu03, RHH05] for software components allow addressing this aspect and were successfully used for automated protocol adaptation and quality of service prediction.

Finally, in [MSK05, FM07] authors show how to use automata and concurrent logic to model component-based systems. In these works, finite automata are derived from UML descriptions and synchronisations are performed using interface constraints.

1.3. Layout of the paper

The remainder of the paper is organised as follows. A motivating example is given in Sect. 2. Section 3 recalls integer weighted automata and defines four simulation-oriented substitutivity notions based on them. The verification issues on components substitutivity are presented in Sect. 4 and 5. Section 6 puts the substitutivity problems in the composition context. Section 7 exposes how the theoretical results would be exploited in practice. Finally, Section 8 concludes and gives some prospectives.
2. Motivating Example: Localisation Component

This section quickly presents the substitutivity problem on a characteristic example. It is inspired from a real case study in the land transportation domain.

Context. The TACOS project\(^3\) concerns the development of a new type of urban vehicles with new functionalities and services. The project follows the Cybercar concept, a public transport system with fully or partially automated driving capabilities, aimed at replacing the private car. One of the major cornerstones is the development, the validation and the certification of vehicles, like Cristal or Cycab.

A positioning system is a critical part of a land transportation system. Many positioning systems have been proposed over the past few years. Among them, let’s quote GPS, GALILEO or GLONASS positioning systems which belong to the Global Navigation Satellite Systems (GNSS, for short). However, currently only some mobile terminals (laptops, PDAs, cell phones, etc.) are embedded with GNSS receivers. In addition, positioning systems are often dedicated to a particular environment; e.g., the GNSS systems generally do not work indoors. To solve these problems, numerous alternatives relying on different technologies, have arisen (see [SE06, EFPC04, HNS03, RMG05, OG00] for more details on issues related to positioning systems).

The present section and Section 7 briefly describe how such heterogeneous positioning systems, encapsulated as components, called localisation components, are used together to provide positioning data satisfying some non functional requirements. Note that positioning data can be given in different formats. The most used format is the geographic one, like that usually obtained from a GPS positioning system. But other systems give semantic location data, like 'You are near the station Place Stanislas'.

In this framework, let us consider the two following positioning components where Wireless networks are exploited to extend the use of the GNSS. Their abstract representations are given by finite automata in Fig. 1. The question, the positioning component user is interested in, is: 'When is it possible to accept or reject the substitution of a component by another component?'

- Component C1 works as follows. Action \(a\) encodes that C1 receives a positioning request; at this stage, C1 performs either only action \(b_1\) or both \(b_1\) and \(b_2\) depending on the (abstracted) value passed through the \(a\) request. The action \(b_1\) corresponds to a geographic location computing where as \(b_2\) encodes a semantic location computing.

\(^3\)The French National Research Agency TACOS project, ANR-06-SETI-017 [http://tacos.loria.fr].
The abstracted value may depend on an environment where the available power or the power consumption must be taken into account/reduced. For example, once the geographic location obtained, a vehicle whose available power is not enough to reach the next station because of a critical environment, must compute semantic location data to offer to its passengers. Then C1 performs the action c to acknowledge that its positioning task is successfully executed.

- Component C2 works similarly but after having done first b_1, it can perform actions b_1 or b_2 as many times as it is required. For example, depending on the speed of the vehicle, the localisation system must give the position more or less frequently.

Obviously, the C1 component can be functionally substituted by C2. Furthermore, when considering, e.g., energy costs over components represented by finite automata C3 and C4 in Fig. 2, the cost of each action is put on each transition.

For both C3 and C4, receiving a positioning request a costs 1 energy unit and performing c costs 3 energy units. However, for C3 each action b_1 and b_2 costs 2 energy units. For C4, performing the b_1 action costs only 1 energy unit but all b_2 actions cost 4 energy units.

The intuition behind this modelling is as follows. C3 has a low-cache memory allowing it to locally compute actions b_1 and b_2. C4 has a high performance low-cache memory that allows it to locally compute action b_1 with a cost of 1 energy unit. C4 also has a local hard drive that makes b_2 computations possible. However, reading and writing on hard drives has a high energy cost of 4 energy units. In this situation, we do not want to say that C4 can substitute C3 since performing ab_1b_2c on C3 has the cost of 8 energy units whereas the same sequence of actions costs 9 energy units on C4.

3. Simulation-based Component Substitutivity

3.1. Theoretical Background

In this paper, Σ denotes a finite set of actions. We first introduce the notion of integer weighted automata. To simplify the presentation the results are given for integer weighted automata but can be easily extended to any weights in a semi-ring.

Definition 1. A finite integer weighted automaton A over Σ is a quintuplet $A = (Q, \Sigma, E, I, F)$

where Q is the finite set of states, $E \subseteq Q \times \Sigma \times \mathbb{Z} \times Q$ is the set of transitions, $I \subseteq Q$ is the set of initial states, and $F \subseteq Q$ is the set of final states. Finite integer weighted automata are often simply called automata in the sequel.
Figure 3 gives two examples of finite integer weighted automata. Initial states are represented with an input arrows and final states with a double circle.

Notice that there is a restriction on E: for every action a, every pair of states p, q, there exists in E at most one transition of the form (p, a, c, q), also written $p \xrightarrow{a,c} A q$. Now we formally define an execution of a integer weighted automaton and related notions.

A partial execution or a path of a finite integer weighted automaton A is a sequence $\pi = (p_0, a_0, c_0, q_0), (p_1, a_1, c_1, q_1), \ldots, (p_n, a_n, c_n, q_n)$ of transitions of A such that for every $0 \leq i < n$, $q_i = p_{i+1}$. If we add the conditions: p_0 is an initial state, q_n is a final state, then we call π an execution or a successful path. The trace/label $tr(\pi)$ of the (partial) execution π is the word $a_0 a_1 \ldots a_n$, and the cost of the (partial) execution π is the sum of the c_i's: $\text{cost}_A(\pi) = \sum_{i=0}^{n} c_i$. For instance, $(1, a, 0, 1), (1, a, 0, 1), (1, b, 1, 2), (2, a, 2, 1)$ is a successful path of A_{exe1}, whose trace is $aaba$ and whose weight is $0 + 0 + 1 + 2 = 3$.

A state p of an integer weighted automaton is accessible/reachable (resp. co-accessible/co-reachable) if there exists a path from an initial state to p (resp. from p to a final state). For instance, in the automaton depicted in Fig. 10, the state 2,3 is not accessible. Basically, given A, $L(A)$ denotes its set of execution traces.

An automaton A is trim if its states are all both accessible and co-accessible. It is well known that for every automaton A, there exists a trim automaton with the same set of successful executions. Moreover, computing this trim automaton can be done in polynomial time. For instance, the trim automaton in Fig. 11 is obtained from the automaton in Fig. 10.

An automaton A is finitely ambiguous if there exists a positive integer k such that for every word w there exists at most k successful paths in A labelled by w. For example, the automaton A_{exe2} is finitely ambiguous whereas the automaton A_{exe1} is not: the word $ba^n b$ is accepted by n different successful paths, depending when the transition from 2 to 1 is fired.

Definition 2. Let $A_1 = (Q_1, A, E_1, I_1, F_1)$ and $A_2 = (Q_2, A, E_2, I_2, F_2)$ be two automata. A binary relation $\preceq_{A_1,A_2} \subseteq Q_1 \times Q_2$ is a simulation if $(p_1, p_2) \in \preceq_{A_1,A_2}$ implies, for all a in A and all c_1 in Q,

i) for every $q_1 \in Q_1$, if $(p_1, a, c_1, q_1) \in E_1$ then there exist $q_2 \in Q_2$ and $c_2 \in Q$ such that $(p_2, a, c_2, q_2) \in E_2$ and $(q_1, q_2) \in \preceq_{A_1,A_2}$, and

ii) if p_1 is final, then p_2 is final too.

If there is no ambiguity on A_1 and A_2, we just say that $p_2 \preceq_{A} \text{ simulates } p_1$, written $p_1 \preceq \ p_2$, when there is a simulation containing (p_1, p_2). It is easy to see that the largest simulation on $Q_1 \times Q_2$ exists. To simplify the notations, the largest simulation on $Q_1 \times Q_2$ is also denoted by \preceq_{A_1,A_2}.
The above relation is extended to paths of A_1 and A_2 in the following way: an execution π_2 of $A_2 \preceq$ simulates an execution π_1 of A_1 if and only if they have the same label (and consequently the same length) and for every i, $\pi_1[i] \preceq \pi_2[i]$. Finally, we write $A_1 \preceq A_2$ if for every co-accessible initial state i_1 of A_1 there exists an initial state i_2 of A_2 such that $i_1 \preceq i_2$. For our example in Sect. 2, it is easy to see that $C3 \preceq C4$.

3.2. Modelling Substitutivity

A problem occurring while managing components/services is to determine that a component/service performs the same tasks as another possibly failing service, with comparable or higher quality. More formally, for two Web services modelled by their integer weighted automata A_1 and A_2, the problem is to decide whether A_2 can have the same behaviour as A_1 with a similar or higher quality. To address this problem, four notions of simulation-based substitutivity managing QoS aspects are proposed in this section.

The notion of substitutivity means that a service S_1 can be substituted by a service S_2 if S_2 has a way to act as S_1 and the cost of this way is comparable or better that the cost in S_1. Intuitively, the substitutivity is an existential notion: for each sequence of actions that can be done by S_1, there exists in S_2 an equivalent sequence of actions with a smaller cost.

The notion of strong substitutivity means that a service S_1 can be substituted by a service S_2 if S_2 has a way to act as S_1, and whatever the way chosen by S_2 to act as S_1 is, its quality is similar or higher. Intuitively, the strong substitutivity notion requires a stronger universal quantification ensuring that not only S_2 can do better that S_1, but that it will always do better.

Substitutivity Problem
Input: Two automata A_1 and A_2.
Output: True if for every successful path π_1 of A_1 there exists a successful path π_2 of A_2 such that $\pi_1 \preceq \pi_2$ and $\text{cost}_{A_2}(\pi_2) \leq \text{cost}_{A_1}(\pi_1)$, false otherwise.

We write $A_1 \sqsubseteq A_2$ when A_1 and A_2 satisfy the substitutivity problem.

Strong Substitutivity Problem
Input: Two automata A_1 and A_2.
Output: True if for every successful path π_1 of A_1 there exists a successful path π_2 of A_2 such that $\pi_1 \preceq \pi_2$ and for every π'_2 of A_2 such that $\pi_1 \preceq \pi'_2$, $\text{cost}_{A_2}(\pi'_2) \leq \text{cost}_{A_1}(\pi_1)$, false otherwise.

We write $A_1 \sqsubseteq^{st} A_2$ when A_1 and A_2 satisfy the strong substitutivity problem.

It is sometime fruitful to compare successful executions costs only on subtraces. This leads to the following partial substitutivity problems that are similar to the ones above. For these problems, we want to compare parts of executions, not paths that cannot be related to a successful path. Consequently, automata are required to be trim, and comparisons are done for all paths, not only for successful paths.

Partial Substitutivity Problem
Input: Two trim automata A_1 and A_2.
Output: True if for every path π_1 of A_1 there exists a path π_2 of A_2 such that $\pi_1 \preceq \pi_2$ and $\text{cost}_{A_2}(\pi_2) \leq \text{cost}_{A_1}(\pi_1)$, false otherwise.

We note $A_1 \sqsubseteq_p A_2$ when A_1 and A_2 satisfy the partial substitutivity problem.
Partial Strong Substitutivity Problem

Input: Two trim automata A_1 and A_2.

Output: True if for every path π_1 of A_1 there exists a path π_2 of A_2 such that $\pi_1 \preceq \pi_2$ and for every π'_2 of A_2 such that $\pi_1 \preceq \pi'_2$, $\text{cost}_{A_2}(\pi'_2) \leq \text{cost}_{A_1}(\pi_1)$, false otherwise.

We write $A_1 \sqsubseteq_{\mathfrak{ps}^S} A_2$ when A_1 and A_2 satisfy the partial strong substitutivity problem.

Notice that in the above definitions we choose that $\text{cost}(\pi_2) \leq \text{cost}(\pi_1)$ modelling that the lower is the cost the better is the service, what is intuitive for connection time or financial cost. One can give a dual definition if the lower is the cost the worse is the service by changing $\text{cost}(\pi_2) \leq \text{cost}(\pi_1)$ into $\text{cost}(\pi_2) \geq \text{cost}(\pi_1)$. All notions, algorithms, etc. described in this paper may be trivially adapted to this dual definition. In order to not overload the reader, we do not consider that case.

We end this section by recalling some results on decision procedures for finite integer weighted automata.

Theorem 3. Given two integer weighted automata A_1 and A_2, it is

- **undecidable to test whether** for every $u \in L(A_1)$, $\text{cost}_{A_1}(u) \leq \text{cost}_{A_2}(u)$ \cite{Kro94}; the same problem is decidable if A_1 and A_2 are both finitely ambiguous \cite{HIJ02, Web94},

- **undecidable to test whether** for every $u \in L(A_1)$, there exists an execution π of label u in A_1 such that $\text{cost}_{A_1}(\pi) \geq 0$ (resp. $\text{cost}_{A_1}(\pi) \leq 0$) \cite{Kro94},

- **decidable in polynomial time to test whether** for every $u \in L(A_1)$, $\text{cost}_{A_1}(u) \leq \text{cost}_{A_2}(u)$ if A_1 and A_2 are both finitely ambiguous \cite{HIJ02, Web94},

- **decidable in polynomial time to test whether** A_1 is finitely ambiguous \cite{WS91}.

- **PSPACE-complete to decide whether** $L(A_1) \subseteq L(A_2)$ \cite{AHU74, BJ06}.

4. Strong Substitutivity Problems

This section provides decidability results for the strong substitutivity and the partial strong substitutivity problems.

Lemma 4. One has $A_1 \preceq A_2$ if and only if for every successful path π_1 of A_1 there exists a successful path π_2 of A_2 such that $\pi_1 \preceq \pi_2$.

Proof. Assume first that for every successful path π_1 of A_1 there exists a successful path π_2 of A_2 such that $\pi_1 \preceq \pi_2$. Let i_1 be a co-accessible state of A_1. By definition of co-accessibility, there exists a successful path π_1 in A_1 starting from i_1. By hypothesis, there exists a successful path π_2 of A_2 such that $\pi_1 \preceq \pi_2$. Therefore, $\pi_1[1] \preceq \pi_2[1]$. But $\pi_1[1] = i_1$ and since π_2 is a successful path, $\pi_2[1]$ is an initial state of A_2. Consequently, $A_1 \preceq A_2$.

Assume now that $A_1 \preceq A_2$. Let π_1 be a successful path of A_1. Since $\pi_1[1]$ is an initial state and since $A_1 \preceq A_2$, there exists an initial state q_1 in A_2 such that $\pi_1[1] \preceq q_1$. Therefore, if we denote by $\pi_1[1, a_1, c_1, \pi_1[2]]$ the first transition of π_1, there exists a state q_2 in A_2 and $d_1 \in \mathbb{Z}$ such that (q_1, a_1, d_1, q_2) is a transition of A_2 and $\pi_1[2] \preceq q_2$. Iterating this construction, one can, by a direct induction, build a successful path π_2 of A_2 such that $\pi_1 \preceq \pi_2$, which concludes the proof. \hfill \square

Theorem 5. The strong substitutivity problem is P-complete.

Proof. Let $A_1 = (Q_1, A, E_1, I_1, F_1)$ and $A_2 = (Q_2, A, E_2, I_2, F_2)$ be two automata. We denote by B the automaton (Q, A, E, I, F) where
- \(Q = \{(q_1, q_2) \in Q_1 \times Q_2 \mid q_1 \preceq q_2\} \),
- \(E = \{((p_1, p_2), a, c, (q_1, q_2)) \mid (p_1, a, c_1, q_1) \in E_1, (p_2, a, c_2, q_2) \in E_2, c = c_1 - c_2, a \in A\} \),
- \(I = (I_1 \times I_2) \cap Q \) and \(F = (F_1 \times F_2) \cap Q \).

We claim that \(A_1 \sqsubseteq_{st} A_2 \) if and only if \(A_1 \preceq A_2 \) and for every successful path \(\pi \) of \(B \), \(\text{cost}_B(\pi) \geq 0 \).

(\(\Rightarrow \)) Assume that \(A_1 \sqsubseteq_{st} A_2 \). By Lemma 4, for every successful path of \(A_1 \) there exists an \(\preceq \)-related path in \(A_2 \). Thus \(A_1 \preceq A_2 \). Consider now a successful path \(\pi \) in \(B \),

\[
\pi = (p_0, a_1, \alpha_1, p_1, \alpha_2, p_2, \ldots, p_{n-1}, a_n, \alpha_n, p_n).
\]

By definition of \(B \), there exist \(p_0, p_1, \ldots, p_n \) states of \(A_1 \), \(q_0, q_1, \ldots, q_n \) states of \(A_2 \), integers \(c_1, c_2, \ldots, c_n, d_1, d_2, \ldots, d_n \) such that

- \(\pi_1 = (p_0, a_1, c_1, p_1), (p_1, a_2, c_2, p_2), \ldots, (p_{n-1}, a_n, c_n, p_n) \) is a successful path in \(A_1 \),
- \(\pi_2 = (q_0, a_1, d_1, q_1), (q_1, a_2, d_2, q_2), \ldots, (q_{n-1}, a_n, d_n, q_n) \) is a successful path in \(A_2 \),
- for every \(1 \leq i \leq n \), \(\alpha_i = c_i - d_i \),
- for every \(0 \leq i \leq n \), \(p_i \preceq q_i \).

Thus, one has \(\pi_1 \preceq \pi_2 \). Therefore, since \(A_1 \) and \(A_2 \) satisfy the strong substitutivity problem, the following inequality holds:

\[
\sum_{i=1}^{n} d_i \leq \sum_{i=1}^{n} c_i.
\]

Consequently, \(\text{cost}_B(\pi) = \sum_{i=1}^{n} \alpha_i \geq 0 \).

(\(\Leftarrow \)) Assume now that \(A_1 \) and \(A_2 \) satisfy \(A_1 \preceq A_2 \) and for every successful path \(\pi \) of \(B \), \(\text{cost}_B(\pi) \geq 0 \).

Since \(A_1 \preceq A_2 \), by Lemma 4, for every successful path in \(A_1 \) there exists a \(\preceq \)-related successful path in \(A_2 \).

Finally, consider two successful paths

\[
\pi_1 = (p_0, a_1, c_1, p_1), (p_1, a_2, c_2, p_2), \ldots, (p_{n-1}, a_n, c_n, p_n)
\]
in \(A_1 \) and

\[
\pi_2 = (q_0, a_1, d_1, q_1), (q_1, a_2, d_2, q_2), \ldots, (q_{n-1}, a_n, d_n, q_n)
\]
in \(A_2 \) such that \(\pi_1 \preceq \pi_2 \).

By definition there exists an successful path \(\pi \) in \(B \),

\[
\pi = (p_0, a_1, \alpha_1, p_1, \alpha_2, p_2, \ldots, p_{n-1}, \alpha_n, p_n).
\]
such that

- for every \(1 \leq i \leq n \), \(\alpha_i = c_i - d_i \),
- for every \(0 \leq i \leq n \), \(p_i \preceq q_i \) and \(p_i \preceq q_i \).
Moreover, by hypotheses, one has \(\text{cost}_B(\pi) \geq 0 \):

\[
\text{cost}(\pi) = \sum_{i=1}^{n} \alpha_i \geq 0.
\]

Consequently, \(\sum_{i=1}^{n} d_i \leq \sum_{i=1}^{n} c_i \).

It follows that \(\text{cost}_{A_2}(\pi_2) \leq \text{cost}_{A_1}(\pi_1) \), proving the claim.

Deciding whether \(A_1 \preceq A_2 \) is known to be P-complete [SJ01, SJ05]. Now deciding whether for every successful path \(\pi \) of \(B \), \(\text{cost}_B(\pi) \geq 0 \) is a basic polynomial problem on weighted graphs which can be solved for instance by Bellman-Ford’s algorithm.

The P-completeness is trivially obtained using the claim on automata with nil weights and the P-completeness of testing whether \(A_1 \preceq A_2 \).

\[\Box\]

Theorem 6. *The partial strong substitutivity problem is P-complete.*

Proof. Let \(A_1 \) and \(A_2 \) be two trim automata. Let \(B \) be the automaton constructed as in the proof of Theorem 5. We claim that \(A_1 \sqsubseteq_{sp} A_2 \) if and only if \(A_1 \preceq A_2 \) and if every transition of \(B \) has a positive weight.

The proof is quite similar to the one of Theorem 5: if \(A_1 \) and \(A_2 \) satisfy the partial strong substitutivity problem, then using the property on paths of length 1, each transition of \(B \) has to be positively weighted. Conversely, if every transition of \(B \) has a positive weight, it is clear by a direct induction on paths lengths, that \(A_1 \) and \(A_2 \) satisfy the partial strong substitutivity problem.

The P-completeness is also trivially obtained using the claim on automata with nil weights and the P-completeness of testing whether \(A_1 \preceq A_2 \).

\[\Box\]

5. Substitutivity Problems

This section provides decidability results for the substitutivity and the partial substitutivity problems.

Theorem 7. *The substitutivity problem is polynomial time decidable if \(A_2 \) is finitely ambiguous.*

Proof. Let \(A_2 = (Q_2, \Sigma, E_2, I_2, F_2) \) a finitely ambiguous integer weighted automaton and \(A_1 = (Q_1, \Sigma, E_1, I_1, F_1) \) be a integer weighted automaton. Set \(A_3 = (Q_1 \times Q_1, \Sigma \times Q_1, I_1, F_1) \) and \(A_4 = (Q_2, \Sigma \times Q_1 \times Q_1, E_4, I_2, F_2) \) where:

- \(E_3 = \{ (p, [a, p, q], c, q) \mid (p, a, c, q) \in E_1 \} \),
- \(E_4 = \{ (p, [a, r, s], c, q) \mid (p, a, c, q) \in E_2, \exists x \in \mathbb{Z}, (r, a, x, s) \in E_1, r, s \in Q_1 \text{and } r \preceq p \text{ and } s \preceq q \} \).
Notice that A_3 is unambiguous and that A_4 is finitely ambiguous. Indeed, if $u = [a_1, q_1, q_2][a_2, q_2, q_3] \ldots [a_n, q_n, q_{n+1}]$ is accepted by A_3, then there is a unique execution $(q_1, a_1, c_1, q_2) \ldots (q_n, a_n, c_n, q_{n+1})$ labelled by u because of restriction on E in Sect. 3. Now assume that A_2 is ℓ-ambiguous and that the word $u = [a_1, q_1, q_2][a_2, q_2, q_3] \ldots [a_n, q_n, q_{n+1}]$ is accepted by A_4. Since there are at most ℓ executions in A_2 accepting $a_1a_2 \ldots a_n$, there is at most ℓ executions in A_4 accepting u. Thus A_4 is finitely ambiguous.

Let $B = A_3 \times (-A_4)$, where $-A_4$ is obtained from A_4 by multiplying the weight of each transition by -1.

We claim that $A_1 \subseteq A_2$ if and only if $A_1 \preceq A_2$ and for every $u \in L(B)$, there exists an execution π in B such that $\text{cost}_B(\pi) \geq 0$.

(\Rightarrow) Assume first that $A_1 \subseteq A_2$. Then $A_1 \preceq A_2$. Now let $u \in L(B)$.

By definition of the product, one also has $u \in L(A_3)$. Consequently, there exists an execution π_3 in A_3 of label u of the form

$$\pi_3 = (q_1, [a_1, q_1, q_2], c_1, q_2), (q_2, [a_2, q_2, q_3], c_2, q_3) \ldots (q_n, [a_n, q_n, q_{n+1}], c_n, q_{n+1}).$$

Consequently, by construction of A_3,

$$\pi_1 = (q_1, a_1, c_1, q_2), (q_2, a_2, c_2, q_3) \ldots (q_n, a_n, c_n, q_{n+1})$$

is an execution in A_1.

Since $A_1 \subseteq A_2$, there exists an execution π_2 in A_2 of label $a_1a_2 \ldots a_n$ such that

$$\text{cost}_{A_2}(\pi_2) \leq \text{cost}_{A_1}(\pi_1) \quad \text{and} \quad \pi_1 \preceq \pi_2. \quad (1)$$

Set

$$\pi_2 = (p_1, a_1, d_1, p_2), (p_2, a_2, d_2, p_3) \ldots (p_n, a_n, d_n, p_{n+1}).$$

Now, by construction of A_4,

$$\pi_4 = (p_1, [a_1, q_1, q_2], d_1, p_2), (p_2, [a_2, q_2, q_3], d_2, p_3) \ldots (p_n, [a_n, q_n, q_{n+1}], d_n, p_{n+1})$$

is an execution of A_4. Since $\text{cost}_{A_2}(\pi_2) = \text{cost}_{A_4}(\pi_4)$ and $\text{cost}_{A_1}(\pi_1) = \text{cost}_{A_4}(\pi_3)$ and by (1), the execution π in B corresponding to π_3 and π_4 has label u and a positive cost.

(\Leftarrow) Let assume now that A_1 and A_2 satisfy $A_1 \preceq A_2$ and for every $u \in L(B)$, there exists an execution π in B such that $\text{cost}_B(\pi) \geq 0$.

Let

$$\pi_1 = (q_1, a_1, c_1, q_2), (q_2, a_2, c_2, q_3) \ldots (q_n, a_n, c_n, q_{n+1})$$

be an execution of A_1. By construction of A_3, one has in A_3 the following execution

$$\pi_3 = (q_1, [a_1, q_1, q_2], c_1, q_2), (q_2, [a_2, q_2, q_3], c_2, q_3) \ldots (q_n, [a_n, q_n, q_{n+1}], c_n, q_{n+1}).$$

Consequently, since $A_1 \preceq A_2$, there exists a successful path π_4 in A_4 such that $\pi_3 \preceq \pi_4$.

It follows that $u = [a_1, q_1, q_2][a_2, q_2, q_3] \ldots [a_n, q_n, q_{n+1}]$ is in $L(B)$. By hypothesis, there exists an execution π in B of label u such that

$$\text{cost}_B(\pi) \geq 0. \quad (2)$$

Let π'_3 and π'_4 be the corresponding executions of respectively A_3 and A_4 corresponding to π. Using (2), one has:

$$\text{cost}_{A_4}(\pi'_4) \leq \text{cost}_{A_3}(\pi'_3).$$
Therefore, since \(A_3 \) is unambiguous, \(\pi_3 = \pi'_3 \) and one has:

\[
\text{cost}_{A_4}(\pi'_4) \leq \text{cost}_{A_3}(\pi_3). \tag{3}
\]

Set

\[
\pi_4 = (p_1, [a_1, q_1, q_2], d_1, p_2), (p_2, [a_2, q_2, q_3], d_2, p_3) \ldots (p_n, [a_n, q_n, q_{n+1}], d_n, p_{n+1}).
\]

By construction of \(A_4 \), there exists an execution \(\pi_2 \) of \(A_2 \) of the form:

\[
\pi_2 = (p_1, a_1, d_1, p_2), (p_2, a_2, d_2, p_3) \ldots (p_n, a_n, d_n, p_{n+1}).
\]

Since \(\text{cost}_{A_4}(\pi_4) = \text{cost}_{A_2}(\pi_2) \) and by (3) one has:

\[
\text{cost}_{A_4}(\pi_2) \leq \text{cost}_{A_3}(\pi_3).
\]

Since by construction \(\pi_2 \preceq \pi_1 \), the proof of the claim is completed.

This finishes the proof of the theorem, the polynomial time decidability resulting from Theorem 3. \(\square \)

Theorem 8. The partial substitutivity problem is decidable in polynomial time.

Proof. Let \(A_1 \) and \(A_2 \) be two trim automata. We claim that automata \(A_1 \sqsupseteq_p A_2 \) if for every transition \((p_1, a, c_1, q_1)\) of \(A_1 \) there exists a transition \((p_2, a, c_2, q_2)\) of \(A_2 \) such that \(c_2 \leq c_1 \), \(p_1 \leq p_2 \) and \(q_1 \preceq q_2 \). Indeed, if \(A_1 \sqsupseteq_p A_2 \) then, using the property on paths of length 1, one has the desired result. Conversely, if for every transition \((p_1, a, c_1, q_1)\) of \(A_1 \) there exists a transition \((p_2, a, c_2, q_2)\) of \(A_2 \) such that \(c_2 \leq c_1 \), \(p_1 \leq p_2 \) and \(q_1 \preceq q_2 \), a direct induction on paths lengths shows that \(A_1 \sqsupseteq_p A_2 \).

Computing relation \(\preceq \) can be done in polynomial time. Next, it suffices to check the above property by a simple walk of the transitions list. \(\square \)

6. Substitutivity and Composition

In this section we put the substitutivity problems introduced in this paper in the composition context. We define three natural composition operators: sequential, strict-sequential and parallel compositions. To motivate composition operators, let us mention ATP rules formalising BPEL in [MR08], in discrete-time. Another example comes from applications where CSP controllers are used for B machines modelling the components. Indeed, in CSP\|B approach, the CSP sequential and parallel composition operators are allowed [ET07] to control B machines. A lot of process algebraic approaches allow such composition operators.

In addition to these well-known operators, we consider the strict sequential composition operator allowing to observe when the control goes from the first component to the second one. This operator is useful, e.g., for the architectural description of the composite Fractal components [BABC+09]. Notice also that our parallel composition operator is the same as the operator studied in [CCSS08], but in addition our operator handles action costs.

We demonstrate that considering path costs when verifying simulation relations in a composition manner, does have a cost: some (but not all) substitutivity notions introduced in this paper are not compatible with several composition operators. New positive composition results are also provided.
6.1. Substitutivity and Sequential Composition

Definition 9. Let $A_1 = (Q_1, A_1, E_1, I_1, F_1)$ and $A_2 = (Q_2, A_2, E_2, I_2, F_2)$ be two integer weighted automata. The sequential composition of A_1 and A_2, denoted $A_1;A_2$, is the automaton $A_12 = (Q_{12}, A_{12}, E_{12}, I_{12}, F_{12})$ where

- $Q_{12} = \{ (p_1, p_2) \mid p_1 \in Q_1, p_2 \in Q_2 \}$,
- $A_{12} = A_1 \cup A_2$,
- $I_{12} = \{ (p_1, p_2) \mid p_1 \in I_1, p_2 \in I_2 \}$,
- $F_{12} = F_2$,

and where the transition relation E_{12} obeys the following rules:

\[
\frac{p_1 \stackrel{a_1,c_1}{\rightarrow}_{A_1} q_1}{(p_1,p_2) \stackrel{a_1,c_1}{\rightarrow}_{A_1,A_2} (q_1,p_2)} \quad [SEQ1] \quad \frac{p_2 \stackrel{a_2,c_2}{\rightarrow}_{A_2} q_2}{(p_1,p_2) \stackrel{a_2,c_2}{\rightarrow}_{A_1,A_2} (q_1,p_2)} \quad [SEQ2] \quad \frac{p_2 \stackrel{a_2,c_2}{\rightarrow}_{A_2} q_2}{p_2 \stackrel{a_2,c_2}{\rightarrow}_{A_1,A_2} q_2} \quad [SEQ3]
\]

States of the form (p_1, p_2), with $p_1 \in Q_1$ and $p_2 \in Q_2$ are called composed states.

This definition means that all moves of sequential composition are moves of either A_1, or of A_2 if A_1 is in a final state, or of A_2 if the state is a non composed one.

Given the two automata A_{exe1} and A_{exe2} depicted in Fig. 3, their sequential composition $A_{exe1};A_{exe2}$ is given in Fig. 4.

Lemma 10. Let A_1, A_2, A_3, A_4 be four automata such that there exist two simulation relations \preceq_1 and \preceq_2, and $A_1 \preceq_1 A_3$ and $A_2 \preceq_2 A_4$. We define the relation R between the states of A_1,A_2 and the states of A_3,A_4 by

- $(p_1, p_2)R(p_3, p_4)$ if and only if $(p_1, p_3) \preceq_1 (p_2, p_4)$ and $(p_2, p_4) \preceq_2 (p_3, p_4)$ and,
- p_2Rp_4 if and only if $p_2 \preceq_2 p_4$ and,
- there is neither state of the form (p_1, p_2) related by R to a state of A_4, nor state of A_2 related by R to a state of the form (q_3, q_4).
The relation \mathcal{R} is a simulation relation.

Proof. Since final states of A_1,A_2 are final states of A_2 and final states of A_3,A_4 are final states of A_4, and by definition of \mathcal{R}, the relation \mathcal{R} satisfies the condition ii) of Definition 2.

There are three kinds of transitions obeying either the rule \[SEQ1\], or \[SEQ2\], or \[SEQ3\].

- For non composed states, since every transition from a non composed state of A_1,A_2 targets, by the rule \[SEQ3\], a non composed state of A_1,A_2, the condition i) of Definition 2 is satisfied for states of A_2 and A_4.

- For composed states, assume that $p_1 \preceq_A p_3$ and $p_2 \preceq_A p_4$. Two kinds of transitions can be fired from (p_1,p_2).
 - If there is a transition (p_1,a_1,c_1,q_1) in A_1, then by \[SEQ1\] there is a transition in $A_1.A_2$ of the form $((p_1,p_2),a_1,c_1,(q_1,p_2))$ (see Fig. 5). Since $p_1 \preceq_A p_3$, by Definition 2 there is a transition (p_3,a_1,c_3,q_3) in A_3 such that $q_1 \preceq_A q_3$. Thus $(q_1,p_2)\mathcal{R}(q_3,p_4)$.
 - If there is a transition (p_2,a_2,c_2,q_2) in A_2, then by \[SEQ2\] there is a transition $((p_1,p_2),a_2,c_2,q_2)$ in $A_1.A_2$ (see Fig. 6). Since $p_2 \preceq_A p_4$, by Definition 2 there is a transition (p_4,a_2,c_4,q_4) in A_4 such that $q_2 \preceq_A q_4$. Therefore $q_2\mathcal{R}q_4$, proving the lemma.

\[\square\]

Proposition 11. Let A_1,A_2,A_3,A_4 be finite trim automata. If $A_1 \subseteq A_3$ and $A_2 \subseteq A_4$ [resp. $A_1 \subseteq_p A_3$ and $A_2 \subseteq_p A_4$], then the pair $A_1.A_2 \subseteq A_3.A_4$ [resp. $A_1.A_2 \subseteq_p A_3.A_4$].

Proof. Let π be a successful path of $A_1.A_2$. By definition of the sequential product, π can be decomposed into $\pi = \pi_1, ((p_1,p_2),a_2,c_2,q_2), \pi_2$, where π_1 is a path built up using only composed states, and $(p_2,a_2,c_2,q_2), \pi_2$ is a successful path of A_2. Let φ be the projection that maps each transition $((p_1,p_2),a,c,(q_1,q_2))$ of $A_1.A_2$ between composed states.
to \((p_1, a, c, q_1)\). The function \(\varphi\) can be naturally extended to paths. Decompositions are illustrated in Fig. 7: the first line represents the decomposition of \(\pi\) and the second line the decomposition using \(\varphi\).

By \([SEQ1]\), \(\varphi(\pi_1)\) is a successful path of \(A_1\). Since \(A_1 \subseteq A_3\), there exists a path \(\pi_3\) of \(A_3\) such that \(\pi_1 \preceq \pi_3\) and \(\text{cost}(\pi_3) \leq \text{cost}(\pi_3)\). Similarly, since \(A_2 \subseteq A_4\), there exists a path \(\pi_4\) such that \((p_2, a_2, c_2, q_2)\), \(\pi_2\) \(\preceq\) \(\pi_4\) and \(\text{cost}((p_2, a_2, c_2, q_2), \pi_2) \leq \text{cost}(\pi_4)\). Let \(q_4\) be the starting state of \(\pi_4\), \(p_f\) be the ending state of \(\pi_3\), and \(k\) be the length of \(\pi_3\) (which is also the length of \(\pi_1\)). The sequence \(\pi'\) of transitions of \(A_3\). \(A_4\) defined by: if \(i\) is smaller than or equal to \(k\), and if the \(i\)-th transition of \(\pi_3\) is \((r_i, a_i, c_i, r_{i+1})\), then the \(i\)-th transition of \(\pi'\) is \((r_i, q_4), b_i, d_i, (r_{i+1}, q_4)\). If \(i\) is equal to \(k + 1\), then the \(i\)-th transition of \(\pi'\) is \((p_f, q_4), a_2, c_2, q_2\). For the values of \(i\) greater than \(k + 1\), the \(i\)-th transition of \(\pi'\) is the \((i + k)\)-th transition of \(\pi_4\). Using \([SEQ1]\), \([SEQ2]\) and \([SEQ3]\), one can easily check that \(\pi'\) is a successful path of \(A_3\), \(A_4\) such that \(\text{cost}(\pi') \leq \text{cost}(\pi)\). Moreover, by Lemma 10, \(\pi \preceq \pi'\), proving the lemma for the substitutivity problem.

The proof still works for the partial substitutivity problem. \(\square\)

Unfortunately, Proposition 11 does not hold for (partial) strong substitutivity problems.

Indeed, let us consider the following four automata:

\[
\begin{align*}
A_1 &= (\{p_1\}, \{a\}, (\{p_1, a, 1, p_1\}), \{p_1\}, \{p_1\}), \\
A_3 &= (\{q_1\}, \{a\}, (\{q_1, a, 0, q_1\}), \{q_1\}, \{q_1\}), \\
A_2 &= (\{p_2\}, \{a\}, (\{p_2, a, 4, p_2\}), \{p_2\}, \{p_2\}), \\
A_4 &= (\{q_2\}, \{a\}, (\{q_2, a, 3, q_2\}), \{q_2\}, \{q_2\}).
\end{align*}
\]

Pairs of automata \(A_1\), \(A_3\) and \(A_2\), \(A_4\) both trivially satisfy the strong substitutivity problem and the partial strong substitutivity problems. However, when considering the pair \(A_1\), \(A_2\), \(A_3\), \(A_4\), one has

\[
\{(p_1, p_2), (q_1, q_2), (p_1, p_2), (q_2, q_2)\} \preceq_{A_1, A_2, A_3, A_4} \).
\]

Consequently,

\[
((p_1, p_2), a, 1, (p_1, p_2))(p_1, p_2), a, 4, p_2) \preceq ((q_1, q_2), a, 3, q_2)(q_2, a, 3, q_2).
\]

But these paths do not satisfy the weight conditions of the strong and the partial strong substitutivity problems. Intuitively, a sequential composition of automata may create new ways to perform a sequence of actions: these new ways may have costs that do not fulfill the universal weight condition required by the strong substitutivity.
However, when the automata in the pair have disjoint alphabets, the following composition result holds.

Proposition 12. Let A_1, A_2, A_3, A_4 be finite trim automata such that A_1, A_2 and A_3, A_4 are both trim, such that A_1 and A_2 have disjoint alphabets. If $A_1 \sqsubseteq_{st} A_3$ and $A_2 \sqsubseteq_{st} A_4$, then the pair $A_1, A_2 \sqsubseteq_{st} A_3, A_4$.

Proof. Assume that $A_1 \sqsubseteq_{st} A_3$ and $A_2 \sqsubseteq_{st} A_4$. Let π be a successful path of A_1, A_2. By Proposition 11, there exists a successful path of A_3, A_4 similar to π with a lower cost.

First we claim that the relation R defined in Lemma 10 is the largest simulation relation. Remark that since transitions that can be fired from non composed states of A_1, A_2 are exactly the transitions of A_2 and since A_2 and A_1, A_2 have the same set of final states, if $p_2 \sqsubseteq A_1, A_2, A_3, A_4, p_4$, then $p_2 \sqsubseteq A_2, A_4, p_4$. Now if $(p_1, p_2) \sqsubseteq A_1, A_2, A_3, A_4$ (p_3, p_4), then $p_1 \sqsubseteq A_1, A_3, p_3$ and $p_2 \sqsubseteq A_2, A_4, p_4$. For every transition (p_2, a, c, r_2) of A_2, there exists a state transition in A_3, A_4 from (p_3, p_4) labelled by a to a state related to r_2 by $\sqsubseteq_{A_1, A_2, A_3, A_4}$. According to the assumption on the alphabet, this state, denoted r_4, is not a composed state. Therefore (using the above remark) $r_2 \sqsubseteq A_3, A_4, r_4$, proving the claim.

One can now prove the proposition. Consider a path π' of A_3, A_4 such that $\pi \sqsubseteq \pi'$. The path π' can be decomposed into $\pi' = \pi_3, ((p_1, p_2), a, c, q_4), \pi_4$ such that π_3 is a successful path of A_3 and $((p_1, p_2), a, c, q_4), \pi_4$ is a successfully path of A_4. Similarly π can be decomposed into $\pi = \pi_1, ((p_1, p_2), b, d, q_2), \pi_2$ such that π_1 is a success-full path of A_1 and $((p_1, p_2), b, d, q_2), \pi_2$ is a success-full path of A_2. Since $\pi \sqsubseteq \pi'$ and by alphabet conditions, π_3 and π_2 have the same length, $a = b$ and, π_2 and π_4 have the same length. Now inductively using the claim (resp. the remark) on states of π_1 and π_3 (resp. of $((p_1, p_2), b, d, q_2), \pi_2$ and $((p_3, p_4), a, c, q_4), \pi_4)$, one has $\pi_1 \sqsubseteq_{A_1, A_3} (p_3, p_4), \pi_4$ (resp. $A_1 \sqsubseteq_{st} A_3$ and $A_2 \sqsubseteq_{st} A_4$, one has $\text{cost}(\pi_3) \leq \text{cost}(\pi_1)$ and $\text{cost}(\pi_4) \leq \text{cost}(\pi_3, a, c, q_4)$, π_4). Since $A_1 \sqsubseteq_{st} A_3$ and $A_2 \sqsubseteq_{st} A_4$, one has $\text{cost}(\pi_3) \leq \text{cost}(\pi_1)$ and $\text{cost}(\pi_4) \leq \text{cost}(\pi_3, a, c, q_4)$, π_4). Similarly to the above, one has $\text{cost}(\pi_3) \leq \text{cost}(\pi_1)$ and $\text{cost}(\pi_4) \leq \text{cost}(\pi_3, a, c, q_4)$, π_4). Therefore, $\text{cost}(\pi') \leq \text{cost}(\pi)$, which concludes the proof.

The proof for the strong substitutivity problem is very close to the above proof. \hfill \square

Let us consider a variant of the sequential composition of automata, called the strict sequential product, where additional transitions with a special label are introduced. This label allows one to identify parts of a path w.r.t. composed automata.

Definition 13. Let $A_1 = (Q_1, A_1, E_1, I_1, F_1)$ and $A_2 = (Q_2, A_2, E_2, I_2, F_2)$ be two integer weighted automata. The strict sequential composition of A_1 and A_2, denoted $A_1 \rightarrow A_2$, is the automaton $A_{12} = (Q_1 \cup Q_2, A_1 \cup A_2 \cup \{ \delta \}, E_1 \cup E_2 \cup E_{12}, I_1, F_2)$ where $\delta \notin A_1 \cup A_2$ and $E_{12} = \{(p, 0, 0, q) \mid p \in F_1, \ q \in I_2\}$.

For our running automata A_{exc1} and A_{exc2} in Fig. 3, their strict sequential product $A_{exc1} \rightarrow A_{exc2}$ is depicted in Fig. 8.

Proposition 14. Let A_1, A_2, A_3, A_4 be finite trim automata. If $A_1 \sqsubseteq_{st} A_3$ and $A_2 \sqsubseteq_{st} A_4$, then $A_1 \rightarrow A_2 \sqsubseteq_{st} A_3 \rightarrow A_4$.

Proof. The relation R between states of $A_1 \rightarrow A_2$ and states of $A_3 \rightarrow A_4$ is defined as follows: pRq if and only if either p is a state of A_1 and q a state of A_3 and $p \sqsubseteq_{A_1, A_3} q$, or p is a state of A_2 and q a state of A_4 and $p \sqsubseteq_{A_2, A_4} q$. One can easily check (as for Lemma 10) that R is a simulation relation.

The proof is structured as follows: firstly, (part 1), we prove the proposition for the substitutivity problem. Secondly, (part 2), we show that R is the largest simulation relation.
between $A_1 \rightarrow A_2$ and $A_3 \rightarrow A_4$. This leads to the final third step (part 3), where we prove the proposition for the strong substitutivity problem. Proofs for partial (strong) substitutivity problems are very similar and left to the reader. Notice that since A_1, A_2, A_3, A_4 are finite trim automata, so are $A_1 \rightarrow A_2$ and $A_3 \rightarrow A_4$.

(Part 1):
Let π be a successful path in $A_1 \rightarrow A_2$. By construction of $A_1 \rightarrow A_2$, π can be decomposed into $\pi_1, (p_1, \delta, p_2), \pi_2$, where π_1 is a successful path of A_1, π_2 is a successful path of A_2, p_1 is a final state of A_1 and p_2 an initial state of A_2.

Assume that $A_1 \subseteq A_3$ and $A_2 \subseteq A_4$, then there exist successful paths π_3 of A_3 and π_4 of A_4 such that $\pi_1 \sim_{A_1,A_3} \pi_2, \pi_3 \sim_{A_3,A_4} \pi_4$, $\text{cost}(\pi_3) \leq \text{cost}(\pi_1)$ and $\text{cost}(\pi_4) \leq \text{cost}(\pi_2)$. Let p_3 be the ending state of π_3, and p_4 the starting state of p_4. Since π_3 is a successful path in A_3, p_3 is a final state of A_3. Similarly, p_4 is an initial state of A_4. Consequently, $\pi_3, (p_3, \delta, 0, p_4), \pi_4$ is a successful path of $A_3 \rightarrow A_4$. Moreover, by construction, $\pi R (\pi_3, (p_3, \delta, 0, p_4), \pi_4)$. Thus $\pi \sim (\pi_3, (p_3, \delta, 0, p_4), \pi_4)$. Furthermore, $\text{cost}(\pi_2) \leq \text{cost}(\pi_1)$ and $\text{cost}(\pi_4) \leq \text{cost}(\pi_3)$ ensure that $\text{cost}(\pi_3, (p_3, \delta, 0, p_4), \pi_4) \leq \text{cost}(\pi)$, proving the proposition for the substitutivity problem.

(Part 2):
We claim that $R = \preceq$, i.e. that R is the largest simulation relation between $A_1 \rightarrow A_2$ and $A_3 \rightarrow A_4$. Indeed, let p be a state of $A_1 \rightarrow A_2$, and q be a state of $A_3 \rightarrow A_4$ such that $p \preceq_{A_1\rightarrow A_2, A_3\rightarrow A_4} q$. Following cases arise:

1. Assume that p is a state of A_2. Since A_2 is trim, there exists a path in A_2 from p to a final state of A_2. Now, the assumption $p \preceq_{A_1\rightarrow A_2, A_3\rightarrow A_4} q$ implies that there is a similar path in A_4. Since δ doesn’t occur in the label of this path, q is a state of A_4. Since the restriction of $\preceq_{A_1\rightarrow A_2, A_3\rightarrow A_4}$ to states of A_2 and states of A_4 is a simulation relation, one has $p \preceq_{A_2,A_4} q$. Therefore $p R q$.

2. Assume that p is a state of A_1. We will show by contradiction that q is a state of A_3. Assume that q is a state of A_4. Since A_1 and A_3 are trim, there is a path in $A_1 \rightarrow A_2$ from p to a final state. By construction, δ occurs in the label of this path. Since $p \preceq_{A_1\rightarrow A_2, A_3\rightarrow A_4} q$, there is a similar path in $A_3 \rightarrow A_4$. But q is a state of A_4, thus there is no path from q whose label contains δ, a contradiction. Therefore, $q \in A_3$. As for case (1), this ensures that $p R q$, proving the claim.

(Part 3):
Assume that $A_1 \sqsubseteq_{\text{st}} A_3$ and $A_2 \sqsubseteq_{\text{st}} A_4$. According to above proof, it remains to show that for every successful path π of $A_1 \rightarrow A_2$ and every successful path π' of $A_3 \rightarrow A_4$, if $\pi \preceq \pi'$, then $\text{cost}(\pi') \leq \text{cost}(\pi)$. Assuming that π is a successful path of $A_1 \rightarrow A_2$.

Figure 8: Automaton $A_{exc1} \rightarrow A_{exc2}$
and that \(\pi' \) is a successful path of \(A_3 \rightarrow A_4 \), the path \(\pi \) can be decomposed into \(\pi = \pi_1, (p_1, \delta, p_2), \pi_2 \) and the path \(\pi' \) into \(\pi' = \pi_3, (p_3, \delta, p_4), \pi_4 \). Symbol \(\delta \) occurs only once in the label of \(\pi \) and in the label of \(\pi' \). Thus, by length argument, if \(\pi \leq \pi' \), using the claim (point 2), one has \(\pi_1 \preceq_{A_1, A_3} \pi_3 \) and \(\pi_2 \preceq_{A_2, A_4} \pi_4 \). It follows that \(\text{cost}(\pi_3) \leq \text{cost}(\pi_1) \) and \(\text{cost}(\pi_4) \leq \text{cost}(\pi_2) \). Consequently, \(\text{cost}(\pi') \leq \text{cost}(\pi) \), proving the proposition for the strong substitutivity problem.

\[\square \]

6.2. Substitutivity and Parallel Composition

We now define a parallel composition operator and offer the positive and negative results on the compatibility of the substitutivity with relation to the parallel composition.

Definition 15. Let \(A_1 = (Q_1, A_1, E_1, I_1, F_1) \) and \(A_2 = (Q_2, A_2, E_2, I_2, F_2) \) be two integer weighted automata. The parallel product of \(A_1 \) and \(A_2 \), denoted \(A_1 \parallel A_2 \), is the automaton \(A_{12} = (Q_{12}, A_{12}, E_{12}, I_{12}, F_{12}) \) where

- \(Q_{12} = \{(p_1, p_2) \mid p_1 \in Q_1, p_2 \in Q_2\} \),
- \(A_{12} = A_1 \cup A_2 \),
- \(I_{12} = I_1 \times I_2 \),
- \(F_{12} = F_1 \times F_2 \),

and where the transition relation \(E_{12} \) obeys the following rules:

\[
\begin{align*}
\text{[SYNC]} & \quad \frac{p_1}{(p_1, p_2)} \quad \frac{a_1, c_1}{A_1, q_1, p_2} \quad \frac{a_2, c_2}{A_2, q_2} \quad a \in A_1 \cap A_2 \\
\text{[PAR1]} & \quad \frac{p_1}{(p_1, p_2)} \quad \frac{a_1, c_1}{A_1, q_1} \quad \frac{a_2, c_2}{A_2, p_2} \quad a_1 \in A_1 \setminus A_2 \\
\text{[PAR2]} & \quad \frac{p_2}{(p_1, p_2)} \quad \frac{a_2, c_2}{A_2, q_2} \quad \frac{a_1, c_1}{A_1, p_2} \quad a_2 \in A_2 \setminus A_1
\end{align*}
\]

The parallel composition of \(A_1 \) and \(A_2 \), denoted \(A_1 \parallel A_2 \), is the automaton obtained by deleting in \(A_1 \parallel A_2 \) states (and related transitions) that are not co-accessible.

Consider, for instance, the two automata \(A_{\text{exe}3} \) and \(A_{\text{exe}4} \) depicted in Fig. 9. The automata \(A_{\text{exe}3} \parallel A_{\text{exe}4} \) and \(A_{\text{exe}3} \parallel A_{\text{exe}4} \) are respectively displayed in Fig. 10 and Fig. 11.

Proposition 16. Let \(A_1, A_2, A_3, A_4 \) be finite trim automata \(\text{fresp.} \) are finite trim automata such that \(A_1 \parallel A_2 \) and \(A_3 \parallel A_4 \) are both trim. If \(A_1 \subseteq A_3 \) and \(A_2 \subseteq A_4 \) \(\text{fresp.} \) \(A_1 \not\subseteq A_3 \) \(A_2 \not\subseteq A_4 \), then \(A_1 \parallel A_2 \subseteq A_3 \parallel A_4 \) satisfies the substitutivity problem \(\text{fresp.} \) \(A_1 \parallel A_2 \subseteq \theta \).

Proof. In this proof \(A_1 \) is the common alphabet of \(A_1 \) and \(A_3 \) and \(A_2 \) is the common alphabet of \(A_2 \) and \(A_4 \).

The relation \(R \) between states of \(A_1 \parallel A_2 \) and states of \(A_3 \parallel A_4 \) is defined as follows: \((p_1, p_2)R(p_3, p_4) \) if and only if \(p_1 \preceq_{A_1, A_3} p_3 \) and \(p_2 \preceq_{A_2, A_4} p_4 \). The proof is divided into two
Figure 9: Automata A_{exe3} and A_{exe4}

Figure 10: Automaton $A_{exe3} \otimes A_{exe4}$

Figure 11: Automaton $A_{exe3} \parallel A_{exe4}$
parts: Firstly, in (Part 1), we prove that R is a simulation relation. Secondly, in (Part 2), we prove the proposition for the substitutivity problem.

(Part 1):

We first prove that relation R is a simulation relation. Indeed, if (p_1, p_2) is final then, by definition of $A_1 \otimes A_2$, p_1 and p_2 are respectively final states of A_1 and A_2. Then, if $p_1 \preceq A_1, A_2, p_3, p_4$ is final, and if $p_2 \preceq A_2, A_4, p_3$ is final, proving R satisfies condition ii) of Definition 2. Now it remains to prove condition i). Assume that $(p_1, p_2)R(p_3, p_4)$. The following three cases arise:

(1) If there exists a transition $((p_1, p_2), a_1, c_1, (q_1, q_2))$ in $A_1 \parallel A_2$, with $a_1 \in A_1 \setminus A_2$, it is obtained by applying $[\text{PAR1}]$. So, there exist a transition (p_1, a_1, c_1, q_1) in A_1 and a state q_3 of A_3 such that $p_1 \preceq A_1, A_3, q_3$. Since (q_1, p_2) is accessible and co-accessible in $A_1 \otimes A_2$, so is (q_3, p_4) in $A_3 \otimes A_4$. It follows that (q_3, p_4) is a state of $A_3 \parallel A_4$ satisfying $(q_1, p_2)R(q_3, p_4)$.

(2) If a transition from (p_1, p_2) is fired by applying $[\text{PAR2}]$, one can prove, as for case (1), that condition i) of Definition 2 is satisfied.

(3) If a transition from (p_1, p_2) is fired by applying $[\text{SYNC}]$, then there exist a transition (p_1, a, c_1, q_1) in A_1 and a transition (p_2, a, c_2, q_2) such that $a \in A_1 \cap A_2$. Since $(p_1, p_2)R(p_3, p_4)$, there are q_3 in A_3 and q_4 in A_4 and transitions (p_3, a, c_3, q_3) and (p_4, a, c_4, q_4) of A_3 and A_4 such that $q_1 \preceq A_1, A_3, q_3$ and $q_2 \preceq A_2, A_4, q_4$. Since (q_3, q_4) is both an accessible and co-accessible state of $A_3 \otimes A_4$, $(q_1, q_2)R(q_3, q_4)$, proving that R is a simulation relation.

(Part 2):

Now we will prove the proposition for the substitutivity problem. Assume that $A_1 \subseteq A_3$ and $A_2 \subseteq A_4$. Let π be a successful path in $A_1 \parallel A_2$. We denote by φ_i ($i \in \{1, 2\}$), the partial function that maps transitions of $A_1 \parallel A_2$ to transitions of A_i as follows: a transition $((p_1, p_2), a, c, (q_1, q_2))$ of $A_1 \parallel A_2$ is mapped to (p_1, a, c, q_1) if $a \in A_i$. Partial functions φ_i ($i \in \{1, 2\}$) are extended to sequences of transitions: $\varphi_i(t_1, \ldots, t_k) = \varphi_i(t_1) \ldots \varphi_i(t_k)$ with the convention that if $\varphi_i(t)$ is not defined, then $\varphi_i(t)$ is mapped to the empty path. For instance, if t_1, t_2, t_3 are three transitions respectively labelled by letter of $A_1 \cap A_2$, $A_1 \setminus A_2$ and $A_2 \setminus A_1$, then $\varphi_1(t_1, t_2, t_3) = \varphi_1(t_1) \varphi_1(t_2) \varphi_1(t_3)$ and $\varphi_2(t_1, t_2, t_3) = \varphi_1(t_1) \varphi_2(t_2) \varphi_2(t_3)$.

Let π be a successful path in $A_1 \parallel A_2$. One can easily check that $\varphi_i(\pi)$ is a successful path of A_i. Therefore there are successful paths π_3 and π_4 of respectively A_3 and A_4 such that $\varphi_1(\pi) \preceq A_1, A_3, \pi_3$, $\varphi_2(\pi) \preceq A_1, A_4, \pi_4$, $\text{cost}(\pi_3) \leq \text{cost}(\varphi_1(\pi))$ and $\text{cost}(\pi_4) \leq \text{cost}(\varphi_2(\pi))$. We inductively define the finite sequences of integers α_i and β_i by

- $\alpha_1 = 1$ and $\beta_1 = 1$,
- if the i-th transition of π is labelled by a letter in $A_1 \cap A_2$, then $\alpha_i+1 = 1 + \alpha_1$ and $\beta_i+1 = 1 + \beta_1$,
- if the i-th transition of π is labelled by a letter in $A_1 \setminus A_2$, then $\alpha_i+1 = 1 + \alpha_1$ and $\beta_i+1 = \beta_1$,
- if the i-th transition of π is labelled by a letter in $A_2 \setminus A_1$, then $\alpha_i+1 = \alpha_1$ and $\beta_i+1 = 1 + \beta_1$.

Informally, when running the path π, each time a transition labelled by a letter in A_i is met, the corresponding counter (α for A_1 and β for A_2) increases.

Now we define the sequence of transitions π' of $A_3 \otimes A_4$ by:
- If the \(i\)-th transition of \(\pi\) is labelled by a letter \(a\) in \(A_1 \cap A_2\), then the \(i\)-th transition of \(\pi'\) is \((p_3, p_4), a, c_3 + c_4, (q_3, q_4)\) where \((p_3, a, c_3, q_3)\) is the \(\alpha_i\)-th transition of \(\pi_3\) and \((p_4, a, c_4, q_4)\) is the \(\beta_i\)-th transition of \(\pi_4\).

- If the \(i\)-th transition of \(\pi\) is labelled by a letter \(a\) in \(A_1 \setminus A_2\), then the \(i\)-th transition of \(\pi'\) is \((p_3, p_4), a, c_3, (q_3, p_4)\) where \((p_3, a, c_3, q_3)\) is the \(\alpha_i\)-th transition of \(\pi_3\).

- If the \(i\)-th transition of \(\pi\) is labelled by a letter \(a\) in \(A_2 \setminus A_1\), then the \(i\)-th transition of \(\pi'\) is \((p_3, p_4), a, c_4, (p_3, q_4)\) where \((p_4, a, c_4, q_4)\) is the \(\beta_i\)-th transition of \(\pi_4\).

One can easily check that \(\alpha_i\) is less or equal to the length of \(\pi_1\) (equivalently the length of \(\pi_3\)) and that \(\beta_i\) is less or equal to the length of \(\pi_2\) (equivalently the length of \(\pi_4\)). Thus, following rules [PAR1], [PAR2] and [SYNC], \(\pi'\) is well-defined. By a direct induction, one can prove that \(\pi'\) is a successful path of \(A_3 \parallel A_4\) satisfying \(\pi R \pi'\) and \(\text{cost}(\pi') \leq \text{cost}(\pi)\).

Since \(R\) is, by definition, included in \(\preceq_{A_1 \parallel A_2, A_3 \parallel A_4}\), the proof for the substitutivity problem is complete.

Unfortunately, Proposition 16 does not hold for (partial) strong substitutivity problems. Consider, for instance, the following automata (depicted in Fig. 12):

\[
A_1 = ((p_1, p_2), \{a\}, \{(p_1, a, 1, p_1), (p_1, a, 1, p_2), (p_2, a, 1, p_2)\}, \{p_1\}, \{p_2\}),
\]
\[
A_3 = ((q_1, q_2, q_3), \{a\}, \{(q_1, a, 1, q_3), (q_3, a, 6, q_1), (q_1, a, 0, q_2), (q_2, a, 1, q_2)\}, \{q_1\}, \{q_2\}),
\]
\[
A_2 = ((p_3, p_4), \{a\}, \{(p_3, a, 1, p_3), (p_3, a, 1, p_4), (p_4, a, 1, p_4)\}, \{p_3\}, \{p_4\}),
\]
\[
A_4 = ((q_4), \{a\}, \{(q_4, a, 0, q_4)\}, \{q_4\}, \{q_4\}).
\]

Both pairs of automata \(A_1, A_3\) and \(A_2, A_4\) satisfy the strong substitutivity problem. But \((p_1, p_3) \preceq_{A_1 \parallel A_2, A_3 \parallel A_4} (q_1, q_4), (p_1, p_3) \preceq_{A_1 \parallel A_2, A_3 \parallel A_4} (q_1, q_4)\) and \((p_2, p_4) \preceq_{A_1 \parallel A_2, A_3 \parallel A_4} (q_2, q_4)\). Therefore the successful paths

\[
\pi_{12} = ((p_1, p_3), a, 2, (p_1, p_3))((p_1, p_3), a, 2, (p_1, p_3))((p_1, p_3), a, 2, (p_1, p_3))
\]

and

\[
\pi_{34} = ((q_1, q_4), a, 1, (q_3, q_4))((q_3, q_4), a, 6, (q_1, q_4))((q_1, q_4), a, 0, (q_2, q_4))
\]
satisfy \(\pi_{12} \preceq_{A_1 \parallel A_2, A_3 \parallel A_4} \pi_{34}\). But \(\text{cost}(\pi_{12}) = 6\) and \(\text{cost}(\pi_{34}) = 7\).

However, as for the sequential composition, one has the following result for pairs of automata with disjoint alphabets.
Proposition 17. Let A_1, A_2, A_3, A_4 be finite trim automata such that A_1 and A_2 have disjoint alphabets and, A_3 and A_4 have disjoint alphabets. If $A_1 \subseteq^* A_3$ and $A_2 \subseteq^* A_4$ resp. $A_1 \subseteq^*_p A_3$ and $A_2 \subseteq^*_p A_4$, then the pair $A_1 \parallel A_2 \subseteq^* A_3 \parallel A_4$ resp. $A_1 \parallel A_2 \subseteq^*_p A_3 \parallel A_4$.

Proof. Assume that both couples $A_1 \subseteq^* A_3$ and $A_2 \subseteq^* A_4$. Let π be a successful path of $A_1 \parallel A_2$. By Proposition 16, there exists a successful path of $A_3 \parallel A_4$ similar to π with a smaller cost.

We claim that if $(p_1, p_2) \succeq_{A_1 \parallel A_2} (p_3, p_4)$, then $p_1 \preceq_{A_1} p_3$ and $p_2 \preceq_{A_4} p_4$. It suffices to prove that $p_1 \preceq_{A_1} p_3$ because of the case symmetry. Assume that $p_1 \npreceq_{A_1} p_2$.

Then the following cases may arise:

1. p_1 is a final state of A_1 whereas p_3 is not. Since A_2 is trim, there exists a path in A_2 from p_2 to a final state q_2 of A_2. This path is labelled by letters in the A_2 alphabet. Therefore there is a path in $A_1 \parallel A_2$ from (p_1, p_2) to (p_1, q_2). Since $(p_1, p_2) \preceq_{A_1 \parallel A_2} (p_3, p_4)$, there is a similar path in $A_3 \parallel A_4$ to a state of the form (p_3, q_4). Now since q_2 is a final state in A_2, so is (p_1, q_2) in $A_1 \parallel A_2$. But $(p_1, q_2) \preceq_{A_1 \parallel A_2} (p_3, q_4)$, so (p_3, q_4) is final in $A_3 \parallel A_4$. Consequently, p_3 is final, a contradiction.

2. There is a transition in A_1 starting from p_1 labelled by a, but no transition labelled by a starts from p_2 in A_3. Therefore there is a transition in $A_1 \parallel A_2$ starting from (p_1, p_2) labelled by a. Since a is not a letter from the alphabet of A_3, no transition labelled by a in $A_3 \parallel A_4$ can be fired from (p_3, p_4), a contradiction.

3. There is a transition (p_1, a_1, c_1, q_1) of A_1 such that for every transition of the form (p_3, a_1, c_1, q_3) of A_2, $q_1 \npreceq_{A_1 \parallel A_3} q_3$. Iterating this construction, one can reach states (p_1', p_2') and (p_3', p_4') satisfying conditions of case (1), proving the claim.

Now let π' be a path in $A_3 \parallel A_4$ such that $\pi \preceq_{A_1 \parallel A_2} \pi'$. Let π'_0 be the sequence of transitions obtained by deleting in π' all the transitions labelled by a letter in the A_4 alphabet. Let also π'_4 be the sequence of transitions obtained by deleting in π' all the transitions labelled by a letter in the alphabet of A_3. Using the hypotheses on the alphabets, one can easily check that the projection π'_0 of π' on A_3 is a successful path of A_3. Similarly, the projection π'_4 of π' on A_4 is a successful path of A_4. Following the same way, π can be projected to produce a successful path π_1 of A_1 and a successful path π_2 of A_2. The claim ensures that $\pi_1 \preceq_{A_1 \parallel A_3} \pi'_0$ and that $\pi_2 \preceq_{A_1 \parallel A_4} \pi'_4$. Now remind that both couples $A_1 \subseteq^*_p A_3$ and $A_2 \subseteq^*_p A_4$ satisfy the strong substitutivity problem. Thus cost(π'_0) \leq cost(π_1) and cost(π'_4) \leq cost(π_2). Since cost(π) = cost(π_1) + cost(π_2) and since cost(π') = cost(π'_0) + cost(π'_4), one has cost(π') \leq cost(π), proving the proposition.

The proof for the partial strong substitutivity problem is similar and left to the reader.

7. Practical Issues

As explained in Section 1, this paper is dedicated to component and service substitutivity with a special emphasis on their assembly. The challenge is to build trustworthy systems which satisfy both functional and non functional requirements. The obtained theoretical results have practical applications. Indeed, the methodological and practical approaches we have been developing through various project collaborations rest on them. These approaches can be summarised by:

1. The construction of trustworthy software systems from existing components.
2. An incremental approach to specify and verify component assembling.
3. The elicitation of non-functional requirements and their integration in the specification.
7.1. Application to Web Services with QoS

There are numerous works on automata-based analyses of service composition (see [tBBG07] for a survey). In the setting of the present paper, i.e., without silent τ-transitions, the \preceq-simulation relation is compatible with a sequential composition operator modelling e.g., the sequence BPEL structured activities, and with an asynchronous parallel composition operator implementing e.g., the flow BPEL structured activities. Notice that for the flow activities, the encoding would work without the source/target links that would somehow be encoded through a synchronisation. Both BPEL operators are important in practice since they allow building complex services by a composition of services.

An algorithm for the trace-based substitutivity problem has been implemented. The tests have been performed on different versions of a movie store example, a book store example provided by Oracle [Jur05], and the classical loan approval example. We intend to continue the implementation and extend that work to simulation-based substitutivity problems presented in this paper.

7.2. Application to Embedded Components

Thousands of systems in very various domains such as telecommunications, transportation, home automation (also called smart homes or domotics), system-on-chip, etc., are equipped with smart devices or "intelligent" components. They embed a growing software part which is often critical for the safety of the global system. Embedded systems whose resources are in general limited must satisfy both functional and non-functional properties to optimise the use of their resources (memory, energy, etc.).

Within the application domain of land transportation systems, different models of a localisation system are proposed. A localisation composite component, which is a critical part of land transportation systems, is made up of different positioning systems, like GPS, Wifi or GPS+Wifi. The use of more than one localisation system is required in a driverless vehicle like Cristal or Cycab, because no system is efficient enough to be used alone. Indeed, a localisation based on the GPS data cannot be used in certain contexts, and the localisation component must respond even if no satellite data can be captured. These requirements allow the vehicle to set a real trustworthy level and to improve the confidence in the reliability.

The composite localisation component includes several positioning systems, a controller, and a merger. Figure 13 gives a very abstract view of the composite localisation component we have been developing using the Fractal component model [BCL+06]. For building the behavioural model, we follow a two-fold approach proposed in [BABC+09] for Fractal, GCM and ProActive distributed components: (1) the architecture and hierarchy information are extracted from the ADL and (2) each of the primitive component’s functional behaviour is specified by the user in an automata-based language.

Each positioning system is composed of an atomic positioning component and a software component to validate perceived data. The validation components transfer the positioning data to the merger if they are precise enough. The merger applies a particular algorithm to merge data obtained from positioning systems. The goal of this algorithm is to ensure that the level of reliability must not decrease between two localisations unless the operation to update the context is called. Finally, the controller’s purpose is to request and to acknowledge the receipt of positioning data. In addition to mentioned requirements, other non-functional requirements such as environment context, time-constrained response, cost of used networks, privacy, etc., must be taken into account when specifying and implementing a localisation component.

\[^4\text{http://tacos.loria.fr}\]
In spite of their simplification on the QoS measures, sequential and parallel composition operators managing both functional and non functional aspects can assemble the above mentioned components.

It is easy to see how important substitutivity, sequential and parallel compositions are, especially given the need to bring costs into the analysis. Moreover, within the Fractal framework, [NBL09, PMSD07] proposed dynamic reconfiguration strategies to optimise the used memory space. It is done thanks to an implementation, called Think\textregistered, especially dedicated to embedded Fractal components. That implementation continues with the separation of concerns principle to ease portability, reusability, and code optimisation while deploying components. Moreover, Think proposes components for services frequently used in embedded systems.

In addition, the proposed framework seems to be well-adapted to handle energy dispersion associated with actions, that is particularly relevant for sensor networks (see for instance [WCdL07]).

8. Conclusion

In this paper we proposed to manage both functional and non functional aspects of components. To sum up, this paper exposes how integer weighted automata can be used to address substitutivity issues in the context of component-based applications. We defined four kinds of substitutivity managing QoS aspects. Several complexity results for these substitutivity problems were provided. They are summed up in the following table. Provided proofs being constructive, above complexity results are tractable in practice.

5http://think.ow2.org/
In addition, the substitutivity notions were considered in the composition context. Three natural composition operators – sequential, strict-sequential and parallel compositions – were defined. For these composition operators, new – positive and negative – results on the substitutivity vs. composition compatibility were provided. We demonstrated that considering path costs when verifying simulation relations in a composition manner, has a cost. To sum up, the composition results are given in the chart below.

<table>
<thead>
<tr>
<th>Substitutivity</th>
<th>Sequential</th>
<th>Sequential Disj. Alphabets</th>
<th>Strict</th>
<th>Parallel</th>
<th>Parallel Disj. Alphabets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitutivity</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Partial</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Strong</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Partial Strong</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

We are well aware that there are other possibilities for defining compositions. Nevertheless, our definitions are general enough, so the present paper can be seen as a step towards more sophisticated settings to be of use in real-life applications (see, e.g., [MR08, ET07, BABC+09]).

In this paper, there is no distinction between inputs, outputs and internal actions because we want the substitutivity to deal with all kinds of actions. In our approach, distinguishing actions will just lead to divide the alphabet into three parts: results will be exactly the same.

Distinguishing actions would be useful either for composition purposes or for simulation definitions. On the one hand, the parallel composition defined in Section 6 can manage different kinds of actions that can be synchronised or not. In this context, it is possible to manage synchronisation on external actions. On the other hand, using internal actions may lead to several simulation relation definitions. At this step, our work does not handle tau-based simulation. We plan to investigate this direction in a future work. Several information on that was pointed out at the beginning of Section 7.1. Notice that synchronisations for the parallel composition operator we consider can manage tau-actions as another action.

In the paper, we consider that automata represent compositions already built up from components/services. This approach seems to be not contradictory with works in [LMW07, SW09] where the behaviour semantics of a set of open nets (uncoloured Petri nets with interfaces modelling services) is given by automata whose states are annotated by boolean formula over states. In those automata, interactions/communications are already performed. Once the interactions/synchronisations are hidden in composition automata, the only remained piece of information we are interested in concerns action costs.

Note that the answer to the substitutivity problem proposed in this paper depends on the chosen abstraction. In fact, the results obtained in our framework, as well as for all abstraction-based approaches, depend on the expressive power of the formalism and on
the quality of the model. It would be interesting to address the same problem with finer abstractions. In the future, following works on automata-based analyses of services [BBG07] and components [BABC+09], we plan to extend the model to include messages among components. To go further, more expressive formalisms like Mealy machines, process algebra or Petri nets would provide more precise component abstractions. In this context, extending substitutivity definitions to these formalisms is easy, but algorithmic studies have to be performed again: however substitutivity problems may be undecidable or have an intractable complexity for these formalisms. In other respects, the matter of whether the substitutivity problem is decidable in the general case, remains open. In the context of the trace-based substitutivity, this problem is undecidable. We conjecture the same result holds for the simulation-based substitutivity.

Polynomial time decidability shows the substitution notion presented in the paper is reasonable and practical. For example, it would be possible to take into consideration the fact that performance/reliability metrics of a component service are not only a function on the service or the service trace, but also on parameters such as the execution environment, the performance/reliability of externally called services, and the usage profile. In fact, the decidability being polynomial time, it could be possible to apply the algorithms for each of these parameters.

In a more general context, modelling quantitative aspects is of great interest for modelling and verifying component-based applications. Work continues on modelling and verifying properties simpler than substitutivity, and on considering other applications, e.g. business protocols.

We would like to thank the anonymous referees and FACS'08 participants for their interesting and helpful comments and suggestions to improve and to develop the preliminary results in [HKV08]. We are grateful to the anonymous SCP referees for their corrections, interesting comments and helpful advice to improve the preliminary version of this paper.

References

