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Abstract: From colonies of bacteria to swarms of bees and flocks of birds, countless organisms exhibit a swarming
behavior based on local, individual decision making. In such species, the information is used efficiently at the group
level to reach optimal behaviors in tasks such as food foraging, which allow to overcome noisy sensory inputs and local
minima. In this paper, we extend an abstract agent-based swarming model based on the evolution of neural network
controllers, in order to explore further the emergence of swarming. However, we ground our model in a more realistic
setting where information about the resource location made partly accessible to the agents, but only through a highly
noisy channel. The swarming is shown to critically improve the efficiency of group foraging, by allowing agents to reach
resource areas much more easily by correct individual mistakes in group dynamics. As high levels of noise may make
the emergence of collective behavior depend on a critical mass of agents, it is crucial to reach in simulation sufficient
computing power to allow for the evolution of the whole set of dynamics. Because this type of simulations based on
neural controllers and information exchanges between agents is computationally intensive, it is critical to optimize the
implementation in order to be able to analyze critical masses of individuals. In this work, we address implementation
challenges, by showing how to apply techniques from astrophysics known as treecodes to compute the signal propagation,
and efficiently parallelize for multi-core architectures. The results confirm that signal-driven swarming improves foraging
performance. The agents overcome their noisy individual channels by forming dynamic swarms. The measured fitness
is found to depend on the population size, which suggests that large scale swarms may behave qualitatively differently.
The minimalist study presented in this paper together with crucial computational optimizations opens the way to future
research on the emergence of signal-based swarming as an efficient collective strategy for uninformed search. Future
work will focus on further information analysis of the swarming phenomenon and how swarm sizes can affect foraging
efficiency.

Keywords: Artificial life, Artificial neural networks, Bio-inspired computation, Evolutionary robotics, Foraging, Swarm-
ing, Treecode

1. INTRODUCTION
The ability of swarms of organisms to coordinate their

motion in space has been studied extensively because of
their implications for the evolution of social cognition,
collective animal behavior and artificial life [1]. Swarm-
ing is defined as the very organization of a large number
of individuals into a coordinated formation. Using only
the information at their disposition in the environment,
they are able to aggregate together and move in groups,
using various types of dynamics [2-4].

A great interest in swarming consists in the capacity
that individuals possess to overcome noise and local min-
ima, in a search space, based on an explicit or implicit
exchange of information between agents.

As experiments involving real animals, either inside
an experimental setup [5, 6] or in their original ecological
environment [7] is costly to reproduce and does not offer
the possibility to test for evolutionary paths, researchers
have soon turned to computational modeling. Simulat-
ing individuals on machines offers easy modification of
setup conditions and parameters, tremendous data gener-
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ation, full reproducibility of every experiment, and eas-
ier identification of the underlying dynamics of complex
phenomena.

Reynolds [8], with his boids (short for birdoids)
model, was the first to simulate agents swarming in 3D,
with only three simple rules. Many researchers have since
then tried to improve on this type of approach [9-13].

The evolutionary robotics approach dramatically
changed the way experimenters could simulate swarm-
ing. Instead of a fixed set of rules, each agent is given
an artificial neural network brain that controls its move-
ments. The swarming behavior is evolved by copy with
mutations of chromosomes encoding the neural network
parameters. By comparing the impact of different se-
lective pressures, this type of methodology, first used in
[14] to solve optimization problems, eventually allowed
to study the evolutionary emergence of swarming.

In this paper, we describe a simplistic model of agents
moving in a 3D map to find a vital resource. The popu-
lation of agents is simulated with an asynchronous evo-
lutionary algorithm, meaning that new agents are created
during the experiments, eventually replacing the previous
population. Agents are indirectly selected based on their



energy, as they are removed from the simulation if their
energy level is too low, implementing a darwinian-like
process.

We specifically focus on the addition of noise to the
food detection sense that the agents possess, and hy-
pothesize that it can be overcome by the emergence of
a collective behavior involving sufficiently large groups
of agents.

An atomic pile is said to “go critical” when a
chain reaction of nuclear fission becomes self-sustaining
(Schelling 1978). A minimal amount of fissionable ma-
terial has to be compacted together to keep the dynamics
from fading away. The notion of critical mass as a crucial
factor in collective behavior has been studied in various
areas of application [15, 16]. Similarly, the size of the
formed groups of agents may here be of a crucial impor-
tance, in order to reach a critical mass in swarms, enough
to overcome very noisy environments. Part of the focus
will therefore be on the optimization of the computer sim-
ulation itself, as large-scale swarms may qualitatively dif-
fer in behavior from regular-sized ones.

2. MODEL
The model extends [17], which proposed an asyn-

chronous simulation evolving a swarming behavior based
on signaling between individuals. A population of agents
is simulated in a three-dimensional space of 600.0 ×
600.0×600.0, gaining a vital amount of energy from a re-
source gathering task. Food spots are randomly placed in
the environment and moved around every 1000 iterations.
By getting close to one of those food spots, the agents
gain more energy, allowing them to compensate for the
energy losses due to their movement and their signaling.
If an agent’s energy level drops to zero, it is removed from
the simulation. Only agents with energy higher than 4.0
are allowed to reproduce. In this regard, the energy also
represents the agent’s fitness, and both terms will here be
used interchangeably.

The agent’s position is determined by three floating
point coordinates between 0.0 and 600.0. Each agent is
positioned randomly at the start of the simulation, and
then moves at a fixed speed of 1 unit per iteration. Ev-
ery iteration, the agent’s new velocity ~ct is obtained by
rotating its velocity vector at the previous time step ~ct−1
by two Euler angles: ψ for the agent’s pitch (i.e. ele-
vation) and θ for the agent’s yaw (i.e. heading). The
rotation is determined by the two motor output values of
the neural controller o1 and o2, determining respectively
the acceleration in y and z in the agent’s inertial frame of
reference, while the norm of the velocity is kept constant.
The agent’s position ~xt is then updated according to its
current velocity with ~xt = ~xt−1 + ~ct.

In the original model [17], the individuals were blind,
in the sense that they don’t see either the food patches
or the other agents around them. In our model, we add
a sense of vision to every agent, allowing them to detect
nearby resources. However, we add a high level of noise
(a randomly generated term at comparatively 10000% of

the original value range) to make this information highly
imperfect.

The agents’ interaction is limited to the exchange of
signals between each others. Every agent is capable of
sending signals of variable intensity, encoded as floating
point values ranging from 0.0 to 1.0. Each agent is also
a directional communication sensor allowing it to detect
signals produced by other agents in a 60-degree frontal
cone. The distance to the source proportionally affects
the intensity of a received signal, and signals from agents
above a 100 distance are ignored.

Each agent detects both the average value and the to-
tal intensity of signals produced in the cone of reception.
Those are distinct values, since the intensity of a signal
decreases with the distance from the emitter, whereas the
value of the signal remains the same. First, the intensity
sensor receives a float for the intensity, equal to the sum
of every signal emitted within range, divided by the dis-
tance, and normalized between 0 and 1. Second, the value
sensor receives a float for the average value of the signals
from the agents in range.

The agent’s neural controller is implemented by a
modified Elman artificial neural network (Figure 1) with
10 input neurons, 10 hidden neurons and 3 output neu-
rons. The outputs control the two motor angles and the
communication signal emitted by the agent. The hidden
layer is given a form of memory feedback from a 10-
neuron context layer, containing the values of the hidden
layer from the previous time step. The input neurons cor-
respond to 6 directional signal sensors, 3 angle-to-goal
sensors, and 1 fixed bias input. All nodes in the neural
network take floating point input values between 0 and
1. All output values are also floating values between 0
and 1, the motor outputs are then converted to angles
between −π to π. The activation state of each internal
neuron is updated according to a sigmoid function. The
weights of each connection in the neural network, com-
prised between 0 and 1, are stored in an array. That array,
constituting the agent’s genotype, is then evolved using a
specific genetic algorithm described below.

The agents reproduce by replicating whenever they
reach a minimal level of fitness, that is, whenever their
level of energy reaches a certain threshold value (arbitrary
12 units), a child agent is added to a random position on
the map, and the parent’s energy is decreased by a certain
cost (arbitrary 10 units). The genotype of an agent defines
the range of signals it is able to produce. The values of
produced signals are modulated by each agent’s decision,
modeled by an artificial neural network with the weights
encoded in each agent’s genotype.

Every new agent is born with an energy equal to 2.0.
In the course of the simulation, each agent can gain or
lose a variable amount of energy. At iteration t, the fit-
ness function fi for agent i is defined by fi(t) = r

di(t)

where r is the reward value and di is the agent’s distance
to any food spot. The reward value is controlled by the
simulation such that the population remains between 100
and 1000 agents, and as close as possible to 500 agents.



Fig. 1: Architecture of the agent’s controller, a recursive
neural network composed of 10 input neurons (I1 to I10)
, 10 hidden neurons (H1 to H10) , 10 context neurons
(C1 to C10) and 3 output neurons (O1 to O3). Every
layer is fully connected to the next one as shown on the
diagram. The input neurons receive the average signal
value and the total intensity from the other agents. The
output neuronsO1 andO2 control the agent’s motion, and
O3 controls the signal it emits.

All the way through the simulation, the agents also spend
a fixed amount of energy for movement (0.01 per itera-
tion) and a variable amount of energy for signaling costs
(0.001× signal intensity per iteration).

The weights of every connection in the neural network
(apart from the links from hidden to context nodes, which
have fixed weights) are encoded in genotypes and evolved
through successive generations of agents. Each weight is
represented by a unique floating point value in the geno-
type vector, such that the size of the vector corresponds
to the total number of connections in a neural network.
The simulation uses a genetic algorithm with overlapping
generations to evolve the weights of the neural networks.
Whenever an agent accumulates 4.0 in energy, it becomes
able to mate. When a potential mate is within 100 units
of distance, they have a probability to mate proportional
to the similarity of their genotypes, calculated by euclid-
ian distance. In case of success, an infant individual is
created, using a 2-point crossover, with a 5% mutation in
the genotype, and added in the neighborhood of the par-
ents, at a distance lower than 100 units to at least one of
them. The parents’ energy is decreased by 2.0 and the
new replica’s energy is set to 2.0.

3. IMPLEMENTATION
3.1. Computational Challenges

One iteration of the algorithm performs roughly fol-
lowing steps:

Fig. 2: Visualization of the simulation

• simulate signal propagation
– build the octree
– update signal intensities in the intermediate nodes.
– compute signals perceived by each agent
• perform the feed-forward step in the ANN s
• spawn new agents/remove exhausted agents from the
simulation depending on their energy levels.
• (optionally) collect and analyze statistical information

Performance profiling done with Linux Perf tool re-
vealed the computing signal propagation consumes up to
87% of the execution time.

3.2. Signal Propagation with Tree Code
Main performance bottlenecks of the model is the

computation of aggregated signal that boid perceives
from all other boids. Straight-forward implementation
has daunting O(n2) complexity and becomes prohibitive
already at thousands-of-agent scale.

This task, however, resembles classical N-Body prob-
lem from computational physics - the problem of pre-
dicting the individual motions of a group of celestial
objects (represented as particles) interacting with each
other gravitationally. As there is no analytical solution
available for the N-body problem - N-body simulation is
used in practice. For every particle gravitational force
~F = −

∑
i 6=j

G
mimj(~ri− vecrj)
|~ri−~rj |3+ε is computed at each time

step, then positions and velocities of every particle are
updated and the computation is repeated. Here ~r is the
position of the particle, m is the mass G is gravitational
constant and ε is small constant to avoid infinite values
for the gravitational force when distance between parti-
cles goes to zero.

Direct (particle-to-particle) method of computations
has quadratic computational complexity and several opti-
mized methods were proposed. In hierarchical methods,



such as the BarnesHut simulation [18], an octree is used
to divide the volume into cubic cells, so that only parti-
cles from nearby cells need to be treated individually, and
particles in distant cells can be treated as a single large
particle centered at the cell’s center of mass. This can
dramatically reduce the number of particle pair interac-
tions that must be computed. Octree depth is larger (i.e.
cells are refined to smaller cells) for denser parts of the
domain.

Our signal-propagation method is based largely on the
Barnes-Hut algorithm, but accounts for the specifics of
the signal perception model of the agents. Instead of be-
ing pulled by gravitational force, every particle (agent in
our case) perceives aggregated signal from other agents
independently by each senor in directed fashion. These
signals thus can not be aggregated simply by summing
corresponding vectors. For each cell of the tree which
contributes to the signal we compute the projection of the
signal from this cell to the vectors representing orienta-
tion of sensors.

Tree construction is done by recursive binary splitting
of the domain so that at most one agent is on one cell.
Fig. 3) illustrates space decomposition and correspond-
ing quad-tree (fig. 3c) for 2-dimensional case. Then the
octree is fully traversed once, such that each node stores
the summed aggregated signal for each of the nodes in its
subtree. To compute the signal, the algorithm starts from
the root and checks if the current node is a leaf node or
if the node is sufficiently remote from the target agent,
i.e. the ratio s/d is smaller than the threshold parameter
θ, where s is the width of the region represented by the
internal node, and d is the distance between the agent and
the node’s center of signal intensity. If the node is not
a leaf and is not sufficiently remote, the algorithm recur-
sively aggregates signals from all of the child nodes.

3.3. Parallelization
Further performance improvement can be achieved by

utilizing modern parallel hardware architectures. The sig-
nal propagation logic in our code is roughly similar to the
logic of the original Barnes-Hut algorithms and similar
parallelization schemes can be applied to it. The Barnes-
Hut algorithm has been extensively studied and opti-
mized, and it has been implemented on many platforms,
such as clusters, GPU accelerators, and even FPGA de-
vices [19-21]. We limit our interest to traditional multi-
core CPUs, as this can be done with reasonable effort but
still lead to significant performance improvement.

For the tree construction we use a top-bottom ap-
proach: each thread independently inserts particles into
the tree, starting traversing from the root to the desired
last-level cell and then attempts to lock the appropriate
child pointer, as only the leaf nodes can be changed dur-
ing the insertion.

Computing the signals does not modify the tree and
does not require any synchronization. The same is true
for the feed-forward computation of the ANN. Perfor-
mance evaluation was performed on a PC with Intel Core
i7-3820 3.60GHz CPU with 4 hyperthreaded cores (8 log-

(a) The original domain

(b) 2D space decomposition

(c) Corresponding quad-tree

Fig. 3: 2-dimensional example of tree construction.
Black squares mark the leaf nodes containing an agent,
white square nodes are empty leaf nodes and the nodes
marked with circles are ”inner nodes”



Fig. 4: 3-dimensional space partitioning for 3 agents

ical cores) and 16 Gb RAM under Ubuntu 15.04 (Linux
kernel 3.19.0) operating system. Source codes written
in C++ programming language with OpenMP program-
ming interface [22] used for multi-threading support and
compiled with gcc 4.9.2 compiler. Figure 5 shows perfor-
mance scaling with the increase of the number of agents
(spawning of new agents was disabled for this bench-
mark).
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Fig. 5: Performance scaling

3.4. Prototype GPU implementation
Graphics Processing Units (GPUs) provide high com-

putational capacity and memory bandwidth and have
been used to accelerate applications in multiple domains.
However, GPU programming and execution models im-
pose certain restrictions to the implementation of algo-
rithms to this platform. While classic CPU architecture
is optimized for low-latency access to cached data sets,
the GPU architecture is optimized for high data parallel
throughput computation. The GPU cores are all managed
by a thread manager, that can spawn and manage tens of
thousands of threads simultaneously. Unlike CPU threads
which can run independently, threads on GPU are orga-
nized in warps of (currently) 32 threads. Threads in a
warp are executed in lock-step, i.e. executing the same
instruction on each step. This implies that if one of the
threads in the warp will follow one branch in if-then-else
statement - all threads will execute the same branch, dis-

carding the results later. This is called branch divergence
and is one of the main reasons for GPU codes to be inef-
ficient.

Objects in array

Objects on heap

Fields in arrays

Fig. 6: Memory layout

The second main difference of the GPU execution
model is the memory access mechanism. If all threads
of the warp simultaneously access adjacent memory el-
ements - such access can be executed in one step. Such
coalesced memory access require reorganization of appli-
cation data layout. In object-oriented agent-based simu-
lation it is natural to allocate the memory for agents on
heap, including motion parameters, neuron values and
weights of the artificial neural net in our case, etc. Dy-
namic memory allocation became only recently available
on GPUs, and still is very expensive. It is possible and
fairly easy to allocate contiguous array for N objecte be-
forehand, but such memory layout would not allow for
the coalesced memory access. Bad memory access pat-
tern can cause easily 10 times slow-down of a GPU ap-
plication [23].

Finally, array of fields layout allows for optimal mem-
ory access. Thus, all the ith weight coefficients of each
layer of the ANN of each agent should be places on the
adjacent memory words. This requires complete memory
layout transformation as showed on the fig. 6.

The algorithm for the signal propagation as we im-
plemented it in the parallel CPU version of the code has
highly irregular structure and thus is extremely challeng-
ing to implement efficiently on GPU. For the original
Barnes-Hut algorithm successful GPU implementations
have been reported, as well as the significant effort re-
quired to achieve sufficient efficiency [24].

However, up to certain number of agents, direct com-
pute on GPU can outperform hierarchical method on par-
allel CPU/GPU. In the scope of the current work we limit
our implementation to N-to-N method for signal prop-
agation and leave the hierarchical algorithm to the fu-
ture work. Also, although asymptotically the hierarchical
method offers clearly superior computational complex-



ity, direct method blends well with GPU computational
model and up to certain number of agents can outper-
form the hierarchical method. Although in general the
ability to simulate larger number of agents in desirable,
faster runs of smaller number of agents can be used to
tune model parameters, like fitness constraints, etc.

4. RELATED WORK
In Particle Swarm Optimization (PSO) problem, a

large number of particles is moving though the domain,
possibly updating behavioral parameters every iteration.
Highly efficient parallel methods for the PSO have been
proposed and implemented [25]. However, as there is no
interaction between particles - the parallelization strategy
is fairly straightforward.

In Reynolds’ boids agents have to be aware of each
other to follow separation, alignment and cohesion rules.
Naive implementation can also lead to quadratic perfor-
mance complexity, however since no long-range interac-
tion is required and also because boids tend to be fairly
separated - grid based methods or methods based on
Smoothed Particle Hydrodynamics technique (and corre-
sponding parallelization approaches) works quite well for
boids and similar models [26, 27].

Our model is different in three key aspects: every
agent has to receive signals from all other agents; ev-
ery agent contains an artificial neural network that has
to be evaluated at each iteration; the number of agents
changes over the simulation. The first aspect makes the
above-mentioned optimization and parallelization tech-
niques inapplicable to our model.

5. RESULTS
In Figure 7, we can observe that signaling improves

the foraging of agents. We use the average amount of
food resource obtained per agent per iteration, as a mea-
sure of the population’s fitness. Without noise, the agents
using signaling are less efficient than their silent counter-
part, which we found is not due to the cost of signaling
(we factored out this cost from the graph), but rather be-
cause of the excess of noise brought by the signal inputs.
The difference remains very small between signaling and
non-signaling agents.

We find however that from a certain noise level, the
cost to signal is fully compensated by the benefits of sig-
naling, as it helps the foraging of agents. The average fit-
ness becomes even higher as we increase the noise level,
which suggest that the signaling behavior increases in ef-
ficiency for high levels of noise, allowing the agents to
overcome imperfect information by forming swarms.

We also observe scale effects in the influence of the
signal propagation on the average fitness of the popula-
tion. Figure 8 shows the results of different population
sizes and propagation parameters on foraging efficiency.
For a smaller population, only middle values of signal
propagation seem to bring about fitter behaviors, whereas
this is not the case for larger sizes of population. On the
contrary, larger populations are most efficient for lower
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Fig. 7: Efficiency with and without signal with constant
noise , mean (central line) and standard deviation range
(area plot) over 10 runs
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levels of signal propagation. This may suggest a phase
transition in the agents’ behavior for large populations,
eventually in the way the swarming itself helps foraging.

6. CONCLUSION
In this paper, we used an agent-based simulation to

show how signal-driven swarming, emerging in an evolu-
tionary simulation such as in [17], allow agents to over-
come noisy information channels an improve their perfor-
mance in a resource finding task. Our first contribution is
the very introduction of noise, demonstrating that the al-
gorithm performs well against noises filling up channels
of information almost up to their full capacity, in the in-
puts of agents. The individuals, by means of a swarming
behavior helped by basic signaling, manage to globally
filter out the noise present in the information from their
sensory inputs, to reach the food sites.

We proposed a hierarchical method based on the
Barnes-Hut simulation in computational physics and its
parallel implementation. We achieved a performance im-
provement of a few orders of magnitude over the previ-
ous implementation [17]. We leave GPU implementation
of the hierarchical signal computation method to future
work. This implementation is crucial to achieve the sim-
ulation of a sufficient number of agents to test for large-
scale swarms (i.e. involving a very large number of indi-
viduals), which have been suggested to generate qualita-
tively different dynamics.

The optimization of the fitness acquired by pheno-
types (agents) using efficient patterns of behavior (mo-
tion and signaling), which themselves are encoded in the
weights of agents’ neural networks. The real optimiza-
tion therefore occurs at the higher level of the darwinian-
like process in the genotypic search space. Efficient
genotypes are selected by the asynchronous genetic al-
gorithm throughout a simulation run.

In future work, it would be interesting to explore fur-
ther the information flow between agents in this experi-
ment with noise.
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