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1.Introduction

Nonlinear filtering is the natural framework to state global estimation problems where a dynamic sto-
chastic process is partially observed by a nonlinear measuring device (e.g. a RADAR) and corrupted
by an additional stochastic process (the noise). The difficulty with nonlinear filtering formulation co-
mes from the infinite dimensional character of the solution, which can not be derived in closed form.
Approximate solutions based on local linearisation of system and measuring equations and/or mo-
ment truncation of density probability can not maintain garanteed performance or even stability.

The particle filtering technique may cope with nonlinear models as well as non-Gaussian dynamic
and observation noises. It recursivelly constructs the conditional probability density
of the state variables , with respect to all available measurements , through a random
exploration of the state space by entities called particles. A weight is assigned to each particle by a
Bayesian correction term based on measurements. Its main advantage relies on global properties of
the procedure, which leads to garanteed convergence.

However, the main drawback of such an approach to the non-linear filtering problem is its heavy
computation cost. In practice, implementations of the particle filtering method can seldom cope with
the real-time constraints of applications such as RADAR signal processing. Therefore, parallelism
appears as a natural approach to real-time particle filtering.

The paper addresses the parallelization of the particle filtering technique. It is organized as follows.
In section 2, we describe the particle filter principles. In section 3, we analyze the parallelism capa-
bilities of the algorithm. Section 4 is devoted to results and concluding remarks.

2.Particle Filter

Let the following equation represent a discrete dynamic system with its observation  :

where  and  are independent white noises with known probability distributions. It is well known
that the recursive solution of the conditionnal probability density  involves two steps :
correction and prediction. This recursive solution can be stated as follows :

Unfortunately, such a recursive computation lies in an infinite dimensional span and is thus unreali-
zable, with the noticeable exception of the well known unconstrained linear Gaussian problem.
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Particle filter is a procedure to solve the general nonlinear non-Gaussian problem, as previously de-
velopped in [1]. Particle filtering approximates the a priori probability at initial time by a set
of N Dirac distributions and applies the dynamic of the system to this set. In other words, one “ran-
domly selects N particles” from the probability distribution to represent it as:

where  is the position of particle . Next, each particle  follows the system dynamic
with noise samples  generated from itsa priori probability. Time evolution of

Dirac point measures is given by sequential application of this procedure:

Fig. 1.a shows the evolution of a set of particles (dot lines represent the trajectory of each particle).

Fig. 1 : (a) a priori evolution and (b) conditionnal evolution.

Next step is to introduce information carried by the measure  :

The weight  corrects the representation given in figure 1.a, where all particles had the same weight
. The particle estimation of the conditional probability is depicted in figure 1.b (dot lines are the

trajectories and the arrows' amplitude represents the weight of each particle).
When the observation noise is gaussian, we have the following simple expression of the weight:

 is the likelihood of the trajectory . The estimate is then given by :

The main drawback of the particle filter is that, if the state space is unbounded, particle trajectories
diverge. Furthermore, in the absence of regularisation, particle weights degenerate and the law of lar-
ge numbers is no more satisfied. A resampling technique can be used to solve both difficulties at the
same time [2]. The algorithm is restarted at an instant using the estimated conditional probability
as an initial distribution. All particles are redistributed among the states according to the weight
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attributed to them and take the new same weight  after the redistribution. Therefore, most pro-
bable states, corresponding to “heavy” particles, give rise to several new particles while least proba-
ble ones are “killed”. Resampling locates particles where they are needed, in a probabilistic way.
Note that particle resampling is not done all time. Particles need to ̀ `learn'' from measurements about
the likelihood of their paths. Redistributions can be done in a periodic way or in an adaptive way de-
fined by the particles' weigth distribution.

3.Parallel Particle Algorithm

We propose a data parallel approach that consists in partitionning the set of particles in
several separate sub-sets of the same size [5]. Each subset is affected to one processor. This
approach allows to exploit efficiently the inherent parallelism of the evolution and ponderation
steps of the particle algorithm. Since the subsets are separate, one can expect a linear speedup
if the communication overhead is keep negligeable.

Fig. 2: Principle of the data parallel approach.

However, we are faced with two difficulties. The first one is related to the parallel computation of the
estimate  from the distributed set of particles. The second one concerns the control of the degene-
rascy of the distributed set of particles.

3.1. Parallel Computation of the Estimate

To solve the first problem, we observe that the estimate needs not be calculated on each processor.
Hence, only one task, hereafter called master task, is devoted to this computation. The other tasks,
which are referred to as slave tasks in the sequel, compute and send to the master task the informa-
tions necessary to compute the estimate. To determine which informations are needed at the master
task level, observe that the estimate can be re-written as below:

where  is the number of slave tasks. The quantity corresponds to a non-normalized local esti-
mate while the quantity  corresponds to a non-normalized local weight.
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This formulation allows to compute the parallel estimate as depicted on Fig. 3.

Fig. 3: Communications involved in the parallel estimate computation.

3.2. Degenerascy Control of the Distributed Set of Particles

Several approaches can be used to cope with the degenerascy of the distributed set of particles.

The first approach is to realize a total exchange of the agregated informations and  at each step
of the algorithm. It allows each processor to detect the degenerascy of the subset of particles of any
other processor. A total exchange of the particle subsets can then be done to reconstruct the global
set of particles on each processor. This global set of particles is then redistributed and repartitionned
independantly on each processor. This approach has the interesting feature of decreasing the estima-
tion error as the number of processor increases. However, the cost of particle subset total exchanges
is too important to cope with the real-time constraints of applications such as RADAR.

The second approach we propose consists in operating local redistributions on the subset of particles.
Such redistributions can be done independently on each processor. It can be shown using birth and
death processes theory that local redistribution allows to stabilize the subset of particles. This proper-
ty holds even if the number of particles in each subset is as lower as 2, as shown on figure 4.

Fig. 4 : (a) without local redistribution and (b) with local redistribution.
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4.Results and concluding remarks

The academic non-linear filtering problems considered for the application are the followings. The
first model is relative to a jump process  with a poisson additive perturbation of ran-
dom gaussian magnitude and an observation process  corrupted by a gaussian noise. The
second model describes the evolution of a dynamic mobile (position, velocity and acceleration) with
the same poisson perturbation on the acceleration and the same gaussian noise on the observation.

On both models, we generated four instances of the particle algorithm. Instances differ with respect
to the number of particles (4000 and 16000) and the magnitude of noise variables. The parallel algo-
rithm has been implemented on an Origin2000 (32 processors) with MPI message passing library.

Fig. 5: Speedups obtained on the Origin2000 using 4000 and 16000 particles.

The results plotted on figure 5 show the very good scalability (near linear speedup) of the parallel
algorithm for 16000 particles. The resulting parallel computation time per iteration is compatible
with real-time applications (smaller than 1 ms).
We are developping new approaches to extend the scalability of the method to hundreds of processors
to handle the larger number of particles (greater than 50000) necessary in real application problems
such as the LORAN navigation signal processing [4] and RADAR defense applications with very low
signal-noise ratio [3].
In parallel, we also investigate the capabilities of PC clusters with high-speed communication links
(myrinet) to handle efficiently such parallel method.
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attributed to them and take the new same weight  after the redistribution. Therefore, most pro-
bable states, corresponding to “heavy” particles, give rise to several new particles while least proba-
ble ones are “killed”. Resampling locates particles where they are needed, in a probabilistic way.
Note that particle resampling is not done all time. Particles need to ̀ `learn'' from measurements about
the likelihood of their paths. Redistributions can be done in a periodic way or in an adaptive way de-
fined by the particles' weigth distribution.

3.Parallel Particle Algorithm

We propose a data parallel approach that consists in partitionning the set of particles in
several separate sub-sets of the same size [5]. Each subset is affected to one processor. This
approach allows to exploit efficiently the inherent parallelism of the evolution and ponderation
steps of the particle algorithm. Since the subsets are separate, one can expect a linear speedup
if the communication overhead is keep negligeable.

Fig. 2: Principle of the data parallel approach.
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This formulation allows to compute the parallel estimate as depicted on Fig. 3.

Fig. 3: Communications involved in the parallel estimate computation.

3.2. Degenerascy Control of the Distributed Set of Particles

Several approaches can be used to cope with the degenerascy of the distributed set of particles.

The first approach is to realize a total exchange of the agregated informations and  at each step
of the algorithm. It allows each processor to detect the degenerascy of the subset of particles of any
other processor. A total exchange of the particle subsets can then be done to reconstruct the global
set of particles on each processor. This global set of particles is then redistributed and repartitionned
independantly on each processor. This approach has the interesting feature of decreasing the estima-
tion error as the number of processor increases. However, the cost of particle subset total exchanges
is too important to cope with the real-time constraints of applications such as RADAR.

The second approach we propose consists in operating local redistributions on the subset of particles.
Such redistributions can be done independently on each processor. It can be shown using birth and
death processes theory that local redistribution allows to stabilize the subset of particles. This proper-
ty holds even if the number of particles in each subset is as lower as 2, as shown on figure 4.

Fig. 4 : (a) without local redistribution and (b) with local redistribution.
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4.Results and concluding remarks

The academic non-linear filtering problems considered for the application are the followings. The
first model is relative to a jump process  with a poisson additive perturbation of ran-
dom gaussian magnitude and an observation process  corrupted by a gaussian noise. The
second model describes the evolution of a dynamic mobile (position, velocity and acceleration) with
the same poisson perturbation on the acceleration and the same gaussian noise on the observation.

On both models, we generated four instances of the particle algorithm. Instances differ with respect
to the number of particles (4000 and 16000) and the magnitude of noise variables. The parallel algo-
rithm has been implemented on an Origin2000 (32 processors) with MPI message passing library.

Fig. 5: Speedups obtained on the Origin2000 using 4000 and 16000 particles.

The results plotted on figure 5 show the very good scalability (near linear speedup) of the parallel
algorithm for 16000 particles. The resulting parallel computation time per iteration is compatible
with real-time applications (smaller than 1 ms).
We are developping new approaches to extend the scalability of the method to hundreds of processors
to handle the larger number of particles (greater than 50000) necessary in real application problems
such as the LORAN navigation signal processing [4] and RADAR defense applications with very low
signal-noise ratio [3].
In parallel, we also investigate the capabilities of PC clusters with high-speed communication links
(myrinet) to handle efficiently such parallel method.
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of N Dirac distributions and applies the dynamic of the system to this set. In other words, one “ran-
domly selects N particles” from the probability distribution to represent it as:

where  is the position of particle . Next, each particle  follows the system dynamic
with noise samples  generated from itsa priori probability. Time evolution of

Dirac point measures is given by sequential application of this procedure:

Fig. 1.a shows the evolution of a set of particles (dot lines represent the trajectory of each particle).

Fig. 1 : (a) a priori evolution and (b) conditionnal evolution.

Next step is to introduce information carried by the measure  :

The weight  corrects the representation given in figure 1.a, where all particles had the same weight
. The particle estimation of the conditional probability is depicted in figure 1.b (dot lines are the

trajectories and the arrows' amplitude represents the weight of each particle).
When the observation noise is gaussian, we have the following simple expression of the weight:

 is the likelihood of the trajectory . The estimate is then given by :

The main drawback of the particle filter is that, if the state space is unbounded, particle trajectories
diverge. Furthermore, in the absence of regularisation, particle weights degenerate and the law of lar-
ge numbers is no more satisfied. A resampling technique can be used to solve both difficulties at the
same time [2]. The algorithm is restarted at an instant using the estimated conditional probability
as an initial distribution. All particles are redistributed among the states according to the weight
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attributed to them and take the new same weight  after the redistribution. Therefore, most pro-
bable states, corresponding to “heavy” particles, give rise to several new particles while least proba-
ble ones are “killed”. Resampling locates particles where they are needed, in a probabilistic way.
Note that particle resampling is not done all time. Particles need to ̀ `learn'' from measurements about
the likelihood of their paths. Redistributions can be done in a periodic way or in an adaptive way de-
fined by the particles' weigth distribution.

3.Parallel Particle Algorithm

We propose a data parallel approach that consists in partitionning the set of particles in
several separate sub-sets of the same size [5]. Each subset is affected to one processor. This
approach allows to exploit efficiently the inherent parallelism of the evolution and ponderation
steps of the particle algorithm. Since the subsets are separate, one can expect a linear speedup
if the communication overhead is keep negligeable.

Fig. 2: Principle of the data parallel approach.

However, we are faced with two difficulties. The first one is related to the parallel computation of the
estimate  from the distributed set of particles. The second one concerns the control of the degene-
rascy of the distributed set of particles.

3.1. Parallel Computation of the Estimate

To solve the first problem, we observe that the estimate needs not be calculated on each processor.
Hence, only one task, hereafter called master task, is devoted to this computation. The other tasks,
which are referred to as slave tasks in the sequel, compute and send to the master task the informa-
tions necessary to compute the estimate. To determine which informations are needed at the master
task level, observe that the estimate can be re-written as below:

where  is the number of slave tasks. The quantity corresponds to a non-normalized local esti-
mate while the quantity  corresponds to a non-normalized local weight.
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This formulation allows to compute the parallel estimate as depicted on Fig. 3.

Fig. 3: Communications involved in the parallel estimate computation.

3.2. Degenerascy Control of the Distributed Set of Particles

Several approaches can be used to cope with the degenerascy of the distributed set of particles.

The first approach is to realize a total exchange of the agregated informations and  at each step
of the algorithm. It allows each processor to detect the degenerascy of the subset of particles of any
other processor. A total exchange of the particle subsets can then be done to reconstruct the global
set of particles on each processor. This global set of particles is then redistributed and repartitionned
independantly on each processor. This approach has the interesting feature of decreasing the estima-
tion error as the number of processor increases. However, the cost of particle subset total exchanges
is too important to cope with the real-time constraints of applications such as RADAR.

The second approach we propose consists in operating local redistributions on the subset of particles.
Such redistributions can be done independently on each processor. It can be shown using birth and
death processes theory that local redistribution allows to stabilize the subset of particles. This proper-
ty holds even if the number of particles in each subset is as lower as 2, as shown on figure 4.

Fig. 4 : (a) without local redistribution and (b) with local redistribution.
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4.Results and concluding remarks

The academic non-linear filtering problems considered for the application are the followings. The
first model is relative to a jump process  with a poisson additive perturbation of ran-
dom gaussian magnitude and an observation process  corrupted by a gaussian noise. The
second model describes the evolution of a dynamic mobile (position, velocity and acceleration) with
the same poisson perturbation on the acceleration and the same gaussian noise on the observation.

On both models, we generated four instances of the particle algorithm. Instances differ with respect
to the number of particles (4000 and 16000) and the magnitude of noise variables. The parallel algo-
rithm has been implemented on an Origin2000 (32 processors) with MPI message passing library.

Fig. 5: Speedups obtained on the Origin2000 using 4000 and 16000 particles.

The results plotted on figure 5 show the very good scalability (near linear speedup) of the parallel
algorithm for 16000 particles. The resulting parallel computation time per iteration is compatible
with real-time applications (smaller than 1 ms).
We are developping new approaches to extend the scalability of the method to hundreds of processors
to handle the larger number of particles (greater than 50000) necessary in real application problems
such as the LORAN navigation signal processing [4] and RADAR defense applications with very low
signal-noise ratio [3].
In parallel, we also investigate the capabilities of PC clusters with high-speed communication links
(myrinet) to handle efficiently such parallel method.
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