Binary \([18,11]_2\) codes do not exist. Nor do \([64,53]_2\) codes.

Øyvind Ytrehus
Department of Informatics
Thormøhlensgt. 55
N-5020 Bergen
NORWAY
e-mail: oyvind@ii.uib.no

Abstract —
Brualdi et. al. [1] define the function \(l(m, r)\) to be the smallest \(n\) such that an \([n, n - m]_r\) code (a binary block code with block length \(n\), dimension \(n - m\) and covering radius \(r\)) exists. For \(r = 2\), the smallest unknown value of \(l(m, r)\) occurs for \(m = 7\). In this correspondence, \(l(7, 2) = 19\) is established by showing that \([18, 11]_2\) codes do not exist. Also, it is shown that \([64, 53]_2\) codes do not exist, implying that \(l(11, 2) \geq 65\).

This work was supported by The Norwegian Research Council for Science and the Humanities (NAVF).
Keywords

Linear block codes, covering radius.
Binary [18,11]2 codes do not exist. Nor do [64,53]2 codes.

Øyvind Ytrehus

Abstract — Brualdi et. al. [1] define the function \(l(m, r) \) to be the smallest \(n \) such that an \([n, n - m]r\) code (a binary block code with block length \(n \), dimension \(n - m \) and covering radius \(r \)) exists. For \(r = 2 \), the smallest unknown value of \(l(m, r) \) occurs for \(m = 7 \). In this correspondence, \(l(7, 2) = 19 \) is established by showing that \([18, 11]2\) codes do not exist. Also, it is shown that \([64, 53]2\) codes do not exist, implying that \(l(11, 2) \geq 65 \).

Index terms—Linear block codes, covering radius.
Two of the other questions raised in [1] are whether or not there exist $[23, 15]_2$ or $[64, 53]_2$ codes. The first of these questions was answered (negatively) in [2], while the second one will be dealt with in section III.

But first, some preliminaries.

II. PRELIMINARIES

The following well-known facts turn out to be helpful.

Let C be an $[n, n - m]_2$ code and let H be a parity check matrix for C. For every vector $\pi = (\pi_1, \ldots, \pi_t) \in F_2^t, 1 \leq t \leq m$, let $\#_t(H, \pi)$ be the number of columns of H starting out with π in the first t positions. Then

$$N_{2,t}(H, \pi) \triangleq \begin{cases} 1 + \#_t(H, 0) + \sum_{\alpha \in F_2^t} \left(\#_t(H, \alpha) \right) & \text{if } \pi = 0 \\ 1 + \#_t(H, \pi) + \frac{1}{2} \sum_{\alpha \in F_2^t} \#_t(H, \alpha) \cdot \#_t(H, \alpha \oplus \pi) & \text{if } \pi \neq 0 \end{cases}$$

(where the \oplus denotes binary vector addition) represents the number of sums of two or fewer columns of H, such that the sums correspond to π in the first t positions. Since there are 2^{m-t} binary vectors of length m corresponding to π in the first t positions, Lemma 1 follows.

Lemma 1. If H is a parity check matrix for an $[n, n - m]_2$ code, then for all $t, 1 \leq t \leq m$, it holds that

$$N_{2,t}(H, \pi) \geq 2^{m-t}, \forall \pi \in F_2^t.$$
Assume that C is an $[n, k, d]$ code containing a codeword c of Hamming weight $w = w(c)$. Then the residual code $C_1 = \text{Res}(C, c)$ is obtained from C by deleting the coordinates where c is nonzero. If only w is important, C_1 is denoted by $\text{Res}(C, w)$. (Also, it will be convenient to refer to multi-level residual codes, such as $\text{Res}(\text{Res}(C, w_1), w_2)$, in the abbreviated form $\text{Res}(C, w_1, w_2)$ (and so on).) It is easy to see that Lemma 2 holds:

Lemma 2 (see, e. g., [3]). If $w < 2d$, then $\text{Res}(C, w)$ is an $[n - w, k - 1, d_1]$ code where $d_1 \geq d - \lfloor w/2 \rfloor$.

Definition. Let $W(C) = \{w(c) | c \in C \setminus \{0\}\}$.

Lemma 2 can be generalized to

Lemma 3. For every $w \in W(C)$ such that $d \leq w < 2d$,

(a)

$W(\text{Res}(C, w)) \subseteq \{v_0 \mid \exists v_1 : 0 \leq v_1 \leq w, \text{ and } \{v_0 + v_1, v_0 + w - v_1\} \subseteq W(C) \}.$

(b)

$W(C) \subseteq \{w\} \cup \{v_0 + v_1 \mid 0 \leq v_1 \leq w \text{ and } v_0 \in W(\text{Res}(C, w)) \text{ and } \{v_0 + v_1, v_0 + w - v_1\} \subseteq W(C)\}.$

Lemma 4([1]). An $[l(m, r), l(m, r) - m]r$ code has minimum distance at least 3.

Lemma 5 (The MacWilliams identities, [4], ch. 5, eq. (13)). Let C be an $[n, k]$ code, and let C^\perp be the dual code of C. Also, in the rest of this correspondence,
let \(\{A_i\} \) and \(\{B_i\} \) be the weight distributions of \(C \) and \(C_\perp \), respectively. Then

\[
B_j = \frac{1}{2^k} \sum_{i=0}^{n} A_i \cdot P_j(n, i), \quad \forall j : 0 \leq j \leq n,
\]

where

\[
P_j(n, i) = \sum_{l=0}^{j} (-1)^l \binom{i}{l} \binom{n - i}{j - l}
\]

is a Krawtchouk polynomial.

Definition. Let \(d[n, k] \) denote the largest \(d \) such that an \([n, k, d] \) exists. Verhoeff [5] provides a comprehensive table of bounds on \(d[n, k] \) for \(0 \leq k \leq n \leq 127 \). We shall also use a couple of bounds from a more recent update of these tables [6].

Parts of the proofs in section IV rely on computer search to check (partial) parity-check matrices against Lemma 1.

III. DO \([64,53]2\) CODES EXIST?

In this section, assume that \(C \) is a \([64, 11]\) code and that \(C_\perp \) is a \([64, 53]2\) code. From Lemma 1, with \(t = 1 \), \(W(C) \subseteq \{27, \ldots, 38\} \).

First consider the case where the minimum distance \(d(C) = 27 \). Then, from Lemma 2, \(C_1 = \text{Res}(C, 27) \) is a \([37, 10, d_1 \geq 14]\) code. Since \(d[37, 10] = 14 \) ([5]), \(C_1 \) contains at least one codeword of weight 14. Hence, performing column permutations and row operations if necessary, the two first rows of the generator
matrix for C can be assumed to be on the form:

$$
\begin{array}{ccc
But by Lemma 3 a), [5], and Lemma 1 with \(t = 2 \), this means that \(\text{Res}(C, 28) \) is a \([36, 10, 14]\) code with \(W(\text{Res}(C, 28)) \subseteq \{14, 18, 20, 22\} \). This contradicts Lemma 5, so we have

Theorem 1. There is no \([64, 53, 2]\) code.

IV. DO \([18, 11]_2\) CODES EXIST?

Assume that \(C \) is an \([18, 7]\) code and that \(C^\perp \) is an \([18, 11]_2\) code. From Lemma 1, \(t = 1 \), it follows that \(W(C) \subseteq \{5, \ldots, 14\} \). Since, by [5], \(d[18, 7] = 7 \), three cases must be considered: \(d(C) = 5 \), \(d(C) = 6 \), and \(d(C) = 7 \). In each case, we attempt, but fail, to construct a generator matrix \(G \) (consisting of rows \(r_1, r_2, \ldots, r_7 \)) for \(C \). During this procedure we shall take the view that two \(t \times n \) matrices are *equivalent* if one can be obtained from the other by linear combinations and/or column permutations.

Of course, from Lemma 4, \(B_1 = B_2 = 0 \).

The case \(d(C) = 5 \). Without loss of generality, the first row of \(G \) can be taken to be

\[
r_1 : \quad 11111000000000000000
\]

By Lemma 2, \(C_1 = \text{Res}(C, 5) \) is a \([13, 6, d_1 \geq 3]\) code. However, \(d_1 = 3 \) violates Lemma 1 for \(t = 2 \), and by [5] \(d[13, 6] = 4 \), so \(C_1 \) is a \([13, 6, d_1 = 4]\) code. Then it can be assumed that \(r_2 \) has weight 4 when restricted to \(C_1 \). The only vector
that satisfies this condition as well as Lemma 1 \((t = 2)\) is (up to equivalence)

\[
 r_2 : 11100111100000000.
\]

\(Res(C, 5, 4)\) is a \([9, 5, d_2 \geq 2]\) code. From [5], \(d_2\) is either 2 or 3. In each case, up to equivalence there is only one possible third row of \(G\):

\[
 d_2 = 2 : r_3 : 11010110011000000,
\]

\[
 d_2 = 3 : r_3 : 11010110011000000.
\]

If \(d_2 = 2\), then \(C_3 = Res(C, 5, 4, 2)\) is a \([7, 4, d_2 \geq 1]\) code. Using Lemma 1 with \(t = 4\) for all possible nonequivalent fourth rows reveals that \(W(C_3) \subseteq \{2, 4, 6\}\), and that, if \(r_4\) has weight 2 when restricted to \(C_3\), it is the unique (up to equivalence) vector

\[
 r_4 : 10111111111100000.
\]

A similar reasoning with \(t = 5\), together with [5], shows that \(C_4 = Res(C, 5, 4, 2, 2)\) is a (unique (since the dual code has minimum distance 3)) \([5, 3, 2]\) code, and that also the fifth row is essentially unique. Hence, the fifth row and the lower right corner of \(G\) can be assumed to be on the form:

\[
 r_5 : 0000100111111110000
\]

\[
 r_6 : 10110
\]
However, it is a manageable task to check that there is no way to complete G so as to satisfy Lemma 1.

If, on the other hand, $d_2 = 3$, then $C_3 = Res(C, 5, 4, 3)$ is a $[6, 4, d_2 = 2]$ code, and the only fourth row of G that survives Lemma 1 ($t = 4$) is, up to equivalence

$$r_4 : \ 10111111110110000,$$

$C_4 = Res(C, 5, 4, 3, 2)$ is a $[4, 3, d_4 \geq 1]$ code. But there is (by checking all the possibilities against Lemma 1 for $t = 5$) no way to add a fifth row with weight restricted to 1 or 4 in C_4, hence C_4 is a $[4, 3, 2]$ code without the all-one codeword; an obvious contradiction.

The case $d(C) = 6$. Let the first row of G be

$$r_1 : \ 11111100000000000.$$

$C_1 = Res(C, 6)$ is a $[12, 6, d_1]$ code, where d_1 is either 3 or 4. If $d_1 = 3$, then $C_2 = Res(C, 6, 3)$ is a $[9, 5, d_2]$ code. If $d_2 = 2$, by arguments similar to those above, parts of G can be specified as follows:

$$r_2 : \ 111000111000000000$$

$$r_3 : \ 110000000$$
Again, it is impossible to complete G to satisfy Lemma 1. (The computer program found two ways to complete r_3, a total of 7 ways to complete r_3 and r_4, a total of 40 ways to complete $r_3, r_4, r_5,$ and r_6 but no way to complete all rows).

If $d_2 = 3$, parts of G can be specified as follows:

$r_2 : 1110001110000000000$

$r_3 : 11100000$

$r_4 : 11000$

Now $C_4 = Res(C, 6, 3, 3, 2)$ is a $[4, 3, d_4 \geq 1]$. However, it is not possible to complete G if r_5 contains (1000) or (1111) in C_4, again a contradiction.

Next in consideration is the subcase $d_1 = 4$. There are two choices for r_2, denoted (A) and (B):

$(A) : r_2 : 111001111000000000$
\[(B): \quad r_2 : \quad 1110001110000000\]

In either case, \(C_2 = Res(C, 6, 4)\) is an \([8, 5, 2]\) code. Using Lemma 1 for \(t = 3\), up to equivalence this leaves only the same single choice for \(r_3\) in cases (A) and (B):

\[r_3 : \quad 11001011001100000\]

From Lemma 2, \(C_3 = Res(C, 6, 4, 2)\) is a \([6, 4, d_3 \geq 1]\) code. However, in both cases (A) and (B), it turns out to be impossible to satisfy Lemma 1 (\(t = 4\)) if \(r_4\) has weight 1 when restricted to \(C_3\), so \(d_3 = 2\), and we can assume that \(r_4\) has weight 2 when restricted to \(C_3\). Now, \(C_4 = Res(C, 6, 4, 2, 2)\) is our old friend the \([4, 3]\) code. Again, in both cases (A) and (B), it is impossible to complete \(G\) with \(r_5\) having one of the weights 1 or 4 in \(C_4\).

The case \(d(C) = 7\). By Lemmas 1 and 2, and [5], \(W(C) \subseteq \{7, 8, 10, 11, 12, 14\}\). Then \(C_1 = Res(C, 7)\) is an \([11, 6, 4]\) code. From Lemma 2 and Lemma 3 a), \(W(C_1) \subseteq \{4, 5, 6, 8, 9\}\). However, if \(C_1\) has odd-weight codewords, then exactly half of the codewords have odd weight, which contradicts Lemma 5. Lemma 5 shows that in fact \(W(C_1) = \{4, 6, 8\}\). But then from Lemma 3 b), \(W(C) \subseteq \{7, 8, 11, 12\}\). Lemma 5, for \(0 \leq j \leq 3\), together with
the fact that $A_7 + A_{11} = 64$, then imply

$$A_7 + A_8 + A_{11} + A_{12} = 127$$
$$A_8 + 4A_{11} + 5A_{12} = 263$$
$$3A_{11} + 5A_{12} = 194$$
$$5A_{12} = 170 - 24B_3$$
$$0 = 2B_3 - 5.$$

The last equation is an obvious contradiction. Thus we have shown

Theorem 2. There is no $[18, 11]_2$ code.
REFERENCES

